//===- lib/MC/MCDwarf.cpp - MCDwarf implementation ------------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// #include "llvm/ADT/FoldingSet.h" #include "llvm/MC/MCAsmInfo.h" #include "llvm/MC/MCDwarf.h" #include "llvm/MC/MCAssembler.h" #include "llvm/MC/MCStreamer.h" #include "llvm/MC/MCSymbol.h" #include "llvm/MC/MCExpr.h" #include "llvm/MC/MCContext.h" #include "llvm/MC/MCObjectWriter.h" #include "llvm/ADT/SmallString.h" #include "llvm/ADT/Twine.h" #include "llvm/Support/Debug.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Target/TargetAsmBackend.h" #include "llvm/Target/TargetAsmInfo.h" using namespace llvm; // Given a special op, return the address skip amount (in units of // DWARF2_LINE_MIN_INSN_LENGTH. #define SPECIAL_ADDR(op) (((op) - DWARF2_LINE_OPCODE_BASE)/DWARF2_LINE_RANGE) // The maximum address skip amount that can be encoded with a special op. #define MAX_SPECIAL_ADDR_DELTA SPECIAL_ADDR(255) // First special line opcode - leave room for the standard opcodes. // Note: If you want to change this, you'll have to update the // "standard_opcode_lengths" table that is emitted in DwarfFileTable::Emit(). #define DWARF2_LINE_OPCODE_BASE 13 // Minimum line offset in a special line info. opcode. This value // was chosen to give a reasonable range of values. #define DWARF2_LINE_BASE -5 // Range of line offsets in a special line info. opcode. # define DWARF2_LINE_RANGE 14 // Define the architecture-dependent minimum instruction length (in bytes). // This value should be rather too small than too big. # define DWARF2_LINE_MIN_INSN_LENGTH 1 // Note: when DWARF2_LINE_MIN_INSN_LENGTH == 1 which is the current setting, // this routine is a nop and will be optimized away. static inline uint64_t ScaleAddrDelta(uint64_t AddrDelta) { if (DWARF2_LINE_MIN_INSN_LENGTH == 1) return AddrDelta; if (AddrDelta % DWARF2_LINE_MIN_INSN_LENGTH != 0) { // TODO: report this error, but really only once. ; } return AddrDelta / DWARF2_LINE_MIN_INSN_LENGTH; } // // This is called when an instruction is assembled into the specified section // and if there is information from the last .loc directive that has yet to have // a line entry made for it is made. // void MCLineEntry::Make(MCStreamer *MCOS, const MCSection *Section) { if (!MCOS->getContext().getDwarfLocSeen()) return; // Create a symbol at in the current section for use in the line entry. MCSymbol *LineSym = MCOS->getContext().CreateTempSymbol(); // Set the value of the symbol to use for the MCLineEntry. MCOS->EmitLabel(LineSym); // Get the current .loc info saved in the context. const MCDwarfLoc &DwarfLoc = MCOS->getContext().getCurrentDwarfLoc(); // Create a (local) line entry with the symbol and the current .loc info. MCLineEntry LineEntry(LineSym, DwarfLoc); // clear DwarfLocSeen saying the current .loc info is now used. MCOS->getContext().ClearDwarfLocSeen(); // Get the MCLineSection for this section, if one does not exist for this // section create it. const DenseMap &MCLineSections = MCOS->getContext().getMCLineSections(); MCLineSection *LineSection = MCLineSections.lookup(Section); if (!LineSection) { // Create a new MCLineSection. This will be deleted after the dwarf line // table is created using it by iterating through the MCLineSections // DenseMap. LineSection = new MCLineSection; // Save a pointer to the new LineSection into the MCLineSections DenseMap. MCOS->getContext().addMCLineSection(Section, LineSection); } // Add the line entry to this section's entries. LineSection->addLineEntry(LineEntry); } // // This helper routine returns an expression of End - Start + IntVal . // static inline const MCExpr *MakeStartMinusEndExpr(const MCStreamer &MCOS, const MCSymbol &Start, const