//===-- GrapAuxillary.cpp- Auxillary functions on graph ----------*- C++ -*--=// // //auxillary function associated with graph: they //all operate on graph, and help in inserting //instrumentation for trace generation // //===----------------------------------------------------------------------===// #include "llvm/Transforms/Utils/UnifyFunctionExitNodes.h" #include "llvm/Transforms/Instrumentation/Graph.h" #include "llvm/Pass.h" #include "llvm/Module.h" #include "llvm/iTerminators.h" #include "Support/Statistic.h" #include //using std::list; using std::map; using std::vector; using std::cerr; //check if 2 edges are equal (same endpoints and same weight) static bool edgesEqual(Edge ed1, Edge ed2){ return ((ed1==ed2) && ed1.getWeight()==ed2.getWeight()); } //Get the vector of edges that are to be instrumented in the graph static void getChords(vector &chords, Graph &g, Graph st){ //make sure the spanning tree is directional //iterate over ALL the edges of the graph vector allNodes=g.getAllNodes(); for(vector::iterator NI=allNodes.begin(), NE=allNodes.end(); NI!=NE; ++NI){ Graph::nodeList node_list=g.getNodeList(*NI); for(Graph::nodeList::iterator NLI=node_list.begin(), NLE=node_list.end(); NLI!=NLE; ++NLI){ Edge f(*NI, NLI->element,NLI->weight, NLI->randId); if(!(st.hasEdgeAndWt(f)))//addnl chords.push_back(f); } } } //Given a tree t, and a "directed graph" g //replace the edges in the tree t with edges that exist in graph //The tree is formed from "undirectional" copy of graph //So whatever edges the tree has, the undirectional graph //would have too. This function corrects some of the directions in //the tree so that now, all edge directions in the tree match //the edge directions of corresponding edges in the directed graph static void removeTreeEdges(Graph &g, Graph& t){ vector allNodes=t.getAllNodes(); for(vector::iterator NI=allNodes.begin(), NE=allNodes.end(); NI!=NE; ++NI){ Graph::nodeList nl=t.getNodeList(*NI); for(Graph::nodeList::iterator NLI=nl.begin(), NLE=nl.end(); NLI!=NLE;++NLI){ Edge ed(NLI->element, *NI, NLI->weight); if(!g.hasEdgeAndWt(ed)) t.removeEdge(ed);//tree has only one edge //between any pair of vertices, so no need to delete by edge wt } } } //Assign a value to all the edges in the graph //such that if we traverse along any path from root to exit, and //add up the edge values, we get a path number that uniquely //refers to the path we travelled int valueAssignmentToEdges(Graph& g, map nodePriority, vector &be){ vector revtop=g.reverseTopologicalSort(); map NumPaths; for(vector::iterator RI=revtop.begin(), RE=revtop.end(); RI!=RE; ++RI){ if(g.isLeaf(*RI)) NumPaths[*RI]=1; else{ NumPaths[*RI]=0; // Modified Graph::nodeList &nlist=g.getNodeList(*RI); Graph::nodeList &nlist=g.getSortedNodeList(*RI, be); //sort nodelist by increasing order of numpaths int sz=nlist.size(); for(int i=0;igetElement(); BasicBlock *bb2 = nlist[min].element->getElement(); if(bb1 == bb2) continue; if(*RI == g.getRoot()){ assert(nodePriority[nlist[min].element]!