//===-- SelectionDAGISel.cpp - Implement the SelectionDAGISel class -------===// // // The LLVM Compiler Infrastructure // // This file was developed by the LLVM research group and is distributed under // the University of Illinois Open Source License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This implements the SelectionDAGISel class. // //===----------------------------------------------------------------------===// #define DEBUG_TYPE "isel" #include "llvm/CodeGen/SelectionDAGISel.h" #include "llvm/Constants.h" #include "llvm/DerivedTypes.h" #include "llvm/Function.h" #include "llvm/Instructions.h" #include "llvm/Intrinsics.h" #include "llvm/CodeGen/MachineFunction.h" #include "llvm/CodeGen/MachineFrameInfo.h" #include "llvm/CodeGen/MachineInstrBuilder.h" #include "llvm/CodeGen/SelectionDAG.h" #include "llvm/CodeGen/SSARegMap.h" #include "llvm/Target/TargetData.h" #include "llvm/Target/TargetFrameInfo.h" #include "llvm/Target/TargetInstrInfo.h" #include "llvm/Target/TargetLowering.h" #include "llvm/Target/TargetMachine.h" #include "llvm/Support/Debug.h" #include #include using namespace llvm; namespace llvm { //===--------------------------------------------------------------------===// /// FunctionLoweringInfo - This contains information that is global to a /// function that is used when lowering a region of the function. class FunctionLoweringInfo { public: TargetLowering &TLI; Function &Fn; MachineFunction &MF; SSARegMap *RegMap; FunctionLoweringInfo(TargetLowering &TLI, Function &Fn,MachineFunction &MF); /// MBBMap - A mapping from LLVM basic blocks to their machine code entry. std::map MBBMap; /// ValueMap - Since we emit code for the function a basic block at a time, /// we must remember which virtual registers hold the values for /// cross-basic-block values. std::map ValueMap; /// StaticAllocaMap - Keep track of frame indices for fixed sized allocas in /// the entry block. This allows the allocas to be efficiently referenced /// anywhere in the function. std::map StaticAllocaMap; unsigned MakeReg(MVT::ValueType VT) { return RegMap->createVirtualRegister(TLI.getRegClassFor(VT)); } unsigned CreateRegForValue(const Value *V) { MVT::ValueType VT = TLI.getValueType(V->getType()); // The common case is that we will only create one register for this // value. If we have that case, create and return the virtual register. unsigned NV = TLI.getNumElements(VT); if (NV == 1) return MakeReg(VT); // If this value is represented with multiple target registers, make sure // to create enough consequtive registers of the right (smaller) type. unsigned NT = VT-1; // Find the type to use. while (TLI.getNumElements((MVT::ValueType)NT) != 1) --NT; unsigned R = MakeReg((MVT::ValueType)NT); for (unsigned i = 1; i != NV; ++i) MakeReg((MVT::ValueType)NT); return R; } unsigned InitializeRegForValue(const Value *V) { unsigned &R = ValueMap[V]; assert(R == 0 && "Already initialized this value register!"); return R = CreateRegForValue(V); } }; } /// isUsedOutsideOfDefiningBlock - Return true if this instruction is used by /// PHI nodes or outside of the basic block that defines it. static bool isUsedOutsideOfDefiningBlock(Instruction *I) { if (isa(I)) return true; BasicBlock *BB = I->getParent(); for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E; ++UI) if (cast(*UI)->getParent() != BB || isa(*UI)) return true; return false; } FunctionLoweringInfo::FunctionLoweringInfo(TargetLowering &tli, Function &fn, MachineFunction &mf) : TLI(tli), Fn(fn), MF(mf), RegMap(MF.getSSARegMap()) { // Initialize the mapping of values to registers. This is only set up for // instruction values that are used outside of the block that defines // them. for (Function::aiterator