//===-- MipsAsmPrinter.cpp - Mips LLVM assembly writer --------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file contains a printer that converts from our internal representation // of machine-dependent LLVM code to GAS-format MIPS assembly language. // //===----------------------------------------------------------------------===// #define DEBUG_TYPE "mips-asm-printer" #include "Mips.h" #include "MipsSubtarget.h" #include "MipsInstrInfo.h" #include "MipsTargetMachine.h" #include "MipsMachineFunction.h" #include "llvm/Constants.h" #include "llvm/DerivedTypes.h" #include "llvm/Module.h" #include "llvm/MDNode.h" #include "llvm/CodeGen/AsmPrinter.h" #include "llvm/CodeGen/DwarfWriter.h" #include "llvm/CodeGen/MachineFunctionPass.h" #include "llvm/CodeGen/MachineConstantPool.h" #include "llvm/CodeGen/MachineFrameInfo.h" #include "llvm/CodeGen/MachineInstr.h" #include "llvm/Target/TargetAsmInfo.h" #include "llvm/Target/TargetData.h" #include "llvm/Target/TargetMachine.h" #include "llvm/Target/TargetOptions.h" #include "llvm/Target/TargetRegistry.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/Mangler.h" #include "llvm/ADT/Statistic.h" #include "llvm/ADT/StringExtras.h" #include "llvm/Support/Debug.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/FormattedStream.h" #include "llvm/Support/MathExtras.h" #include using namespace llvm; STATISTIC(EmittedInsts, "Number of machine instrs printed"); namespace { class VISIBILITY_HIDDEN MipsAsmPrinter : public AsmPrinter { const MipsSubtarget *Subtarget; public: explicit MipsAsmPrinter(formatted_raw_ostream &O, TargetMachine &TM, const TargetAsmInfo *T, bool V) : AsmPrinter(O, TM, T, V) { Subtarget = &TM.getSubtarget(); } virtual const char *getPassName() const { return "Mips Assembly Printer"; } bool PrintAsmOperand(const MachineInstr *MI, unsigned OpNo, unsigned AsmVariant, const char *ExtraCode); void printOperand(const MachineInstr *MI, int opNum); void printUnsignedImm(const MachineInstr *MI, int opNum); void printMemOperand(const MachineInstr *MI, int opNum, const char *Modifier = 0); void printFCCOperand(const MachineInstr *MI, int opNum, const char *Modifier = 0); void printModuleLevelGV(const GlobalVariable* GVar); void printSavedRegsBitmask(MachineFunction &MF); void printHex32(unsigned int Value); const char *emitCurrentABIString(void); void emitFunctionStart(MachineFunction &MF); void emitFunctionEnd(MachineFunction &MF); void emitFrameDirective(MachineFunction &MF); bool printInstruction(const MachineInstr *MI); // autogenerated. bool runOnMachineFunction(MachineFunction &F); bool doInitialization(Module &M); bool doFinalization(Module &M); }; } // end of anonymous namespace #include "MipsGenAsmWriter.inc" /// createMipsCodePrinterPass - Returns a pass that prints the MIPS /// assembly code for a MachineFunction to the given output stream, /// using the given target machine description. This should work /// regardless of whether the function is in SSA form. FunctionPass *llvm::createMipsCodePrinterPass(formatted_raw_ostream &o, TargetMachine &tm, bool verbose) { return new MipsAsmPrinter(o, tm, tm.getTargetAsmInfo(), verbose); } //===----------------------------------------------------------------------===// // // Mips Asm Directives // // -- Frame directive "frame Stackpointer, Stacksize, RARegister" // Describe the stack frame. // // -- Mask directives "(f)mask bitmask, offset" // Tells the assembler which registers are saved and where. // bitmask - contain a little endian bitset indicating which registers are // saved on function prologue (e.g. with a 0x80000000 mask, the // assembler knows the register 31 (RA) is saved at prologue. // offset - the position before stack pointer subtraction indicating where // the first saved register on prologue is located. (e.g. with a // // Consider the following function prologue: // // .frame $fp,48,$ra // .mask 0xc0000000,-8 // addiu $sp, $sp, -48 // sw $ra, 40($sp) // sw $fp, 36($sp) // // With a 0xc0000000 mask, the assembler knows the register 31 (RA) and // 30 (FP) are saved at prologue. As the save order on prologue is from // left to right, RA is saved first. A -8 offset means that after the // stack