= nodePriority[nlist[j].element] && "priorities can't be same!"); if(nodePriority[nlist[j].element] < nodePriority[nlist[min].element]) min = j; } else{ TerminatorInst *tti = (*RI)->getElement()->getTerminator(); BranchInst *ti = cast(tti); assert(ti && "not a branch"); assert(ti->getNumSuccessors()==2 && "less successors!"); BasicBlock *tB = ti->getSuccessor(0); BasicBlock *fB = ti->getSuccessor(1); if(tB == bb1 || fB == bb2) min = j; } } graphListElement tempEl=nlist[min]; nlist[min]=nlist[i]; nlist[i]=tempEl; } //sorted now! for(Graph::nodeList::iterator GLI=nlist.begin(), GLE=nlist.end(); GLI!=GLE; ++GLI){ GLI->weight=NumPaths[*RI]; NumPaths[*RI]+=NumPaths[GLI->element]; } } } return NumPaths[g.getRoot()]; } //This is a helper function to get the edge increments //This is used in conjuntion with inc_DFS //to get the edge increments //Edge increment implies assigning a value to all the edges in the graph //such that if we traverse along any path from root to exit, and //add up the edge values, we get a path number that uniquely //refers to the path we travelled //inc_Dir tells whether 2 edges are in same, or in different directions //if same direction, return 1, else -1 static int inc_Dir(Edge e, Edge f){ if(e.isNull()) return 1; //check that the edges must have atleast one common endpoint assert(*(e.getFirst())==*(f.getFirst()) || *(e.getFirst())==*(f.getSecond()) || *(e.getSecond())==*(f.getFirst()) || *(e.getSecond())==*(f.getSecond())); if(*(e.getFirst())==*(f.getSecond()) || *(e.getSecond())==*(f.getFirst())) return 1; return -1; } //used for getting edge increments (read comments above in inc_Dir) //inc_DFS is a modification of DFS static void inc_DFS(Graph& g,Graph& t,map& Increment, int events, Node *v, Edge e){ vector allNodes=t.getAllNodes(); for(vector::iterator NI=allNodes.begin(), NE=allNodes.end(); NI!=NE; ++NI){ Graph::nodeList node_list=t.getNodeList(*NI); for(Graph::nodeList::iterator NLI=node_list.begin(), NLE=node_list.end(); NLI!= NLE; ++NLI){ Edge f(*NI, NLI->element,NLI->weight, NLI->randId); if(!edgesEqual(f,e) && *v==*(f.getSecond())){ int dir_count=inc_Dir(e,f); int wt=1*f.getWeight(); inc_DFS(g,t, Increment, dir_count*events+wt, f.getFirst(), f); } } } for(vector::iterator NI=allNodes.begin(), NE=allNodes.end(); NI!=NE; ++NI){ Graph::nodeList node_list=t.getNodeList(*NI); for(Graph::nodeList::iterator NLI=node_list.begin(), NLE=node_list.end(); NLI!=NLE; ++NLI){ Edge f(*NI, NLI->element,NLI->weight, NLI->randId); if(!edgesEqual(f,e) && *v==*(f.getFirst())){ int dir_count=inc_Dir(e,f); int wt=f.getWeight(); inc_DFS(g,t, Increment, dir_count*events+wt, f.getSecond(), f); } } } allNodes=g.getAllNodes(); for(vector::iterator NI=allNodes.begin(), NE=allNodes.end(); NI!=NE; ++NI){ Graph::nodeList node_list=g.getNodeList(*NI); for(Graph::nodeList::iterator NLI=node_list.begin(), NLE=node_list.end(); NLI!=NLE; ++NLI){ Edge f(*NI, NLI->element,NLI->weight, NLI->randId); if(!(t.hasEdgeAndWt(f)) && (*v==*(f.getSecond()) || *v==*(f.getFirst()))){ int dir_count=inc_Dir(e,f); Increment[f]+=dir_count*events; } } } } //Now we select a subset of all edges //and assign them some values such that //if we consider just this subset, it still represents //the path sum along any path in the graph static map getEdgeIncrements(Graph& g, Graph& t, vector &be){ //get all edges in g-t map Increment; vector allNodes=g.getAllNodes(); for(vector::iterator NI=allNodes.begin(), NE=allNodes.end(); NI!