AI = Fn.abegin(), E = Fn.aend(); AI != E; ++AI) InitializeRegForValue(AI); Function::iterator BB = Fn.begin(), E = Fn.end(); for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) if (AllocaInst *AI = dyn_cast(I)) if (ConstantUInt *CUI = dyn_cast(AI->getArraySize())) { const Type *Ty = AI->getAllocatedType(); uint64_t TySize = TLI.getTargetData().getTypeSize(Ty); unsigned Align = TLI.getTargetData().getTypeAlignment(Ty); TySize *= CUI->getValue(); // Get total allocated size. StaticAllocaMap[AI] = MF.getFrameInfo()->CreateStackObject((unsigned)TySize, Align); } for (; BB != E; ++BB) for (BasicBlock::iterator I = BB->begin(), e = BB->end(); I != e; ++I) if (!I->use_empty() && isUsedOutsideOfDefiningBlock(I)) if (!isa(I) || !StaticAllocaMap.count(cast(I))) InitializeRegForValue(I); // Create an initial MachineBasicBlock for each LLVM BasicBlock in F. This // also creates the initial PHI MachineInstrs, though none of the input // operands are populated. for (Function::iterator BB = Fn.begin(), E = Fn.end(); BB != E; ++BB) { MachineBasicBlock *MBB = new MachineBasicBlock(BB); MBBMap[BB] = MBB; MF.getBasicBlockList().push_back(MBB); // Create Machine PHI nodes for LLVM PHI nodes, lowering them as // appropriate. PHINode *PN; for (BasicBlock::iterator I = BB->begin(); (PN = dyn_cast(I)); ++I) if (!PN->use_empty()) { unsigned NumElements = TLI.getNumElements(TLI.getValueType(PN->getType())); unsigned PHIReg = ValueMap[PN]; assert(PHIReg &&"PHI node does not have an assigned virtual register!"); for (unsigned i = 0; i != NumElements; ++i) BuildMI(MBB, TargetInstrInfo::PHI, PN->getNumOperands(), PHIReg+i); } } } //===----------------------------------------------------------------------===// /// SelectionDAGLowering - This is the common target-independent lowering /// implementation that is parameterized by a TargetLowering object. /// Also, targets can overload any lowering method. /// namespace llvm { class SelectionDAGLowering { MachineBasicBlock *CurMBB; std::map NodeMap; public: // TLI - This is information that describes the available target features we // need for lowering. This indicates when operations are unavailable, // implemented with a libcall, etc. TargetLowering &TLI; SelectionDAG &DAG; const TargetData &TD; /// FuncInfo - Information about the function as a whole. /// FunctionLoweringInfo &FuncInfo; SelectionDAGLowering(SelectionDAG &dag, TargetLowering &tli, FunctionLoweringInfo &funcinfo) : TLI(tli), DAG(dag), TD(DAG.getTarget().getTargetData()), FuncInfo(funcinfo) { } void visit(Instruction &I) { visit(I.getOpcode(), I); } void visit(unsigned Opcode, User &I) { switch (Opcode) { default: assert(0 && "Unknown instruction type encountered!"); abort(); // Build the switch statement using the Instruction.def file. #define HANDLE_INST(NUM, OPCODE, CLASS) \ case Instruction::OPCODE:return visit##OPCODE((CLASS&)I); #include "llvm/Instruction.def" } } void setCurrentBasicBlock(MachineBasicBlock *MBB) { CurMBB = MBB; } SDOperand getIntPtrConstant(uint64_t Val) { return DAG.getConstant(Val, TLI.getPointerTy()); } SDOperand getValue(const Value *V) { SDOperand &N = NodeMap[V]; if (N.Val) return N; MVT::ValueType VT = TLI.getValueType(V->getType()); if (Constant *C = const_cast(dyn_cast(V))) if (ConstantExpr *CE = dyn_cast(C)) { visit(CE->getOpcode(), *CE); assert(N.Val && "visit didn't populate the ValueMap!"); return N; } else if (GlobalValue *GV = dyn_cast(C)) { return N = DAG.getGlobalAddress(GV, VT); } else if (isa(C)) { return N = DAG.getConstant(0, TLI.getPointerTy()); } else if (isa(C)) { /// FIXME: Implement UNDEFVALUE better. if (MVT::isInteger(VT)) return N = DAG.getConstant(0, VT); else if (MVT::isFloatingPoint(VT)) return N = DAG.getConstantFP(0, VT); else assert(0 && "Unknown value type!"); } else if (ConstantFP *CFP = dyn_cast(C)) { return N = DAG.getConstantFP(CFP->getValue(), VT); } else { // Canonicalize all constant ints to be unsigned. return N = DAG.getConstant(cast(C)->getRawValue(),VT); } if (const AllocaInst *AI = dyn_cast(V)) { std::map::iterator SI = FuncInfo.StaticAllocaMap.find(AI); if (SI != FuncInfo.StaticAllocaMap.end()) return DAG.getFrameIndex(SI->second, TLI.getPointerTy()); } std::map::const_iterator VMI = FuncInfo.ValueMap.find(V); assert(VMI != FuncInfo.ValueMap.end() && "Value not in map!"); return N = DAG.getCopyFromReg(VMI->second, VT); } const SDOperand &setValue(const Value *V, SDOperand NewN) { SDOperand &N = NodeMap[V]; assert(N.Val == 0 && "Already set a value for this node!"); return N = NewN; } // Terminator instructions. void visitRet(ReturnInst &I); void visitBr(BranchInst &I); void visitUnreachable(UnreachableInst &I) { /* noop */ } // These all get lowered before this pass. void visitSwitch(SwitchInst &I) { assert(0 && "TODO"); } void visitInvoke(InvokeInst &I) { assert(0 && "TODO"); } void visitUnwind(UnwindInst &I) { assert(0 && "TODO"); } // void visitBinary(User &I, unsigned Opcode); void visitAdd(User &I) { visitBinary(I, ISD::ADD); } void visitSub(User &I) { visitBinary(I, ISD::SUB); } void visitMul(User &I) { visitBinary(I, ISD::MUL); } void visitDiv(User &I) { visitBinary(I, I.getType()->isUnsigned() ? ISD::UDIV : ISD::SDIV); } void visitRem(User &I) { visitBinary(I, I.getType()->isUnsigned() ? ISD::UREM : ISD::SREM); } void visitAnd(User &I) { visitBinary(I, ISD::AND); } void visitOr (User &I) { visitBinary(I, ISD::OR); } void visitXor(User &I) { visitBinary(I, ISD::XOR); } void visitShl(User &I) { visitBinary(I, ISD::SHL); } void visitShr(User &I) { visitBinary(I, I.getType()->isUnsigned() ? ISD::SRL : ISD::SRA); } void visitSetCC(User &I, ISD::CondCode SignedOpc, ISD::CondCode UnsignedOpc); void visitSetEQ(User &I) { visitSetCC(I, ISD::SETEQ, ISD::SETEQ); } void visitSetNE(User &I) { visitSetCC(I, ISD::SETNE, ISD::SETNE); } void visitSetLE(User &I) { visitSetCC(I, ISD::SETLE, ISD::SETULE); } void visitSetGE(User &I) { visitSetCC(I, ISD::SETGE, ISD::SETUGE); } void visitSetLT(User &I) { visitSetCC(I, ISD::SETLT, ISD::SETULT); } void visitSetGT(User &I) { visitSetCC(I, ISD::SETGT, ISD::SETUGT); } void visitGetElementPtr(User &I); void visitCast(User &I); void visitSelect(User &I); // void visitMalloc(MallocInst &I); void visitFree(FreeInst &I); void visitAlloca(AllocaInst &I); void visitLoad(LoadInst &I); void visitStore(StoreInst &I); void visitPHI(PHINode &I) { } // PHI nodes are handled specially. void visitCall(CallInst &I); void visitVAStart(CallInst &I); void visitVANext(VANextInst &I); void visitVAArg(VAArgInst &I); void visitVAEnd(CallInst &I); void visitVACopy(CallInst &I); void visitFrameReturnAddress(CallInst &I, bool isFrameAddress); void visitMemIntrinsic(CallInst &I, unsigned Op); void visitUserOp1(Instruction &I) { assert(0 && "UserOp1 should not exist at instruction selection time!"); abort(); } void visitUserOp2(Instruction &I) { assert(0 && "UserOp2 should not exist at instruction selection time!"); abort(); } }; } // end namespace llvm void SelectionDAGLowering::visitRet(ReturnInst &I) { if (I.getNumOperands() == 0) { DAG.setRoot(DAG.getNode(ISD::RET, MVT::Other, DAG.getRoot())); return; } SDOperand Op1 = getValue(I.getOperand(0)); switch (Op1.getValueType()) { default: assert(0 && "Unknown value type!"); case MVT::i1: case MVT::i8: case MVT::i16: // Extend integer types to 32-bits. if (I.getOperand(0)->getType()->isSigned()) Op1 = DAG.getNode(ISD::SIGN_EXTEND, MVT::i32, Op1); else Op1 = DAG.getNode(ISD::ZERO_EXTEND, MVT::i32, Op1); break; case