//===- llvm/Analysis/LoopInfo.h - Natural Loop Calculator -------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file was developed by the LLVM research group and is distributed under // the University of Illinois Open Source License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file defines the LoopInfo class that is used to identify natural loops // and determine the loop depth of various nodes of the CFG. Note that natural // loops may actually be several loops that share the same header node. // // This analysis calculates the nesting structure of loops in a function. For // each natural loop identified, this analysis identifies natural loops // contained entirely within the loop and the basic blocks the make up the loop. // // It can calculate on the fly various bits of information, for example: // // * whether there is a preheader for the loop // * the number of back edges to the header // * whether or not a particular block branches out of the loop // * the successor blocks of the loop // * the loop depth // * the trip count // * etc... // //===----------------------------------------------------------------------===// #ifndef LLVM_ANALYSIS_LOOP_INFO_H #define LLVM_ANALYSIS_LOOP_INFO_H #include "llvm/Pass.h" #include "llvm/ADT/GraphTraits.h" namespace llvm { struct DominatorSet; class LoopInfo; class PHINode; class Instruction; //===----------------------------------------------------------------------===// /// Loop class - Instances of this class are used to represent loops that are /// detected in the flow graph /// class Loop { Loop *ParentLoop; std::vector SubLoops; // Loops contained entirely within this one std::vector Blocks; // First entry is the header node Loop(const Loop &); // DO NOT IMPLEMENT const Loop &operator=(const Loop &); // DO NOT IMPLEMENT public: /// Loop ctor - This creates an empty loop. Loop() : ParentLoop(0) {} ~Loop() { for (unsigned i = 0, e = SubLoops.size(); i != e; ++i) delete SubLoops[i]; } unsigned getLoopDepth() const { unsigned D = 0; for (const Loop *CurLoop = this; CurLoop; CurLoop = CurLoop->ParentLoop) ++D; return D; } BasicBlock *getHeader() const { return Blocks.front(); } Loop *getParentLoop() const { return ParentLoop; } /// contains - Return true of the specified basic block is in this loop /// bool contains(const BasicBlock *BB) const; /// iterator/begin/end - Return the loops contained entirely within this loop. /// const std::vector &getSubLoops() const { return SubLoops; } typedef std::vector::const_iterator iterator; iterator begin() const { return SubLoops.begin(); } iterator end() const { return SubLoops.end(); } /// getBlocks - Get a list of the basic blocks which make up this loop. /// const std::vector &getBlocks() const { return Blocks; } typedef std::vector::const_iterator block_iterator; block_iterator block_begin() const { return Blocks.begin(); } block_iterator block_end() const { return Blocks.end(); } /// isLoopExit - True if terminator in the block can branch to another block /// that is outside of the current loop. /// bool isLoopExit(const BasicBlock *BB) const; /// getNumBackEdges - Calculate the number of back edges to the loop header /// unsigned getNumBackEdges() const; /// isLoopInvariant - Return true if the specified value is loop invariant /// bool isLoopInvariant(Value *V) const; //===--------------------------------------------------------------------===// // APIs for simple analysis of the loop. // // Note that all of these methods can fail on general loops (ie, there may not // be a preheader, etc). For best success, the loop simplification and // induction variable canonicalization pass should be used to normalize loops // for easy analysis. These methods assume canonical loops. /// getExitBlocks - Return all of the successor blocks of this loop. These /// are the blocks _outside of the current loop_ which are branched to. /// void getExitBlocks(std::vector &Blocks) const; /// getLoopPreheader - If there is a preheader for this loop, return it. A /// loop has a preheader if there is only one edge to the header of the loop /// from outside of the loop. If this is the case, the block branching to the /// header of the loop is the preheader node. /// /// This method returns null if there is no preheader for the loop. /// BasicBlock *getLoopPreheader() const; /// getCanonicalInductionVariable - Check to see if the loop has a canonical /// induction variable: an integer recurrence that starts at 0 and increments /// by one each time through the loop. If so, return the phi node that /// corresponds to it. /// PHINode *getCanonicalInductionVariable() const; /// getCanonicalInductionVariableIncrement - Return the LLVM value that holds /// the canonical induction variable value for the "next" iteration of the /// loop. This always succeeds if getCanonicalInductionVariable succeeds. /// Instruction *getCanonicalInductionVariableIncrement() const; /// getTripCount - Return a loop-invariant LLVM value indicating the number of /// times the loop will be executed. Note that this means that the backedge /// of the loop executes N-1 times. If the trip-count cannot be determined, /// this returns null. /// Value *getTripCount() const; //===--------------------------------------------------------------------===// // APIs for updating loop information after changing the CFG // /// addBasicBlockToLoop - This method is used by other analyses to update loop /// information. NewBB is set to be a new member of the current loop. /// Because of this, it is added as a member of all parent loops, and is added /// to the specified LoopInfo object as being in the current basic block. It /// is not valid to replace the loop header with this