=NE; ++NI){ Graph::nodeList node_list=g.getSortedNodeList(*NI, be); //modified g.getNodeList(*NI); for(Graph::nodeList::iterator NLI=node_list.begin(), NLE=node_list.end(); NLI!=NLE; ++NLI){ Edge ed(*NI, NLI->element,NLI->weight,NLI->randId); if(!(t.hasEdgeAndWt(ed))){ Increment[ed]=0;; } } } Edge *ed=new Edge(); inc_DFS(g,t,Increment, 0, g.getRoot(), *ed); for(vector::iterator NI=allNodes.begin(), NE=allNodes.end(); NI!=NE; ++NI){ Graph::nodeList node_list=g.getSortedNodeList(*NI, be); //modified g.getNodeList(*NI); for(Graph::nodeList::iterator NLI=node_list.begin(), NLE=node_list.end(); NLI!=NLE; ++NLI){ Edge ed(*NI, NLI->element,NLI->weight, NLI->randId); if(!(t.hasEdgeAndWt(ed))){ int wt=ed.getWeight(); Increment[ed]+=wt; } } } return Increment; } //push it up: TODO const graphListElement *findNodeInList(const Graph::nodeList &NL, Node *N); graphListElement *findNodeInList(Graph::nodeList &NL, Node *N); //end TODO //Based on edgeIncrements (above), now obtain //the kind of code to be inserted along an edge //The idea here is to minimize the computation //by inserting only the needed code static void getCodeInsertions(Graph &g, map &instr, vector &chords, map &edIncrements){ //Register initialization code vector ws; ws.push_back(g.getRoot()); while(ws.size()>0){ Node *v=ws.back(); ws.pop_back(); //for each edge v->w Graph::nodeList succs=g.getNodeList(v); for(Graph::nodeList::iterator nl=succs.begin(), ne=succs.end(); nl!=ne; ++nl){ int edgeWt=nl->weight; Node *w=nl->element; //if chords has v->w Edge ed(v,w, edgeWt, nl->randId); bool hasEdge=false; for(vector::iterator CI=chords.begin(), CE=chords.end(); CI!=CE && !hasEdge;++CI){ if(*CI==ed && CI->getWeight()==edgeWt){//modf hasEdge=true; } } if(hasEdge){//so its a chord edge getEdgeCode *edCd=new getEdgeCode(); edCd->setCond(1); edCd->setInc(edIncrements[ed]); instr[ed]=edCd; } else if(g.getNumberOfIncomingEdges(w)==1){ ws.push_back(w); } else{ getEdgeCode *edCd=new getEdgeCode(); edCd->setCond(2); edCd->setInc(0); instr[ed]=edCd; } } } /////Memory increment code ws.push_back(g.getExit()); while(!ws.empty()) { Node *w=ws.back(); ws.pop_back(); /////// //vector lt; vector lllt=g.getAllNodes(); for(vector::iterator EII=lllt.begin(); EII!=lllt.end() ;++EII){ Node *lnode=*EII; Graph::nodeList &nl = g.getNodeList(lnode); //graphListElement *N = findNodeInList(nl, w); for(Graph::nodeList::const_iterator N = nl.begin(), NNEN = nl.end(); N!= NNEN; ++N){ if (*N->element == *w){ Node *v=lnode; //if chords has v->w Edge ed(v,w, N->weight, N->randId); getEdgeCode *edCd=new getEdgeCode(); bool hasEdge=false; for(vector::iterator CI=chords.begin(), CE=chords.end(); CI!=CE; ++CI){ if(*CI==ed && CI->getWeight()==N->weight){ hasEdge=true; break; } } if(hasEdge){ //char str[100]; if(instr[ed]!=NULL && instr[ed]->getCond()==1){ instr[ed]->setCond(4); } else{ edCd->setCond(5); edCd->setInc(edIncrements[ed]); instr[ed]=edCd; } } else if(g.getNumberOfOutgoingEdges(v)==1) ws.push_back(v); else{ edCd->setCond(6); instr[ed]=edCd; } } } } } ///// Register increment code for(vector::iterator CI=chords.begin(), CE=chords.end(); CI!=CE; ++CI){ getEdgeCode *edCd=new getEdgeCode(); if(instr[*CI]==NULL){ edCd->setCond(3); edCd->setInc(edIncrements[*CI]); instr[*CI]=edCd; } } } //Add dummy edges corresponding to the back edges //If a->b is a backedge //then incoming dummy edge is root->b //and outgoing dummy edge is a->exit //changed void addDummyEdges(vector &stDummy, vector &exDummy, Graph &g, vector &be){ for(vector::iterator VI=be.begin(), VE=be.end(); VI!