MCSymbol &End, int IntVal) { MCSymbolRefExpr::VariantKind Variant = MCSymbolRefExpr::VK_None; const MCExpr *Res = MCSymbolRefExpr::Create(&End, Variant, MCOS.getContext()); const MCExpr *RHS = MCSymbolRefExpr::Create(&Start, Variant, MCOS.getContext()); const MCExpr *Res1 = MCBinaryExpr::Create(MCBinaryExpr::Sub, Res, RHS, MCOS.getContext()); const MCExpr *Res2 = MCConstantExpr::Create(IntVal, MCOS.getContext()); const MCExpr *Res3 = MCBinaryExpr::Create(MCBinaryExpr::Sub, Res1, Res2, MCOS.getContext()); return Res3; } // // This emits the Dwarf line table for the specified section from the entries // in the LineSection. // static inline void EmitDwarfLineTable(MCStreamer *MCOS, const MCSection *Section, const MCLineSection *LineSection) { unsigned FileNum = 1; unsigned LastLine = 1; unsigned Column = 0; unsigned Flags = DWARF2_LINE_DEFAULT_IS_STMT ? DWARF2_FLAG_IS_STMT : 0; unsigned Isa = 0; MCSymbol *LastLabel = NULL; // Loop through each MCLineEntry and encode the dwarf line number table. for (MCLineSection::const_iterator it = LineSection->getMCLineEntries()->begin(), ie = LineSection->getMCLineEntries()->end(); it != ie; ++it) { if (FileNum != it->getFileNum()) { FileNum = it->getFileNum(); MCOS->EmitIntValue(dwarf::DW_LNS_set_file, 1); MCOS->EmitULEB128IntValue(FileNum); } if (Column != it->getColumn()) { Column = it->getColumn(); MCOS->EmitIntValue(dwarf::DW_LNS_set_column, 1); MCOS->EmitULEB128IntValue(Column); } if (Isa != it->getIsa()) { Isa = it->getIsa(); MCOS->EmitIntValue(dwarf::DW_LNS_set_isa, 1); MCOS->EmitULEB128IntValue(Isa); } if ((it->getFlags() ^ Flags) & DWARF2_FLAG_IS_STMT) { Flags = it->getFlags(); MCOS->EmitIntValue(dwarf::DW_LNS_negate_stmt, 1); } if (it->getFlags() & DWARF2_FLAG_BASIC_BLOCK) MCOS->EmitIntValue(dwarf::DW_LNS_set_basic_block, 1); if (it->getFlags() & DWARF2_FLAG_PROLOGUE_END) MCOS->EmitIntValue(dwarf::DW_LNS_set_prologue_end, 1); if (it->getFlags() & DWARF2_FLAG_EPILOGUE_BEGIN) MCOS->EmitIntValue(dwarf::DW_LNS_set_epilogue_begin, 1); int64_t LineDelta = static_cast(it->getLine()) - LastLine; MCSymbol *Label = it->getLabel(); // At this point we want to emit/create the sequence to encode the delta in // line numbers and the increment of the address from the previous Label // and the current Label. MCOS->EmitDwarfAdvanceLineAddr(LineDelta, LastLabel, Label); LastLine = it->getLine(); LastLabel = Label; } // Emit a DW_LNE_end_sequence for the end of the section. // Using the pointer Section create a temporary label at the end of the // section and use that and the LastLabel to compute the address delta // and use INT64_MAX as the line delta which is the signal that this is // actually a DW_LNE_end_sequence. // Switch to the section to be able to create a symbol at its end. MCOS->SwitchSection(Section); MCContext &context = MCOS->getContext(); // Create a symbol at the end of the section. MCSymbol *SectionEnd = context.CreateTempSymbol(); // Set the value of the symbol, as we are at the end of the section. MCOS->EmitLabel(SectionEnd); // Switch back the the dwarf line section. MCOS->SwitchSection(context.getTargetAsmInfo().getDwarfLineSection()); MCOS->EmitDwarfAdvanceLineAddr(INT64_MAX, LastLabel, SectionEnd); } // // This emits the Dwarf file and the line tables. // void MCDwarfFileTable::Emit(MCStreamer *MCOS) { MCContext &context = MCOS->getContext(); // Switch to the section where the table will be emitted into. MCOS->SwitchSection(context.getTargetAsmInfo().getDwarfLineSection()); // Create a symbol at the beginning of this section. MCSymbol *LineStartSym = context.CreateTempSymbol(); // Set the value of the symbol, as we are at the start of the section. MCOS->EmitLabel(LineStartSym); // Create