MVT::f32: // Extend float to double. Op1 = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Op1); break; case MVT::i32: case MVT::i64: case MVT::f64: break; // No extension needed! } DAG.setRoot(DAG.getNode(ISD::RET, MVT::Other, DAG.getRoot(), Op1)); } void SelectionDAGLowering::visitBr(BranchInst &I) { // Update machine-CFG edges. MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)]; CurMBB->addSuccessor(Succ0MBB); // Figure out which block is immediately after the current one. MachineBasicBlock *NextBlock = 0; MachineFunction::iterator BBI = CurMBB; if (++BBI != CurMBB->getParent()->end()) NextBlock = BBI; if (I.isUnconditional()) { // If this is not a fall-through branch, emit the branch. if (Succ0MBB != NextBlock) DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, DAG.getRoot(), DAG.getBasicBlock(Succ0MBB))); } else { MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)]; CurMBB->addSuccessor(Succ1MBB); SDOperand Cond = getValue(I.getCondition()); if (Succ1MBB == NextBlock) { // If the condition is false, fall through. This means we should branch // if the condition is true to Succ #0. DAG.setRoot(DAG.getNode(ISD::BRCOND, MVT::Other, DAG.getRoot(), Cond, DAG.getBasicBlock(Succ0MBB))); } else if (Succ0MBB == NextBlock) { // If the condition is true, fall through. This means we should branch if // the condition is false to Succ #1. Invert the condition first. SDOperand True = DAG.getConstant(1, Cond.getValueType()); Cond = DAG.getNode(ISD::XOR, Cond.getValueType(), Cond, True); DAG.setRoot(DAG.getNode(ISD::BRCOND, MVT::Other, DAG.getRoot(), Cond, DAG.getBasicBlock(Succ1MBB))); } else { // Neither edge is a fall through. If the comparison is true, jump to // Succ#0, otherwise branch unconditionally to succ #1. DAG.setRoot(DAG.getNode(ISD::BRCOND, MVT::Other, DAG.getRoot(), Cond, DAG.getBasicBlock(Succ0MBB))); DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, DAG.getRoot(), DAG.getBasicBlock(Succ1MBB))); } } } void SelectionDAGLowering::visitBinary(User &I, unsigned Opcode) { SDOperand Op1 = getValue(I.getOperand(0)); SDOperand Op2 = getValue(I.getOperand(1)); setValue(&I, DAG.getNode(Opcode, Op1.getValueType(), Op1, Op2)); } void SelectionDAGLowering::visitSetCC(User &I,ISD::CondCode SignedOpcode, ISD::CondCode UnsignedOpcode) { SDOperand Op1 = getValue(I.getOperand(0)); SDOperand Op2 = getValue(I.getOperand(1)); ISD::CondCode Opcode = SignedOpcode; if (I.getOperand(0)->getType()->isUnsigned()) Opcode = UnsignedOpcode; setValue(&I, DAG.getSetCC(Opcode, Op1, Op2)); } void SelectionDAGLowering::visitSelect(User &I) { SDOperand Cond = getValue(I.getOperand(0)); SDOperand TrueVal = getValue(I.getOperand(1)); SDOperand FalseVal = getValue(I.getOperand(2)); setValue(&I, DAG.getNode(ISD::SELECT, TrueVal.getValueType(), Cond, TrueVal, FalseVal)); } void SelectionDAGLowering::visitCast(User &I) { SDOperand N = getValue(I.getOperand(0)); MVT::ValueType SrcTy = TLI.getValueType(I.getOperand(0)->getType()); MVT::ValueType DestTy = TLI.getValueType(I.getType()); if (N.getValueType() == DestTy) { setValue(&I, N); // noop cast. } else if (isInteger(SrcTy)) { if (isInteger(DestTy)) { // Int -> Int cast if (DestTy < SrcTy) // Truncating cast? setValue(&I, DAG.getNode(ISD::TRUNCATE, DestTy, N)); else if (I.getOperand(0)->getType()->isSigned()) setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, DestTy, N)); else setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, DestTy, N)); } else { // Int -> FP cast if (I.getOperand(0)->getType()->isSigned()) setValue(&I, DAG.getNode(ISD::SINT_TO_FP, DestTy, N)); else setValue(&I, DAG.getNode(ISD::UINT_TO_FP, DestTy, N)); } } else { assert(isFloatingPoint(SrcTy) && "Unknown