=VE; ++VI){ Edge ed=*VI; Node *first=ed.getFirst(); Node *second=ed.getSecond(); g.removeEdge(ed); if(!(*second==*(g.getRoot()))){ Edge *st=new Edge(g.getRoot(), second, ed.getWeight(), ed.getRandId()); stDummy.push_back(*st); g.addEdgeForce(*st); } if(!(*first==*(g.getExit()))){ Edge *ex=new Edge(first, g.getExit(), ed.getWeight(), ed.getRandId()); exDummy.push_back(*ex); g.addEdgeForce(*ex); } } } //print a given edge in the form BB1Label->BB2Label void printEdge(Edge ed){ cerr<<((ed.getFirst())->getElement()) ->getName()<<"->"<<((ed.getSecond()) ->getElement())->getName()<< ":"< &stDummy, vector &exDummy, vector &be, map &insertions, Graph &g){ typedef vector::iterator vec_iter; map temp; //iterate over edges with code std::vector toErase; for(map::iterator MI=insertions.begin(), ME=insertions.end(); MI!=ME; ++MI){ Edge ed=MI->first; getEdgeCode *edCd=MI->second; ///---new code //iterate over be, and check if its starts and end vertices hv code for(vector::iterator BEI=be.begin(), BEE=be.end(); BEI!=BEE; ++BEI){ if(ed.getRandId()==BEI->getRandId()){ if(temp[*BEI]==0) temp[*BEI]=new getEdgeCode(); //so ed is either in st, or ex! if(ed.getFirst()==g.getRoot()){ //so its in stDummy temp[*BEI]->setCdIn(edCd); toErase.push_back(ed); } else if(ed.getSecond()==g.getExit()){ //so its in exDummy toErase.push_back(ed); temp[*BEI]->setCdOut(edCd); } else{ assert(false && "Not found in either start or end! Rand failed?"); } } } } for(vector::iterator vmi=toErase.begin(), vme=toErase.end(); vmi!=vme; ++vmi){ insertions.erase(*vmi); g.removeEdgeWithWt(*vmi); } for(map::iterator MI=temp.begin(), ME=temp.end(); MI!=ME; ++MI){ insertions[MI->first]=MI->second; } #ifdef DEBUG_PATH_PROFILES cerr<<"size of deletions: "<& be, vector& stDummy, vector& exDummy, int numPaths, int MethNo, Value *threshold){ //Given a graph: with exit->root edge, do the following in seq: //1. get back edges //2. insert dummy edges and remove back edges //3. get edge assignments //4. Get Max spanning tree of graph: // -Make graph g2=g undirectional // -Get Max spanning tree t // -Make t undirectional // -remove edges from t not in graph g //5. Get edge increments //6. Get code insertions //7. move code on dummy edges over to the back edges //This is used as maximum "weight" for //priority queue //This would hold all //right as long as number of paths in the graph //is less than this const int Infinity=99999999; //step 1-3 are already done on the graph when this function is called DEBUG(printGraph(g)); //step 4: Get Max spanning tree of graph //now insert exit to root edge //if its there earlier, remove it! //assign it weight Infinity //so that this edge IS ALWAYS IN spanning tree //Note than edges in spanning tree do not get //instrumented: and we do not want the //edge exit->root to get instrumented //as it MAY BE a dummy edge Edge ed(g.getExit(),g.getRoot(),Infinity); g.addEdge(ed,Infinity); Graph g2=g; //make g2 undirectional: this gives a better //maximal spanning tree g2.makeUnDirectional(); DEBUG(printGraph(g2)); Graph *t=g2.getMaxSpanningTree(); #ifdef