a symbol for the end of the section (to be set when we get there). MCSymbol *LineEndSym = context.CreateTempSymbol(); // The first 4 bytes is the total length of the information for this // compilation unit (not including these 4 bytes for the length). MCOS->EmitAbsValue(MakeStartMinusEndExpr(*MCOS, *LineStartSym, *LineEndSym,4), 4); // Next 2 bytes is the Version, which is Dwarf 2. MCOS->EmitIntValue(2, 2); // Create a symbol for the end of the prologue (to be set when we get there). MCSymbol *ProEndSym = context.CreateTempSymbol(); // Lprologue_end // Length of the prologue, is the next 4 bytes. Which is the start of the // section to the end of the prologue. Not including the 4 bytes for the // total length, the 2 bytes for the version, and these 4 bytes for the // length of the prologue. MCOS->EmitAbsValue(MakeStartMinusEndExpr(*MCOS, *LineStartSym, *ProEndSym, (4 + 2 + 4)), 4, 0); // Parameters of the state machine, are next. MCOS->EmitIntValue(DWARF2_LINE_MIN_INSN_LENGTH, 1); MCOS->EmitIntValue(DWARF2_LINE_DEFAULT_IS_STMT, 1); MCOS->EmitIntValue(DWARF2_LINE_BASE, 1); MCOS->EmitIntValue(DWARF2_LINE_RANGE, 1); MCOS->EmitIntValue(DWARF2_LINE_OPCODE_BASE, 1); // Standard opcode lengths MCOS->EmitIntValue(0, 1); // length of DW_LNS_copy MCOS->EmitIntValue(1, 1); // length of DW_LNS_advance_pc MCOS->EmitIntValue(1, 1); // length of DW_LNS_advance_line MCOS->EmitIntValue(1, 1); // length of DW_LNS_set_file MCOS->EmitIntValue(1, 1); // length of DW_LNS_set_column MCOS->EmitIntValue(0, 1); // length of DW_LNS_negate_stmt MCOS->EmitIntValue(0, 1); // length of DW_LNS_set_basic_block MCOS->EmitIntValue(0, 1); // length of DW_LNS_const_add_pc MCOS->EmitIntValue(1, 1); // length of DW_LNS_fixed_advance_pc MCOS->EmitIntValue(0, 1); // length of DW_LNS_set_prologue_end MCOS->EmitIntValue(0, 1); // length of DW_LNS_set_epilogue_begin MCOS->EmitIntValue(1, 1); // DW_LNS_set_isa // Put out the directory and file tables. // First the directory table. const std::vector &MCDwarfDirs = context.getMCDwarfDirs(); for (unsigned i = 0; i < MCDwarfDirs.size(); i++) { MCOS->EmitBytes(MCDwarfDirs[i], 0); // the DirectoryName MCOS->EmitBytes(StringRef("\0", 1), 0); // the null term. of the string } MCOS->EmitIntValue(0, 1); // Terminate the directory list // Second the file table. const std::vector &MCDwarfFiles = MCOS->getContext().getMCDwarfFiles(); for (unsigned i = 1; i < MCDwarfFiles.size(); i++) { MCOS->EmitBytes(MCDwarfFiles[i]->getName(), 0); // FileName MCOS->EmitBytes(StringRef("\0", 1), 0); // the null term. of the string // the Directory num MCOS->EmitULEB128IntValue(MCDwarfFiles[i]->getDirIndex()); MCOS->EmitIntValue(0, 1); // last modification timestamp (always 0) MCOS->EmitIntValue(0, 1); // filesize (always 0) } MCOS->EmitIntValue(0, 1); // Terminate the file list // This is the end of the prologue, so set the value of the symbol at the // end of the prologue (that was used in a previous expression). MCOS->EmitLabel(ProEndSym); // Put out the line tables. const DenseMap &MCLineSections = MCOS->getContext().getMCLineSections(); const std::vector &MCLineSectionOrder = MCOS->getContext().getMCLineSectionOrder(); for (std::vector::const_iterator it = MCLineSectionOrder.begin(), ie = MCLineSectionOrder.end(); it != ie; ++it) { const MCSection *Sec = *it; const MCLineSection *Line = MCLineSections.lookup(Sec); EmitDwarfLineTable(MCOS, Sec, Line); // Now delete the MCLineSections that were created in MCLineEntry::Make() // and used to emit the line table. delete Line; } if (MCOS->getContext().getAsmInfo().getLinkerRequiresNonEmptyDwarfLines() && MCLineSectionOrder.begin() == MCLineSectionOrder.end()) { // The darwin9 linker has a bug (see PR8715). For