value type!"); if (isFloatingPoint(DestTy)) { // FP -> FP cast if (DestTy < SrcTy) // Rounding cast? setValue(&I, DAG.getNode(ISD::FP_ROUND, DestTy, N)); else setValue(&I, DAG.getNode(ISD::FP_EXTEND, DestTy, N)); } else { // FP -> Int cast. if (I.getType()->isSigned()) setValue(&I, DAG.getNode(ISD::FP_TO_SINT, DestTy, N)); else setValue(&I, DAG.getNode(ISD::FP_TO_UINT, DestTy, N)); } } } void SelectionDAGLowering::visitGetElementPtr(User &I) { SDOperand N = getValue(I.getOperand(0)); const Type *Ty = I.getOperand(0)->getType(); const Type *UIntPtrTy = TD.getIntPtrType(); for (GetElementPtrInst::op_iterator OI = I.op_begin()+1, E = I.op_end(); OI != E; ++OI) { Value *Idx = *OI; if (const StructType *StTy = dyn_cast (Ty)) { unsigned Field = cast(Idx)->getValue(); if (Field) { // N = N + Offset uint64_t Offset = TD.getStructLayout(StTy)->MemberOffsets[Field]; N = DAG.getNode(ISD::ADD, N.getValueType(), N, getIntPtrConstant(Offset)); } Ty = StTy->getElementType(Field); } else { Ty = cast(Ty)->getElementType(); if (!isa(Idx) || !cast(Idx)->isNullValue()) { // N = N + Idx * ElementSize; uint64_t ElementSize = TD.getTypeSize(Ty); SDOperand IdxN = getValue(Idx), Scale = getIntPtrConstant(ElementSize); // If the index is smaller or larger than intptr_t, truncate or extend // it. if (IdxN.getValueType() < Scale.getValueType()) { if (Idx->getType()->isSigned()) IdxN = DAG.getNode(ISD::SIGN_EXTEND, Scale.getValueType(), IdxN); else IdxN = DAG.getNode(ISD::ZERO_EXTEND, Scale.getValueType(), IdxN); } else if (IdxN.getValueType() > Scale.getValueType()) IdxN = DAG.getNode(ISD::TRUNCATE, Scale.getValueType(), IdxN); IdxN = DAG.getNode(ISD::MUL, N.getValueType(), IdxN, Scale); N = DAG.getNode(ISD::ADD, N.getValueType(), N, IdxN); } } } setValue(&I, N); } void SelectionDAGLowering::visitAlloca(AllocaInst &I) { // If this is a fixed sized alloca in the entry block of the function, // allocate it statically on the stack. if (FuncInfo.StaticAllocaMap.count(&I)) return; // getValue will auto-populate this. const Type *Ty = I.getAllocatedType(); uint64_t TySize = TLI.getTargetData().getTypeSize(Ty); unsigned Align = TLI.getTargetData().getTypeAlignment(Ty); SDOperand AllocSize = getValue(I.getArraySize()); assert(AllocSize.getValueType() == TLI.getPointerTy() && "FIXME: should extend or truncate to pointer size!"); AllocSize = DAG.getNode(ISD::MUL, TLI.getPointerTy(), AllocSize, getIntPtrConstant(TySize)); // Handle alignment. If the requested alignment is less than or equal to the // stack alignment, ignore it and round the size of the allocation up to the // stack alignment size. If the size is greater than the stack alignment, we // note this in the DYNAMIC_STACKALLOC node. unsigned StackAlign = TLI.getTargetMachine().getFrameInfo()->getStackAlignment(); if (Align <= StackAlign) { Align = 0; // Add SA-1 to the size. AllocSize = DAG.getNode(ISD::ADD, AllocSize.getValueType(), AllocSize, getIntPtrConstant(StackAlign-1)); // Mask out the low bits for alignment purposes. AllocSize = DAG.getNode(ISD::AND, AllocSize.getValueType(), AllocSize, getIntPtrConstant(~(uint64_t)(StackAlign-1))); } SDOperand DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, AllocSize.getValueType(), DAG.getRoot(), AllocSize, getIntPtrConstant(Align)); DAG.setRoot(setValue(&I, DSA).getValue(1)); // Inform the Frame Information that we have just allocated a variable-sized // object. CurMBB->getParent()->getFrameInfo()->CreateVariableSizedObject(); } void SelectionDAGLowering::visitLoad(LoadInst &I) { SDOperand Ptr = getValue(I.getOperand(0)); SDOperand L = DAG.getLoad(TLI.getValueType(I.getType()), DAG.getRoot(), Ptr); DAG.setRoot(setValue(&I, L).getValue(1)); } void SelectionDAGLowering::visitStore(StoreInst &I) { Value *SrcV = I.getOperand(0); SDOperand Src = getValue(SrcV); SDOperand Ptr = getValue(I.getOperand(1)); DAG.setRoot(DAG.getNode(ISD::STORE, MVT::Other, DAG.getRoot(), Src, Ptr)); return; } void SelectionDAGLowering::visitCall(CallInst &I) { const char *RenameFn = 0; if (Function *F = I.getCalledFunction()) switch (F->getIntrinsicID()) { case 0: break; // Not an intrinsic. case Intrinsic::vastart: visitVAStart(I); return; case Intrinsic::vaend: visitVAEnd(I); return; case Intrinsic::vacopy: visitVACopy(I); return; case Intrinsic::returnaddress: visitFrameReturnAddress(I, false); return; case Intrinsic::frameaddress: visitFrameReturnAddress(I, true); return; default: // FIXME: IMPLEMENT THESE. // readport, writeport, readio, writeio assert(0 && "This intrinsic is not implemented yet!"); return; case Intrinsic::setjmp: RenameFn = "setjmp"; break; case Intrinsic::longjmp: RenameFn = "longjmp"; break; case Intrinsic::memcpy: visitMemIntrinsic(I, ISD::MEMCPY); return; case Intrinsic::memset: visitMemIntrinsic(I, ISD::MEMSET); return; case Intrinsic::memmove: visitMemIntrinsic(I, ISD::MEMMOVE); return; case Intrinsic::isunordered: setValue(&I, DAG.getSetCC(ISD::SETUO, getValue(I.getOperand(1)), getValue(I.getOperand(2)))); return; } SDOperand Callee; if (!RenameFn) Callee = getValue(I.getOperand(0)); else Callee = DAG.getExternalSymbol(RenameFn, TLI.getPointerTy()); std::vector > Args; for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) { Value *Arg = I.getOperand(i); SDOperand ArgNode = getValue(Arg); Args.push_back(std::make_pair(ArgNode, Arg->getType())); } std::pair Result = TLI.LowerCallTo(DAG.getRoot(), I.getType(), Callee, Args, DAG); if (I.getType() != Type::VoidTy) setValue(&I, Result.first); DAG.setRoot(Result.second); } void SelectionDAGLowering::visitMalloc(MallocInst &I) { SDOperand Src = getValue(I.getOperand(0)); MVT::ValueType IntPtr = TLI.getPointerTy(); // FIXME: Extend or truncate to the intptr size. assert(Src.getValueType() == IntPtr && "Need to adjust the amount!"); // Scale the source by the type size. uint64_t ElementSize = TD.getTypeSize(I.getType()->getElementType()); Src = DAG.getNode(ISD::MUL, Src.getValueType(), Src, getIntPtrConstant(ElementSize)); std::vector > Args; Args.push_back(std::make_pair(Src, TLI.getTargetData().getIntPtrType())); std::pair Result = TLI.LowerCallTo(DAG.getRoot(), I.getType(), DAG.getExternalSymbol("malloc", IntPtr), Args, DAG); setValue(&I, Result.first); // Pointers always fit in registers DAG.setRoot(Result.second); } void SelectionDAGLowering::visitFree(FreeInst &I) { std::vector > Args; Args.push_back(std::make_pair(getValue(I.getOperand(0)), TLI.getTargetData().getIntPtrType())); MVT::ValueType IntPtr = TLI.getPointerTy(); std::pair Result = TLI.LowerCallTo(DAG.getRoot(), Type::VoidTy, DAG.getExternalSymbol("free", IntPtr), Args, DAG); DAG.setRoot(Result.second); } std::pair TargetLowering::LowerVAStart(SDOperand Chain, SelectionDAG &DAG) { // We have no sane default behavior, just emit a useful error message and bail // out. std::cerr << "Variable arguments handling not implemented on this target!\n"; abort(); } SDOperand TargetLowering::LowerVAEnd(SDOperand Chain, SDOperand L, SelectionDAG &DAG) { // Default to a noop. return Chain; } std::pair TargetLowering::LowerVACopy(SDOperand Chain, SDOperand L, SelectionDAG &DAG) { // Default to returning the input list. return std::make_pair(L, Chain); } std::pair TargetLowering::LowerVAArgNext(bool isVANext, SDOperand Chain, SDOperand VAList, const Type *ArgTy, SelectionDAG &DAG) { // We have no sane default behavior, just emit a useful error message and bail // out. std::cerr << "Variable arguments handling not implemented on this target!