pointer subtration, the first register in the mask (RA) will be // saved at address 48-8=40. // //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// // Mask directives //===----------------------------------------------------------------------===// // Create a bitmask with all callee saved registers for CPU or Floating Point // registers. For CPU registers consider RA, GP and FP for saving if necessary. void MipsAsmPrinter:: printSavedRegsBitmask(MachineFunction &MF) { const TargetRegisterInfo &RI = *TM.getRegisterInfo(); MipsFunctionInfo *MipsFI = MF.getInfo(); // CPU and FPU Saved Registers Bitmasks unsigned int CPUBitmask = 0; unsigned int FPUBitmask = 0; // Set the CPU and FPU Bitmasks MachineFrameInfo *MFI = MF.getFrameInfo(); const std::vector &CSI = MFI->getCalleeSavedInfo(); for (unsigned i = 0, e = CSI.size(); i != e; ++i) { unsigned RegNum = MipsRegisterInfo::getRegisterNumbering(CSI[i].getReg()); if (CSI[i].getRegClass() == Mips::CPURegsRegisterClass) CPUBitmask |= (1 << RegNum); else FPUBitmask |= (1 << RegNum); } // Return Address and Frame registers must also be set in CPUBitmask. if (RI.hasFP(MF)) CPUBitmask |= (1 << MipsRegisterInfo:: getRegisterNumbering(RI.getFrameRegister(MF))); if (MF.getFrameInfo()->hasCalls()) CPUBitmask |= (1 << MipsRegisterInfo:: getRegisterNumbering(RI.getRARegister())); // Print CPUBitmask O << "\t.mask \t"; printHex32(CPUBitmask); O << ',' << MipsFI->getCPUTopSavedRegOff() << '\n'; // Print FPUBitmask O << "\t.fmask\t"; printHex32(FPUBitmask); O << "," << MipsFI->getFPUTopSavedRegOff() << '\n'; } // Print a 32 bit hex number with all numbers. void MipsAsmPrinter:: printHex32(unsigned int Value) { O << "0x"; for (int i = 7; i >= 0; i--) O << utohexstr( (Value & (0xF << (i*4))) >> (i*4) ); } //===----------------------------------------------------------------------===// // Frame and Set directives //===----------------------------------------------------------------------===// /// Frame Directive void MipsAsmPrinter:: emitFrameDirective(MachineFunction &MF) { const TargetRegisterInfo &RI = *TM.getRegisterInfo(); unsigned stackReg = RI.getFrameRegister(MF); unsigned returnReg = RI.getRARegister(); unsigned stackSize = MF.getFrameInfo()->getStackSize(); O << "\t.frame\t" << '$' << LowercaseString(RI.get(stackReg).AsmName) << ',' << stackSize << ',' << '$' << LowercaseString(RI.get(returnReg).AsmName) << '\n'; } /// Emit Set directives. const char * MipsAsmPrinter:: emitCurrentABIString(void) { switch(Subtarget->getTargetABI()) { case MipsSubtarget::O32: return "abi32"; case MipsSubtarget::O64: return "abiO64"; case MipsSubtarget::N32: return "abiN32"; case MipsSubtarget::N64: return "abi64"; case MipsSubtarget::EABI: return "eabi32"; // TODO: handle eabi64 default: break; } llvm_unreachable("Unknown Mips ABI"); return NULL; } /// Emit the directives used by GAS on the start of functions void MipsAsmPrinter:: emitFunctionStart(MachineFunction &MF) { // Print out the label for the function. const Function *F = MF.getFunction(); SwitchToSection(TAI->SectionForGlobal(F)); // 2 bits aligned EmitAlignment(MF.getAlignment(), F); O << "\t.globl\t" << CurrentFnName << '\n'; O << "\t.ent\t" << CurrentFnName << '\n'; printVisibility(CurrentFnName, F->getVisibility()); if ((TAI->hasDotTypeDotSizeDirective()) && Subtarget->isLinux()) O << "\t.type\t" << CurrentFnName << ", @function\n"; O << CurrentFnName << ":\n"; emitFrameDirective(MF); printSavedRegsBitmask(MF); O << '\n'; } /// Emit the directives used by GAS on the end of functions void MipsAsmPrinter:: emitFunctionEnd(MachineFunction &MF) { // There are instruction for this macros, but they must // always be at the function end, and we can't emit and // break with BB logic. O << "\t.set\tmacro\n"; O << "\t.set\treorder\n"; O << "\t.end\t" << CurrentFnName << '\n'; if (TAI->hasDotTypeDotSizeDirective() && !Subtarget->isLinux()) O << "\t.size\t" << CurrentFnName << ", .