for 32-bit architectures // it requires: // total_length >= prologue_length + 10 // We are 4 bytes short, since we have total_length = 51 and // prologue_length = 45 // The regular end_sequence should be sufficient. MCDwarfLineAddr::Emit(MCOS, INT64_MAX, 0); } // This is the end of the section, so set the value of the symbol at the end // of this section (that was used in a previous expression). MCOS->EmitLabel(LineEndSym); } /// Utility function to write the encoding to an object writer. void MCDwarfLineAddr::Write(MCObjectWriter *OW, int64_t LineDelta, uint64_t AddrDelta) { SmallString<256> Tmp; raw_svector_ostream OS(Tmp); MCDwarfLineAddr::Encode(LineDelta, AddrDelta, OS); OW->WriteBytes(OS.str()); } /// Utility function to emit the encoding to a streamer. void MCDwarfLineAddr::Emit(MCStreamer *MCOS, int64_t LineDelta, uint64_t AddrDelta) { SmallString<256> Tmp; raw_svector_ostream OS(Tmp); MCDwarfLineAddr::Encode(LineDelta, AddrDelta, OS); MCOS->EmitBytes(OS.str(), /*AddrSpace=*/0); } /// Utility function to encode a Dwarf pair of LineDelta and AddrDeltas. void MCDwarfLineAddr::Encode(int64_t LineDelta, uint64_t AddrDelta, raw_ostream &OS) { uint64_t Temp, Opcode; bool NeedCopy = false; // Scale the address delta by the minimum instruction length. AddrDelta = ScaleAddrDelta(AddrDelta); // A LineDelta of INT64_MAX is a signal that this is actually a // DW_LNE_end_sequence. We cannot use special opcodes here, since we want the // end_sequence to emit the matrix entry. if (LineDelta == INT64_MAX) { if (AddrDelta == MAX_SPECIAL_ADDR_DELTA) OS << char(dwarf::DW_LNS_const_add_pc); else { OS << char(dwarf::DW_LNS_advance_pc); MCObjectWriter::EncodeULEB128(AddrDelta, OS); } OS << char(dwarf::DW_LNS_extended_op); OS << char(1); OS << char(dwarf::DW_LNE_end_sequence); return; } // Bias the line delta by the base. Temp = LineDelta - DWARF2_LINE_BASE; // If the line increment is out of range of a special opcode, we must encode // it with DW_LNS_advance_line. if (Temp >= DWARF2_LINE_RANGE) { OS << char(dwarf::DW_LNS_advance_line); SmallString<32> Tmp; raw_svector_ostream OSE(Tmp); MCObjectWriter::EncodeSLEB128(LineDelta, OSE); OS << OSE.str(); LineDelta = 0; Temp = 0 - DWARF2_LINE_BASE; NeedCopy = true; } // Use DW_LNS_copy instead of a "line +0, addr +0" special opcode. if (LineDelta == 0 && AddrDelta == 0) { OS << char(dwarf::DW_LNS_copy); return; } // Bias the opcode by the special opcode base. Temp += DWARF2_LINE_OPCODE_BASE; // Avoid overflow when addr_delta is large. if (AddrDelta < 256 + MAX_SPECIAL_ADDR_DELTA) { // Try using a special opcode. Opcode = Temp + AddrDelta * DWARF2_LINE_RANGE; if (Opcode <= 255) { OS << char(Opcode); return; } // Try using DW_LNS_const_add_pc followed by special op. Opcode = Temp + (AddrDelta - MAX_SPECIAL_ADDR_DELTA) * DWARF2_LINE_RANGE; if (Opcode <= 255) { OS << char(dwarf::DW_LNS_const_add_pc); OS << char(Opcode); return; } } // Otherwise use DW_LNS_advance_pc. OS << char(dwarf::DW_LNS_advance_pc); SmallString<32> Tmp; raw_svector_ostream OSE(Tmp); MCObjectWriter::EncodeULEB128(AddrDelta, OSE); OS << OSE.str(); if (NeedCopy) OS << char(dwarf::DW_LNS_copy); else OS << char(Temp); } void MCDwarfFile::print(raw_ostream &OS) const { OS << '"' << getName() << '"'; } void MCDwarfFile::dump() const { print(dbgs()); } static int getDataAlignmentFactor(MCStreamer &streamer) { MCContext &context = streamer.getContext(); const TargetAsmInfo &asmInfo = context.getTargetAsmInfo(); int size = asmInfo.getPointerSize(); if (asmInfo.getStackGrowthDirection() == TargetFrameLowering::StackGrowsUp) return size; else return -size; } static unsigned getSizeForEncoding(MCStreamer &streamer, unsigned symbolEncoding) { MCContext &context = streamer.getContext(); const TargetAsmInfo &asmInfo = context.getTargetAsmInfo(); unsigned format = symbolEncoding & 0x0f; switch (format) { default: assert(0 && "Unknown Encoding"); case dwarf::DW_EH_PE_absptr: case dwarf::DW_EH_PE_signed: return asmInfo.getPointerSize(); case dwarf::DW_EH_PE_udata2: case dwarf::DW_EH_PE_sdata2: return 2; case dwarf::DW_EH_PE_udata4: case dwarf::DW_EH_PE_sdata4: return 4; case dwarf::DW_EH_PE_udata8: case dwarf::DW_EH_PE_sdata8: return 8; } } static void EmitSymbol(MCStreamer &streamer, const MCSymbol &symbol, unsigned symbolEncoding) { MCContext &context = streamer.getContext(); const MCAsmInfo &asmInfo = context.getAsmInfo(); const MCExpr *v = asmInfo.getExprForFDESymbol(&symbol, symbolEncoding, streamer); unsigned size = getSizeForEncoding(streamer, symbolEncoding); streamer.EmitAbsValue(v, size); } static void EmitPersonality(MCStreamer &streamer, const MCSymbol &symbol, unsigned symbolEncoding) { MCContext &context = streamer.getContext(); const MCAsmInfo &asmInfo = context.getAsmInfo(); const MCExpr *v = asmInfo.getExprForPersonalitySymbol(&symbol, symbolEncoding, streamer); unsigned size = getSizeForEncoding(streamer, symbolEncoding); streamer.EmitValue(v, size); } static const MachineLocation TranslateMachineLocation( const TargetAsmInfo &AsmInfo, const MachineLocation &Loc) { unsigned Reg = Loc.getReg() == MachineLocation::VirtualFP ? MachineLocation::VirtualFP : unsigned(AsmInfo.getDwarfRegNum(Loc.getReg(), true)); const MachineLocation &NewLoc = Loc.isReg() ? MachineLocation(Reg) : MachineLocation(Reg, Loc.getOffset()); return NewLoc; } namespace { class FrameEmitterImpl { int CFAOffset; int CIENum; bool UsingCFI; bool IsEH; const MCSymbol *SectionStart; public: FrameEmitterImpl(bool usingCFI, bool isEH, const MCSymbol *sectionStart) : CFAOffset(0), CIENum(0), UsingCFI(usingCFI), IsEH(isEH), SectionStart(sectionStart) { } /// EmitCompactUnwind - Emit the unwind information in a compact way. If /// we're successful, return 'true'. Otherwise, return 'false' and it will /// emit the normal CIE and FDE. bool EmitCompactUnwind(MCStreamer &streamer, const MCDwarfFrameInfo &frame); const MCSymbol &EmitCIE(MCStreamer &streamer, const MCSymbol *personality, unsigned personalityEncoding, const MCSymbol *lsda, unsigned lsdaEncoding); MCSymbol *EmitFDE(MCStreamer &streamer, const MCSymbol &cieStart, const MCDwarfFrameInfo &frame); void EmitCFIInstructions(MCStreamer &streamer, const std::vector &Instrs, MCSymbol *BaseLabel); void EmitCFIInstruction(MCStreamer &Streamer, const MCCFIInstruction &Instr); }; } void FrameEmitterImpl::EmitCFIInstruction(MCStreamer &Streamer, const MCCFIInstruction &Instr) { int dataAlignmentFactor = getDataAlignmentFactor(Streamer); switch (Instr.getOperation()) { case MCCFIInstruction::Move: case MCCFIInstruction::RelMove: { const MachineLocation &Dst = Instr.getDestination(); const MachineLocation &Src = Instr.getSource(); const bool IsRelative = Instr.getOperation() == MCCFIInstruction::RelMove; // If advancing cfa. if (Dst.isReg() && Dst.getReg() == MachineLocation::VirtualFP) { if (Src.getReg() == MachineLocation::VirtualFP) { Streamer.EmitIntValue(dwarf::DW_CFA_def_cfa_offset, 1); } else { Streamer.EmitIntValue(dwarf::DW_CFA_def_cfa, 1); Streamer.EmitULEB128IntValue(Src.getReg()); } if (IsRelative) CFAOffset += Src.getOffset(); else CFAOffset = -Src.getOffset(); Streamer.EmitULEB128IntValue(CFAOffset); return; } if (Src.isReg() && Src.getReg() == MachineLocation::VirtualFP) { assert(Dst.isReg() && "Machine move not supported yet."); Streamer.EmitIntValue(dwarf::DW_CFA_def_cfa_register, 1); Streamer.EmitULEB128IntValue(Dst.getReg()); return; } unsigned Reg = Src.getReg(); int Offset = Dst.getOffset(); if (IsRelative) Offset -= CFAOffset; Offset = Offset / dataAlignmentFactor; if (Offset < 0) { Streamer.EmitIntValue(dwarf::DW_CFA_offset_extended_sf, 1); Streamer.EmitULEB128IntValue(Reg); Streamer.EmitSLEB128IntValue(Offset); } else if (Reg < 64) { Streamer.EmitIntValue(dwarf::DW_CFA_offset + Reg, 1); Streamer.EmitULEB128IntValue(Offset); } else { Streamer.EmitIntValue(dwarf::DW_CFA_offset_extended, 1); Streamer.EmitULEB128IntValue(Reg); Streamer.EmitULEB128IntValue(Offset); } return; } case MCCFIInstruction::Remember: Streamer.EmitIntValue(dwarf::DW_CFA_remember_state, 1); return; case MCCFIInstruction::Restore: Streamer.EmitIntValue(dwarf::DW_CFA_restore_state, 1); return; case MCCFIInstruction::SameValue: { unsigned Reg = Instr.getDestination().getReg(); Streamer.EmitIntValue(dwarf::DW_CFA_same_value, 1); Streamer.EmitULEB128IntValue(Reg); return; } } llvm_unreachable("Unhandled case in switch"); } /// EmitFrameMoves - Emit frame instructions to describe the layout of the /// frame. void FrameEmitterImpl::EmitCFIInstructions(MCStreamer &streamer, const std::vector &Instrs, MCSymbol *BaseLabel) { for (unsigned i = 0, N = Instrs.size(); i < N; ++i) { const MCCFIInstruction &Instr = Instrs[i]; MCSymbol *Label = Instr.getLabel(); // Throw out move if the label is invalid. if (Label && !Label->isDefined()) continue; // Not emitted, in dead code. // Advance row if new location. if (BaseLabel && Label) { MCSymbol *ThisSym = Label; if (ThisSym != BaseLabel) { streamer.EmitDwarfAdvanceFrameAddr(BaseLabel, ThisSym); BaseLabel = ThisSym; } } EmitCFIInstruction(streamer, Instr); } } /// EmitCompactUnwind - Emit the unwind information in a compact way. If we're /// successful, return 'true'. Otherwise, return 'false' and it will emit the /// normal CIE and FDE. bool FrameEmitterImpl::EmitCompactUnwind(MCStreamer &Streamer, const MCDwarfFrameInfo &Frame) { #if 1 return false; #else MCContext &Context = Streamer.getContext(); const TargetAsmInfo &TAI = Context.getTargetAsmInfo(); Streamer.SwitchSection(TAI.getCompactUnwindSection()); unsigned FDEEncoding = TAI.getFDEEncoding(UsingCFI); unsigned Size = getSizeForEncoding(Streamer, FDEEncoding); // range-start range-length compact-unwind-enc personality-func lsda // _foo LfooEnd-_foo 0x00000023 0 0 // _bar LbarEnd-_bar 0x00000025 __gxx_personality except_tab1 // // .section __LD,__compact_unwind,regular,debug // // # compact unwind for _foo // .quad _foo // .set L1,LfooEnd-_foo // .long L1 // .long 0x01010001 // .quad 0 // .quad 0 // // # compact unwind for _bar // .quad _bar // .set L2,LbarEnd-_bar // .long L2 // .long 0x01020011 // .quad __gxx_personality // .quad except_tab1 // Range Start EmitSymbol(Streamer, *Frame.Begin, FDEEncoding); // Range Length const MCExpr *Range = MakeStartMinusEndExpr(Streamer, *Frame.Begin, *Frame.End, 0); Streamer.EmitAbsValue(Range, Size); return true; #endif } const MCSymbol &FrameEmitterImpl::EmitCIE(MCStreamer &streamer, const MCSymbol *personality, unsigned personalityEncoding, const MCSymbol *lsda, unsigned lsdaEncoding) { MCContext &context = streamer.getContext(); const TargetAsmInfo &asmInfo = context.getTargetAsmInfo(); MCSymbol *sectionStart; if (asmInfo.isFunctionEHFrameSymbolPrivate() || !IsEH) sectionStart = context.CreateTempSymbol(); else sectionStart = context.GetOrCreateSymbol(Twine("EH_frame") + Twine(CIENum)); CIENum++; MCSymbol *sectionEnd = streamer.getContext().CreateTempSymbol(); // Length const MCExpr *Length = MakeStartMinusEndExpr(streamer, *sectionStart, *sectionEnd, 4); streamer.EmitLabel(sectionStart); streamer.EmitAbsValue(Length, 4); // CIE ID unsigned CIE_ID = IsEH ? 