method. /// void addBasicBlockToLoop(BasicBlock *NewBB, LoopInfo &LI); /// replaceChildLoopWith - This is used when splitting loops up. It replaces /// the OldChild entry in our children list with NewChild, and updates the /// parent pointer of OldChild to be null and the NewChild to be this loop. /// This updates the loop depth of the new child. void replaceChildLoopWith(Loop *OldChild, Loop *NewChild); /// addChildLoop - Add the specified loop to be a child of this loop. This /// updates the loop depth of the new child. /// void addChildLoop(Loop *NewChild); /// removeChildLoop - This removes the specified child from being a subloop of /// this loop. The loop is not deleted, as it will presumably be inserted /// into another loop. Loop *removeChildLoop(iterator OldChild); /// addBlockEntry - This adds a basic block directly to the basic block list. /// This should only be used by transformations that create new loops. Other /// transformations should use addBasicBlockToLoop. void addBlockEntry(BasicBlock *BB) { Blocks.push_back(BB); } /// moveToHeader - This method is used to move BB (which must be part of this /// loop) to be the loop header of the loop (the block that dominates all /// others). void moveToHeader(BasicBlock *BB) { if (Blocks[0] == BB) return; for (unsigned i = 0; ; ++i) { assert(i != Blocks.size() && "Loop does not contain BB!"); if (Blocks[i] == BB) { Blocks[i] = Blocks[0]; Blocks[0] = BB; return; } } } /// removeBlockFromLoop - This removes the specified basic block from the /// current loop, updating the Blocks as appropriate. This does not update /// the mapping in the LoopInfo class. void removeBlockFromLoop(BasicBlock *BB); void print(std::ostream &O, unsigned Depth = 0) const; void dump() const; private: friend class LoopInfo; Loop(BasicBlock *BB) : ParentLoop(0) { Blocks.push_back(BB); } }; //===----------------------------------------------------------------------===// /// LoopInfo - This class builds and contains all of the top level loop /// structures in the specified function. /// class LoopInfo : public FunctionPass { // BBMap - Mapping of basic blocks to the inner most loop they occur in std::map BBMap; std::vector TopLevelLoops; friend class Loop; public: ~LoopInfo() { releaseMemory(); } /// iterator/begin/end - The interface to the top-level loops in the current /// function. /// typedef std::vector::const_iterator iterator; iterator begin() const { return TopLevelLoops.begin(); } iterator end() const { return TopLevelLoops.end(); } /// getLoopFor - Return the inner most loop that BB lives in. If a basic /// block is in no loop (for example the entry node), null is returned. /// Loop *getLoopFor(const BasicBlock *BB) const { std::map::const_iterator I=BBMap.find((BasicBlock*)BB); return I != BBMap.end() ? I->second : 0; } /// operator[] - same as getLoopFor... /// const Loop *operator[](const BasicBlock *BB) const { return getLoopFor(BB); } /// getLoopDepth - Return the loop nesting level of the specified block... /// unsigned getLoopDepth(const BasicBlock *BB) const { const Loop *L = getLoopFor(BB); return L ? L->getLoopDepth() : 0; } // isLoopHeader - True if the block is a loop header node bool isLoopHeader(BasicBlock *BB) const { return getLoopFor(BB)->getHeader() == BB; } /// runOnFunction - Calculate the natural loop information. /// virtual bool runOnFunction(Function &F); virtual void releaseMemory(); void print(std::ostream &O, const Module* = 0) const; /// getAnalysisUsage - Requires dominator sets /// virtual void getAnalysisUsage(AnalysisUsage &AU) const; /// removeLoop - This removes the specified top-level loop from this loop info /// object. The loop is not deleted, as it will presumably be inserted into /// another loop. Loop *removeLoop(iterator I); /// changeLoopFor - Change the top-level loop that contains BB to the /// specified loop. This should be used by transformations that restructure /// the loop hierarchy tree. void changeLoopFor(BasicBlock *BB, Loop *L); /// changeTopLevelLoop - Replace the specified loop in the top-level loops /// list with the indicated loop. void changeTopLevelLoop(Loop *OldLoop, Loop *NewLoop); /// addTopLevelLoop - This adds the specified loop to the collection of /// top-level loops. void addTopLevelLoop(Loop *New) { assert(New->getParentLoop() == 0 && "Loop already in subloop!"); TopLevelLoops.push_back(New); } /// removeBlock - This method completely removes BB from all data structures, /// including all of the Loop objects it is nested in and our mapping from /// BasicBlocks to loops. void removeBlock(BasicBlock *BB); static void stub(); // Noop private: void Calculate(const DominatorSet &DS); Loop *ConsiderForLoop(BasicBlock *BB, const DominatorSet &DS); void MoveSiblingLoopInto(Loop *NewChild, Loop *NewParent); void InsertLoopInto(Loop *L, Loop *Parent); }; // Make sure that any clients of this file link in LoopInfo.cpp static IncludeFile LOOP_INFO_INCLUDE_FILE((void*)&LoopInfo::stub); // Allow clients to walk the list of nested loops... template <> struct GraphTraits { typedef const Loop NodeType; typedef std::vector::const_iterator ChildIteratorType; static NodeType *getEntryNode(const Loop *L) { return L; } static inline ChildIteratorType child_begin(NodeType *N) { return N->begin(); } static inline ChildIteratorType child_end(NodeType *N) { return N->end(); } }; template <> struct GraphTraits { typedef Loop NodeType; typedef std::vector::const_iterator ChildIteratorType; static NodeType *getEntryNode(Loop *L) { return L; } static inline ChildIteratorType child_begin(NodeType *N) { return N->begin(); } static inline ChildIteratorType child_end(NodeType *N) { return N->end(); } }; } // End llvm namespace #endif