-" << CurrentFnName << '\n'; } /// runOnMachineFunction - This uses the printMachineInstruction() /// method to print assembly for each instruction. bool MipsAsmPrinter:: runOnMachineFunction(MachineFunction &MF) { this->MF = &MF; SetupMachineFunction(MF); // Print out constants referenced by the function EmitConstantPool(MF.getConstantPool()); // Print out jump tables referenced by the function EmitJumpTableInfo(MF.getJumpTableInfo(), MF); O << "\n\n"; // Emit the function start directives emitFunctionStart(MF); // Print out code for the function. for (MachineFunction::const_iterator I = MF.begin(), E = MF.end(); I != E; ++I) { // Print a label for the basic block. if (I != MF.begin()) { printBasicBlockLabel(I, true, true); O << '\n'; } for (MachineBasicBlock::const_iterator II = I->begin(), E = I->end(); II != E; ++II) { // Print the assembly for the instruction. printInstruction(II); ++EmittedInsts; } // Each Basic Block is separated by a newline O << '\n'; } // Emit function end directives emitFunctionEnd(MF); // We didn't modify anything. return false; } // Print out an operand for an inline asm expression. bool MipsAsmPrinter:: PrintAsmOperand(const MachineInstr *MI, unsigned OpNo, unsigned AsmVariant, const char *ExtraCode) { // Does this asm operand have a single letter operand modifier? if (ExtraCode && ExtraCode[0]) return true; // Unknown modifier. printOperand(MI, OpNo); return false; } void MipsAsmPrinter:: printOperand(const MachineInstr *MI, int opNum) { const MachineOperand &MO = MI->getOperand(opNum); const TargetRegisterInfo &RI = *TM.getRegisterInfo(); bool closeP = false; bool isPIC = (TM.getRelocationModel() == Reloc::PIC_); bool isCodeLarge = (TM.getCodeModel() == CodeModel::Large); // %hi and %lo used on mips gas to load global addresses on // static code. %got is used to load global addresses when // using PIC_. %call16 is used to load direct call targets // on PIC_ and small code size. %call_lo and %call_hi load // direct call targets on PIC_ and large code size. if (MI->getOpcode() == Mips::LUi && !MO.isReg() && !MO.isImm()) { if ((isPIC) && (isCodeLarge)) O << "%call_hi("; else O << "%hi("; closeP = true; } else if ((MI->getOpcode() == Mips::ADDiu) && !MO.isReg() && !MO.isImm()) { const MachineOperand &firstMO = MI->getOperand(opNum-1); if (firstMO.getReg() == Mips::GP) O << "%gp_rel("; else O << "%lo("; closeP = true; } else if ((isPIC) && (MI->getOpcode() == Mips::LW) && (!MO.isReg()) && (!MO.isImm())) { const MachineOperand &firstMO = MI->getOperand(opNum-1); const MachineOperand &lastMO = MI->getOperand(opNum+1); if ((firstMO.isReg()) && (lastMO.isReg())) { if ((firstMO.getReg() == Mips::T9) && (lastMO.getReg() == Mips::GP) && (!isCodeLarge)) O << "%call16("; else if ((firstMO.getReg() != Mips::T9) && (lastMO.getReg() == Mips::GP)) O << "%got("; else if ((firstMO.getReg() == Mips::T9) && (lastMO.getReg() != Mips::GP) && (isCodeLarge)) O << "%call_lo("; closeP = true; } } switch (MO.getType()) { case MachineOperand::MO_Register: if (TargetRegisterInfo::isPhysicalRegister(MO.getReg())) O << '$' << LowercaseString (RI.get(MO.getReg()).AsmName); else O << '$' << MO.getReg(); break; case MachineOperand::MO_Immediate: O << (short int)MO.getImm(); break; case MachineOperand::MO_MachineBasicBlock: printBasicBlockLabel(MO.getMBB()); return; case MachineOperand::MO_GlobalAddress: O << Mang->getMangledName(MO.getGlobal()); break; case MachineOperand::MO_ExternalSymbol: O << MO.getSymbolName(); break; case MachineOperand::MO_JumpTableIndex: O << TAI->getPrivateGlobalPrefix() << "JTI" << getFunctionNumber() << '_' << MO.getIndex(); break; case MachineOperand::MO_ConstantPoolIndex: O << TAI->getPrivateGlobalPrefix() << "CPI" << getFunctionNumber() << "_" << MO.getIndex(); break; default: llvm_unreachable(""); } if (closeP) O << ")"; } void MipsAsmPrinter:: printUnsignedImm(const MachineInstr *MI, int opNum) { const MachineOperand &MO = MI->getOperand(opNum); if (MO.getType() == MachineOperand::MO_Immediate) O << (unsigned short int)MO.getImm(); else printOperand(MI, opNum); } void MipsAsmPrinter:: printMemOperand(const MachineInstr *MI, int opNum, const char *Modifier) { // when using stack locations for not load/store instructions // print the same way as all normal 3 operand instructions. if (Modifier && !strcmp(Modifier, "stackloc")) { printOperand(MI, opNum+1); O << ", "; printOperand(MI, opNum); return; } // Load/Store memory operands -- imm($reg) // If PIC