0 : -1; streamer.EmitIntValue(CIE_ID, 4); // Version streamer.EmitIntValue(dwarf::DW_CIE_VERSION, 1); // Augmentation String SmallString<8> Augmentation; if (IsEH) { Augmentation += "z"; if (personality) Augmentation += "P"; if (lsda) Augmentation += "L"; Augmentation += "R"; streamer.EmitBytes(Augmentation.str(), 0); } streamer.EmitIntValue(0, 1); // Code Alignment Factor streamer.EmitULEB128IntValue(1); // Data Alignment Factor streamer.EmitSLEB128IntValue(getDataAlignmentFactor(streamer)); // Return Address Register streamer.EmitULEB128IntValue(asmInfo.getDwarfRARegNum(true)); // Augmentation Data Length (optional) unsigned augmentationLength = 0; if (IsEH) { if (personality) { // Personality Encoding augmentationLength += 1; // Personality augmentationLength += getSizeForEncoding(streamer, personalityEncoding); } if (lsda) augmentationLength += 1; // Encoding of the FDE pointers augmentationLength += 1; streamer.EmitULEB128IntValue(augmentationLength); // Augmentation Data (optional) if (personality) { // Personality Encoding streamer.EmitIntValue(personalityEncoding, 1); // Personality EmitPersonality(streamer, *personality, personalityEncoding); } if (lsda) streamer.EmitIntValue(lsdaEncoding, 1); // LSDA Encoding // Encoding of the FDE pointers streamer.EmitIntValue(asmInfo.getFDEEncoding(UsingCFI), 1); } // Initial Instructions const std::vector Moves = asmInfo.getInitialFrameState(); std::vector Instructions; for (int i = 0, n = Moves.size(); i != n; ++i) { MCSymbol *Label = Moves[i].getLabel(); const MachineLocation &Dst = TranslateMachineLocation(asmInfo, Moves[i].getDestination()); const MachineLocation &Src = TranslateMachineLocation(asmInfo, Moves[i].getSource()); MCCFIInstruction Inst(Label, Dst, Src); Instructions.push_back(Inst); } EmitCFIInstructions(streamer, Instructions, NULL); // Padding streamer.EmitValueToAlignment(IsEH ? 4 : asmInfo.getPointerSize()); streamer.EmitLabel(sectionEnd); return *sectionStart; } MCSymbol *FrameEmitterImpl::EmitFDE(MCStreamer &streamer, const MCSymbol &cieStart, const MCDwarfFrameInfo &frame) { MCContext &context = streamer.getContext(); MCSymbol *fdeStart = context.CreateTempSymbol(); MCSymbol *fdeEnd = context.CreateTempSymbol(); const TargetAsmInfo &TAsmInfo = context.getTargetAsmInfo(); if (!TAsmInfo.isFunctionEHFrameSymbolPrivate() && IsEH) { MCSymbol *EHSym = context.GetOrCreateSymbol( frame.Function->getName() + Twine(".eh")); streamer.EmitEHSymAttributes(frame.Function, EHSym); streamer.EmitLabel(EHSym); } // Length const MCExpr *Length = MakeStartMinusEndExpr(streamer, *fdeStart, *fdeEnd, 0); streamer.EmitAbsValue(Length, 4); streamer.EmitLabel(fdeStart); // CIE Pointer const MCAsmInfo &asmInfo = context.getAsmInfo(); if (IsEH) { const MCExpr *offset = MakeStartMinusEndExpr(streamer, cieStart, *fdeStart, 0); streamer.EmitAbsValue(offset, 4); } else if (!asmInfo.doesDwarfRequireRelocationForSectionOffset()) { const MCExpr *offset = MakeStartMinusEndExpr(streamer, *SectionStart, cieStart, 0); streamer.EmitAbsValue(offset, 4); } else { streamer.EmitSymbolValue(&cieStart, 4); } unsigned fdeEncoding = TAsmInfo.getFDEEncoding(UsingCFI); unsigned size = getSizeForEncoding(streamer, fdeEncoding); // PC Begin unsigned PCBeginEncoding = IsEH ? fdeEncoding : (unsigned)dwarf::DW_EH_PE_absptr; unsigned PCBeginSize = getSizeForEncoding(streamer, PCBeginEncoding); EmitSymbol(streamer, *frame.Begin, PCBeginEncoding); // PC Range const MCExpr *Range = MakeStartMinusEndExpr(streamer, *frame.Begin, *frame.End, 0); streamer.EmitAbsValue(Range, size); if (IsEH) { // Augmentation Data Length unsigned augmentationLength = 0; if (frame.Lsda) augmentationLength += getSizeForEncoding(streamer, frame.LsdaEncoding); streamer.EmitULEB128IntValue(augmentationLength); // Augmentation