//===- Signals.cpp - Generic Unix Signals Implementation -----*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file defines some helpful functions for dealing with the possibility of // Unix signals occuring while your program is running. // //===----------------------------------------------------------------------===// #include "Unix.h" #include "llvm/ADT/STLExtras.h" #include "llvm/System/Mutex.h" #include #include #if HAVE_EXECINFO_H # include // For backtrace(). #endif #if HAVE_SIGNAL_H #include #endif #if HAVE_SYS_STAT_H #include #endif #if HAVE_DLFCN_H && __GNUG__ #include #include #endif using namespace llvm; static RETSIGTYPE SignalHandler(int Sig); // defined below. static SmartMutex SignalsMutex; /// InterruptFunction - The function to call if ctrl-c is pressed. static void (*InterruptFunction)() = 0; static std::vector FilesToRemove; static std::vector > CallBacksToRun; // IntSigs - Signals that may interrupt the program at any time. static const int IntSigs[] = { SIGHUP, SIGINT, SIGQUIT, SIGPIPE, SIGTERM, SIGUSR1, SIGUSR2 }; static const int *const IntSigsEnd = IntSigs + sizeof(IntSigs) / sizeof(IntSigs[0]); // KillSigs - Signals that are synchronous with the program that will cause it // to die. static const int KillSigs[] = { SIGILL, SIGTRAP, SIGABRT, SIGFPE, SIGBUS, SIGSEGV #ifdef SIGSYS , SIGSYS #endif #ifdef SIGXCPU , SIGXCPU #endif #ifdef SIGXFSZ , SIGXFSZ #endif #ifdef SIGEMT , SIGEMT #endif }; static const int *const KillSigsEnd = KillSigs + sizeof(KillSigs) / sizeof(KillSigs[0]); static unsigned NumRegisteredSignals = 0; static struct { struct sigaction SA; int SigNo; } RegisteredSignalInfo[(sizeof(IntSigs)+sizeof(KillSigs))/sizeof(KillSigs[0])]; static void RegisterHandler(int Signal) { assert(NumRegisteredSignals < sizeof(RegisteredSignalInfo)/sizeof(RegisteredSignalInfo[0]) && "Out of space for signal handlers!"); struct sigaction NewHandler; NewHandler.sa_handler = SignalHandler; NewHandler.sa_flags = SA_NODEFER|SA_RESETHAND; sigemptyset(&NewHandler.sa_mask); // Install the new handler, save the old one in RegisteredSignalInfo. sigaction(Signal, &NewHandler, &RegisteredSignalInfo[NumRegisteredSignals].SA); RegisteredSignalInfo[NumRegisteredSignals].SigNo = Signal; ++NumRegisteredSignals; } static void RegisterHandlers() { // If the handlers are already registered, we're done. if (NumRegisteredSignals != 0) return; std::for_each(IntSigs, IntSigsEnd, RegisterHandler); std::for_each(KillSigs, KillSigsEnd, RegisterHandler); } static void UnregisterHandlers() { // Restore all of the signal handlers to how they were before we showed up. for (unsigned i = 0, e = NumRegisteredSignals; i != e; ++i) sigaction(RegisteredSignalInfo[i].SigNo, &RegisteredSignalInfo[i].SA, 0); NumRegisteredSignals = 0; } /// RemoveFilesToRemove - Process the FilesToRemove list. This function /// should be called with the SignalsMutex lock held. static void RemoveFilesToRemove() { while (!FilesToRemove.empty()) { FilesToRemove.back().eraseFromDisk(true); FilesToRemove.pop_back(); } } // SignalHandler - The signal handler that runs. static RETSIGTYPE SignalHandler(int Sig) { // Restore the signal behavior to default, so that the program actually // crashes when we return and the signal reissues. This also ensures that if // we crash in our signal handler that the program will terminate immediately // instead of recursing in the signal handler. UnregisterHandlers(); // Unmask all potentially blocked kill signals. sigset_t SigMask; sigfillset(&SigMask); sigprocmask(SIG_UNBLOCK, &SigMask, 0); SignalsMutex.acquire(); RemoveFilesToRemove(); if (std::find(IntSigs, IntSigsEnd, Sig) != IntSigsEnd) { if (InterruptFunction) { void (*IF)() = InterruptFunction; SignalsMutex.release(); InterruptFunction = 0; IF(); // run the interrupt function. return; } SignalsMutex.release(); raise(Sig); // Execute the default handler. return; } SignalsMutex.release(); // Otherwise if it is a fault (like SEGV) run any handler. for (unsigned i = 0, e = CallBacksToRun.size(); i != e; ++i) CallBacksToRun[i].first(CallBacksToRun[i].second); } void llvm::sys::RunInterruptHandlers() { SignalsMutex.acquire(); RemoveFilesToRemove(); SignalsMutex.release(); } void llvm::sys::SetInterruptFunction(void (*IF)()) { SignalsMutex.acquire(); InterruptFunction = IF; SignalsMutex.release(); RegisterHandlers(); } // RemoveFileOnSignal - The public API bool llvm::sys::RemoveFileOnSignal(const sys::Path &Filename, std::string* ErrMsg) { SignalsMutex.acquire(); FilesToRemove.push_back(Filename); SignalsMutex.release(); RegisterHandlers(); return false; } /// AddSignalHandler - Add a function to be called when a signal is delivered /// to the process. The handler can have a cookie passed to it to identify /// what instance of the handler it is. void llvm::sys::AddSignalHandler(void (*FnPtr)(void *), void *Cookie) { CallBacksToRun.push_back(std::make_pair(FnPtr, Cookie)); RegisterHandlers(); } // PrintStackTrace - In the case of a program crash or fault, print out a stack // trace so that the user has an indication of why and where we died. // // On glibc systems we have the 'backtrace' function, which works nicely, but // doesn't demangle symbols. static void PrintStackTrace(void *) { #ifdef HAVE_BACKTRACE static void* StackTrace[256]; // Use backtrace() to output a backtrace on Linux systems with glibc. int depth = backtrace(StackTrace, static_cast(array_lengthof(StackTrace))); #if HAVE_DLFCN_H && __GNUG__ int width = 0; for (int i = 0; i < depth; ++i) { Dl_info dlinfo; dladdr(StackTrace[i], &dlinfo); const char* name = strrchr(dlinfo.dli_fname, '/'); int nwidth; if (name == NULL) nwidth = strlen(dlinfo.dli_fname); else nwidth = strlen(name) - 1; if (nwidth > width) width = nwidth; } for (int i = 0; i < depth; ++i) { Dl_info dlinfo; dladdr(StackTrace[i], &dlinfo); fprintf(stderr, "%-2d", i); const char* name = strrchr(dlinfo.dli_fname, '/'); if (name == NULL) fprintf(stderr, " %-*s", width, dlinfo.dli_fname); else fprintf(stderr, " %-*s", width, name+1); fprintf(stderr, " %#0*lx", (int)(sizeof(void*) * 2) + 2, (unsigned long)StackTrace[i]); if (dlinfo.dli_sname != NULL) { int res; fputc(' ', stderr); char* d = abi::__cxa_demangle(dlinfo.dli_sname, NULL, NULL, &res); if (d == NULL) fputs(dlinfo.dli_sname, stderr); else fputs(d, stderr); free(d); fprintf(stderr, " + %tu",(char*)StackTrace[i]-(char*)dlinfo.dli_saddr); } fputc('\n', stderr); } #else backtrace_symbols_fd(StackTrace, depth, STDERR_FILENO); #endif #endif } /// PrintStackTraceOnErrorSignal - When an error signal (such as SIBABRT or /// SIGSEGV) is delivered to the process, print a stack trace and then exit. void llvm::sys::PrintStackTraceOnErrorSignal() { AddSignalHandler(PrintStackTrace, 0); } /***/ // On Darwin, raise sends a signal to the main thread instead of the current // thread. This has the unfortunate effect that assert() and abort() will end up // bypassing our crash recovery attempts. We work around this for anything in // the same linkage unit by just defining our own versions of the assert handler // and abort. #ifdef __APPLE__ void __assert_rtn(const char *func, const char *file, int line, const char *expr) { if (func) fprintf(stderr, "Assertion failed: (%s), function %s, file %s, line %d.\n", expr, func, file, line); else fprintf(stderr, "Assertion failed: (%s), file %s, line %d.\n", expr, file, line); abort(); } #include #include void abort() { pthread_kill(pthread_self(), SIGABRT); usleep(1000); __builtin_trap(); } #endif