\n"; abort(); } void SelectionDAGLowering::visitVAStart(CallInst &I) { std::pair Result = TLI.LowerVAStart(DAG.getRoot(), DAG); setValue(&I, Result.first); DAG.setRoot(Result.second); } void SelectionDAGLowering::visitVAArg(VAArgInst &I) { std::pair Result = TLI.LowerVAArgNext(false, DAG.getRoot(), getValue(I.getOperand(0)), I.getType(), DAG); setValue(&I, Result.first); DAG.setRoot(Result.second); } void SelectionDAGLowering::visitVANext(VANextInst &I) { std::pair Result = TLI.LowerVAArgNext(true, DAG.getRoot(), getValue(I.getOperand(0)), I.getArgType(), DAG); setValue(&I, Result.first); DAG.setRoot(Result.second); } void SelectionDAGLowering::visitVAEnd(CallInst &I) { DAG.setRoot(TLI.LowerVAEnd(DAG.getRoot(), getValue(I.getOperand(1)), DAG)); } void SelectionDAGLowering::visitVACopy(CallInst &I) { std::pair Result = TLI.LowerVACopy(DAG.getRoot(), getValue(I.getOperand(1)), DAG); setValue(&I, Result.first); DAG.setRoot(Result.second); } // It is always conservatively correct for llvm.returnaddress and // llvm.frameaddress to return 0. std::pair TargetLowering::LowerFrameReturnAddress(bool isFrameAddr, SDOperand Chain, unsigned Depth, SelectionDAG &DAG) { return std::make_pair(DAG.getConstant(0, getPointerTy()), Chain); } void SelectionDAGLowering::visitFrameReturnAddress(CallInst &I, bool isFrame) { unsigned Depth = (unsigned)cast(I.getOperand(1))->getValue(); std::pair Result = TLI.LowerFrameReturnAddress(isFrame, DAG.getRoot(), Depth, DAG); setValue(&I, Result.first); DAG.setRoot(Result.second); } void SelectionDAGLowering::visitMemIntrinsic(CallInst &I, unsigned Op) { std::vector Ops; Ops.push_back(DAG.getRoot()); Ops.push_back(getValue(I.getOperand(1))); Ops.push_back(getValue(I.getOperand(2))); Ops.push_back(getValue(I.getOperand(3))); Ops.push_back(getValue(I.getOperand(4))); DAG.setRoot(DAG.getNode(Op, MVT::Other, Ops)); } //===----------------------------------------------------------------------===// // SelectionDAGISel code //===----------------------------------------------------------------------===// unsigned SelectionDAGISel::MakeReg(MVT::ValueType VT) { return RegMap->createVirtualRegister(TLI.getRegClassFor(VT)); } bool SelectionDAGISel::runOnFunction(Function &Fn) { MachineFunction &MF = MachineFunction::construct(&Fn, TLI.getTargetMachine()); RegMap = MF.getSSARegMap(); DEBUG(std::cerr << "\n\n\n=== " << Fn.getName() << "\n"); FunctionLoweringInfo FuncInfo(TLI, Fn, MF); for (Function::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I) SelectBasicBlock(I, MF, FuncInfo); return true; } void SelectionDAGISel::CopyValueToVirtualRegister(SelectionDAGLowering &SDL, Value *V, unsigned Reg) { SelectionDAG &DAG = SDL.DAG; DAG.setRoot(DAG.getCopyToReg(DAG.getRoot(), SDL.getValue(V), Reg)); } void SelectionDAGISel::BuildSelectionDAG(SelectionDAG &DAG, BasicBlock *LLVMBB, std::vector > &PHINodesToUpdate, FunctionLoweringInfo &FuncInfo) { SelectionDAGLowering SDL(DAG, TLI, FuncInfo); // If this is the entry block, emit arguments. Function *F = LLVMBB->getParent(); if (LLVMBB == &F->front()) { // FIXME: If an argument is only used in one basic block, we could directly // emit it (ONLY) into that block, not emitting the COPY_TO_VREG node. This // would improve codegen in several cases on X86 by allowing the loads to be // folded into the user operation. std::vector Args = TLI.LowerArguments(*LLVMBB->getParent(), DAG); unsigned a = 0; for (Function::aiterator AI = F->abegin(), E = F->aend(); AI != E; ++AI,++a) if (!AI->use_empty()) { SDL.setValue(AI, Args[a]); CopyValueToVirtualRegister(SDL, AI, FuncInfo.ValueMap[AI]); } } BB = FuncInfo.MBBMap[LLVMBB]; SDL.setCurrentBasicBlock(BB); // Lower all of the non-terminator instructions. for (BasicBlock::iterator I = LLVMBB->begin(), E = --LLVMBB->end(); I != E; ++I) SDL.visit(*I); // Ensure that all instructions which are used outside of their defining // blocks are available as virtual registers. for (BasicBlock::iterator I = LLVMBB->begin(), E = LLVMBB->end(); I != E;++I) if (!I->use_empty()) { std::map::iterator VMI =FuncInfo.ValueMap.find(I); if (VMI != FuncInfo.ValueMap.end()) CopyValueToVirtualRegister(SDL, I, VMI->second); } // Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to // ensure constants are generated when needed. Remember the virtual registers // that need to be added to the Machine PHI nodes as input. We cannot just // directly add them, because expansion might result in multiple MBB's for one // BB. As such, the start of the BB might correspond to a different MBB than // the end. // // Emit constants only once even if used by multiple PHI nodes. std::map ConstantsOut; // Check successor nodes PHI nodes that expect a constant to be available from // this block. TerminatorInst *TI = LLVMBB->getTerminator(); for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) { BasicBlock *SuccBB = TI->getSuccessor(succ); MachineBasicBlock::iterator MBBI = FuncInfo.MBBMap[SuccBB]->begin(); PHINode *PN; // At this point we know that there is a 1-1 correspondence between LLVM PHI // nodes and Machine PHI nodes, but the incoming operands have not been // emitted yet. for (BasicBlock::iterator I = SuccBB->begin(); (PN = dyn_cast(I)); ++I) if (!PN->use_empty()) { unsigned Reg; Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB); if (Constant *C = dyn_cast(PHIOp)) { unsigned &RegOut = ConstantsOut[C]; if (RegOut == 0) { RegOut = FuncInfo.CreateRegForValue(C); CopyValueToVirtualRegister(SDL, C, RegOut); } Reg = RegOut; } else { Reg = FuncInfo.ValueMap[PHIOp]; if (Reg == 0) { assert(isa(PHIOp) && FuncInfo.StaticAllocaMap.count(cast(PHIOp)) && "Didn't codegen value into a register!??"); Reg = FuncInfo.CreateRegForValue(PHIOp); CopyValueToVirtualRegister(SDL, PHIOp, Reg); } } // Remember that this register needs to added to the machine PHI node as // the input for this MBB. unsigned NumElements = TLI.getNumElements(TLI.getValueType(PN->getType())); for (unsigned i = 0, e = NumElements; i != e; ++i) PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i)); } } ConstantsOut.clear(); // Lower the terminator after the copies are emitted. SDL.visit(*LLVMBB->getTerminator()); } void SelectionDAGISel::SelectBasicBlock(BasicBlock *LLVMBB, MachineFunction &MF, FunctionLoweringInfo &FuncInfo) { SelectionDAG DAG(TLI.getTargetMachine(), MF); CurDAG = &DAG; std::vector > PHINodesToUpdate; // First step, lower LLVM code to some DAG. This DAG may use operations and // types that are not supported by the target. BuildSelectionDAG(DAG, LLVMBB, PHINodesToUpdate, FuncInfo); DEBUG(std::cerr << "Lowered selection DAG:\n"); DEBUG(DAG.dump()); // Second step, hack on the DAG until it only uses operations and types that // the target supports. DAG.Legalize(TLI); DEBUG(std::cerr << "Legalized selection DAG:\n"); DEBUG(DAG.dump()); // Finally, instruction select all of the operations to machine code, adding // the code to the MachineBasicBlock. InstructionSelectBasicBlock(DAG); DEBUG(std::cerr << "Selected machine code:\n"); DEBUG(BB->dump()); // Finally, now that we know what the last MBB the LLVM BB expanded is, update // PHI nodes in successors. for (unsigned i = 0, e = PHINodesToUpdate.size(); i != e; ++i) { MachineInstr *PHI = PHINodesToUpdate[i].first; assert(PHI->getOpcode() == TargetInstrInfo::PHI && "This is not a machine PHI node that we are updating!"); PHI->addRegOperand(PHINodesToUpdate[i].second); PHI->addMachineBasicBlockOperand(BB); } }