Data if (frame.Lsda) EmitSymbol(streamer, *frame.Lsda, frame.LsdaEncoding); } // Call Frame Instructions EmitCFIInstructions(streamer, frame.Instructions, frame.Begin); // Padding streamer.EmitValueToAlignment(PCBeginSize); return fdeEnd; } namespace { struct CIEKey { static const CIEKey getEmptyKey() { return CIEKey(0, 0, -1); } static const CIEKey getTombstoneKey() { return CIEKey(0, -1, 0); } CIEKey(const MCSymbol* Personality_, unsigned PersonalityEncoding_, unsigned LsdaEncoding_) : Personality(Personality_), PersonalityEncoding(PersonalityEncoding_), LsdaEncoding(LsdaEncoding_) { } const MCSymbol* Personality; unsigned PersonalityEncoding; unsigned LsdaEncoding; }; } namespace llvm { template <> struct DenseMapInfo { static CIEKey getEmptyKey() { return CIEKey::getEmptyKey(); } static CIEKey getTombstoneKey() { return CIEKey::getTombstoneKey(); } static unsigned getHashValue(const CIEKey &Key) { FoldingSetNodeID ID; ID.AddPointer(Key.Personality); ID.AddInteger(Key.PersonalityEncoding); ID.AddInteger(Key.LsdaEncoding); return ID.ComputeHash(); } static bool isEqual(const CIEKey &LHS, const CIEKey &RHS) { return LHS.Personality == RHS.Personality && LHS.PersonalityEncoding == RHS.PersonalityEncoding && LHS.LsdaEncoding == RHS.LsdaEncoding; } }; } void MCDwarfFrameEmitter::Emit(MCStreamer &streamer, bool usingCFI, bool isEH) { MCContext &context = streamer.getContext(); const TargetAsmInfo &asmInfo = context.getTargetAsmInfo(); const MCSection §ion = isEH ? *asmInfo.getEHFrameSection() : *asmInfo.getDwarfFrameSection(); streamer.SwitchSection(§ion); MCSymbol *SectionStart = context.CreateTempSymbol(); streamer.EmitLabel(SectionStart); MCSymbol *fdeEnd = NULL; DenseMap CIEStarts; FrameEmitterImpl Emitter(usingCFI, isEH, SectionStart); const MCSymbol *DummyDebugKey = NULL; for (unsigned i = 0, n = streamer.getNumFrameInfos(); i < n; ++i) { const MCDwarfFrameInfo &frame = streamer.getFrameInfo(i); CIEKey key(frame.Personality, frame.PersonalityEncoding, frame.LsdaEncoding); const MCSymbol *&cieStart = isEH ? CIEStarts[key] : DummyDebugKey; if (isEH && asmInfo.getCompactUnwindSection() && Emitter.EmitCompactUnwind(streamer, frame)) continue; if (!cieStart) cieStart = &Emitter.EmitCIE(streamer, frame.Personality, frame.PersonalityEncoding, frame.Lsda, frame.LsdaEncoding); fdeEnd = Emitter.EmitFDE(streamer, *cieStart, frame); if (i != n - 1) streamer.EmitLabel(fdeEnd); } streamer.EmitValueToAlignment(asmInfo.getPointerSize()); if (fdeEnd) streamer.EmitLabel(fdeEnd); } void MCDwarfFrameEmitter::EmitAdvanceLoc(MCStreamer &Streamer, uint64_t AddrDelta) { SmallString<256> Tmp; raw_svector_ostream OS(Tmp); MCDwarfFrameEmitter::EncodeAdvanceLoc(AddrDelta, OS); Streamer.EmitBytes(OS.str(), /*AddrSpace=*/0); } void MCDwarfFrameEmitter::EncodeAdvanceLoc(uint64_t AddrDelta, raw_ostream &OS) { // FIXME: Assumes the code alignment factor is 1. if (AddrDelta == 0) { } else if (isUIntN(6, AddrDelta)) { uint8_t Opcode = dwarf::DW_CFA_advance_loc | AddrDelta; OS << Opcode; } else if (isUInt<8>(AddrDelta)) { OS << uint8_t(dwarf::DW_CFA_advance_loc1); OS << uint8_t(AddrDelta); } else if (isUInt<16>(AddrDelta)) { // FIXME: check what is the correct behavior on a big endian machine. OS << uint8_t(dwarf::DW_CFA_advance_loc2); OS << uint8_t( AddrDelta & 0xff); OS << uint8_t((AddrDelta >> 8) & 0xff); } else { // FIXME: check what is the correct behavior on a big endian machine. assert(isUInt<32>(AddrDelta)); OS << uint8_t(dwarf::DW_CFA_advance_loc4); OS << uint8_t( AddrDelta & 0xff); OS << uint8_t((AddrDelta >> 8) & 0xff); OS << uint8_t((AddrDelta >> 16) & 0xff); OS << uint8_t((AddrDelta >> 24) & 0xff); } }