target the target is loaded as the // pattern lw $25,%call16($28) printOperand(MI, opNum); O << "("; printOperand(MI, opNum+1); O << ")"; } void MipsAsmPrinter:: printFCCOperand(const MachineInstr *MI, int opNum, const char *Modifier) { const MachineOperand& MO = MI->getOperand(opNum); O << Mips::MipsFCCToString((Mips::CondCode)MO.getImm()); } bool MipsAsmPrinter:: doInitialization(Module &M) { Mang = new Mangler(M, "", TAI->getPrivateGlobalPrefix()); // Tell the assembler which ABI we are using O << "\t.section .mdebug." << emitCurrentABIString() << '\n'; // TODO: handle O64 ABI if (Subtarget->isABI_EABI()) O << "\t.section .gcc_compiled_long" << (Subtarget->isGP32bit() ? "32" : "64") << '\n'; // return to previous section O << "\t.previous" << '\n'; return false; // success } void MipsAsmPrinter:: printModuleLevelGV(const GlobalVariable* GVar) { const TargetData *TD = TM.getTargetData(); if (!GVar->hasInitializer()) return; // External global require no code // Check to see if this is a special global used by LLVM, if so, emit it. if (EmitSpecialLLVMGlobal(GVar)) return; O << "\n\n"; std::string name = Mang->getMangledName(GVar); Constant *C = GVar->getInitializer(); if (isa(C) || isa(C)) return; const Type *CTy = C->getType(); unsigned Size = TD->getTypeAllocSize(CTy); const ConstantArray *CVA = dyn_cast(C); bool printSizeAndType = true; // A data structure or array is aligned in memory to the largest // alignment boundary required by any data type inside it (this matches // the Preferred Type Alignment). For integral types, the alignment is // the type size. unsigned Align; if (CTy->getTypeID() == Type::IntegerTyID || CTy->getTypeID() == Type::VoidTyID) { assert(!(Size & (Size-1)) && "Alignment is not a power of two!"); Align = Log2_32(Size); } else Align = TD->getPreferredTypeAlignmentShift(CTy); printVisibility(name, GVar->getVisibility()); SwitchToSection(TAI->SectionForGlobal(GVar)); if (C->isNullValue() && !GVar->hasSection()) { if (!GVar->isThreadLocal() && (GVar->hasLocalLinkage() || GVar->isWeakForLinker())) { if (Size == 0) Size = 1; // .comm Foo, 0 is undefined, avoid it. if (GVar->hasLocalLinkage()) O << "\t.local\t" << name << '\n'; O << TAI->getCOMMDirective() << name << ',' << Size; if (TAI->getCOMMDirectiveTakesAlignment()) O << ',' << (1 << Align); O << '\n'; return; } } switch (GVar->getLinkage()) { case GlobalValue::LinkOnceAnyLinkage: case GlobalValue::LinkOnceODRLinkage: case GlobalValue::CommonLinkage: case GlobalValue::WeakAnyLinkage: case GlobalValue::WeakODRLinkage: // FIXME: Verify correct for weak. // Nonnull linkonce -> weak O << "\t.weak " << name << '\n'; break; case GlobalValue::AppendingLinkage: // FIXME: appending linkage variables should go into a section of their name // or something. For now, just emit them as external. case GlobalValue::ExternalLinkage: // If external or appending, declare as a global symbol O << TAI->getGlobalDirective() << name << '\n'; // Fall Through case GlobalValue::PrivateLinkage: case GlobalValue::InternalLinkage: if (CVA && CVA->isCString()) printSizeAndType = false; break; case GlobalValue::GhostLinkage: llvm_unreachable("Should not have any unmaterialized functions!"); case GlobalValue::DLLImportLinkage: llvm_unreachable("DLLImport linkage is not supported by this target!"); case GlobalValue::DLLExportLinkage: llvm_unreachable("DLLExport linkage is not supported by this target!"); default: llvm_unreachable("Unknown linkage type!"); } EmitAlignment(Align, GVar); if (TAI->hasDotTypeDotSizeDirective() && printSizeAndType) { O << "\t.type " << name << ",@object\n"; O << "\t.size " << name << ',' << Size << '\n'; } O << name << ":\n"; EmitGlobalConstant(C); } bool MipsAsmPrinter:: doFinalization(Module &M) { // Print out module-level global variables here. for (Module::const_global_iterator I = M.global_begin(), E = M.global_end(); I != E; ++I) printModuleLevelGV(I); O << '\n'; return AsmPrinter::doFinalization(M); } // Force static initialization. extern "C" void LLVMInitializeMipsAsmPrinter() { TargetRegistry::RegisterAsmPrinter(TheMipsTarget, createMipsCodePrinterPass); TargetRegistry::RegisterAsmPrinter(TheMipselTarget, createMipsCodePrinterPass); }