DEBUG_PATH_PROFILES std::cerr<<"Original maxspanning tree\n"; printGraph(*t); #endif //now edges of tree t have weights reversed //(negative) because the algorithm used //to find max spanning tree is //actually for finding min spanning tree //so get back the original weights t->reverseWts(); //Ordinarily, the graph is directional //lets converts the graph into an //undirectional graph //This is done by adding an edge //v->u for all existing edges u->v t->makeUnDirectional(); //Given a tree t, and a "directed graph" g //replace the edges in the tree t with edges that exist in graph //The tree is formed from "undirectional" copy of graph //So whatever edges the tree has, the undirectional graph //would have too. This function corrects some of the directions in //the tree so that now, all edge directions in the tree match //the edge directions of corresponding edges in the directed graph removeTreeEdges(g, *t); #ifdef DEBUG_PATH_PROFILES cerr<<"Final Spanning tree---------\n"; printGraph(*t); cerr<<"-------end spanning tree\n"; #endif //now remove the exit->root node //and re-add it with weight 0 //since infinite weight is kinda confusing g.removeEdge(ed); Edge edNew(g.getExit(), g.getRoot(),0); g.addEdge(edNew,0); if(t->hasEdge(ed)){ t->removeEdge(ed); t->addEdge(edNew,0); } DEBUG(printGraph(g); printGraph(*t)); //step 5: Get edge increments //Now we select a subset of all edges //and assign them some values such that //if we consider just this subset, it still represents //the path sum along any path in the graph map increment=getEdgeIncrements(g,*t, be); #ifdef DEBUG_PATH_PROFILES //print edge increments for debugging std::cerr<<"Edge Increments------\n"; for(map::iterator MMI=increment.begin(), MME=increment.end(); MMI != MME; ++MMI){ printEdge(MMI->first); std::cerr<<"Increment for above:"<second<<"\n"; } std::cerr<<"-------end of edge increments\n"; #endif //step 6: Get code insertions //Based on edgeIncrements (above), now obtain //the kind of code to be inserted along an edge //The idea here is to minimize the computation //by inserting only the needed code vector chords; getChords(chords, g, *t); map codeInsertions; getCodeInsertions(g, codeInsertions, chords,increment); #ifdef DEBUG_PATH_PROFILES //print edges with code for debugging cerr<<"Code inserted in following---------------\n"; for(map::iterator cd_i=codeInsertions.begin(), cd_e=codeInsertions.end(); cd_i!=cd_e; ++cd_i){ printEdge(cd_i->first); cerr<second->getCond()<<":"<second->getInc()<<"\n"; } cerr<<"-----end insertions\n"; #endif //step 7: move code on dummy edges over to the back edges //Move the incoming dummy edge code and outgoing dummy //edge code over to the corresponding back edge moveDummyCode(stDummy, exDummy, be, codeInsertions, g); #ifdef DEBUG_PATH_PROFILES //debugging info cerr<<"After moving dummy code\n"; for(map::iterator cd_i=codeInsertions.begin(), cd_e=codeInsertions.end(); cd_i != cd_e; ++cd_i){ printEdge(cd_i->first); cerr<second->getCond()<<":" <second->getInc()<<"\n"; } cerr<<"Dummy end------------\n"; #endif //see what it looks like... //now insert code along edges which have codes on them for(map::iterator MI=codeInsertions.begin(), ME=codeInsertions.end(); MI!=ME; ++MI){ Edge ed=MI->first; insertBB(ed, MI->second, rInst, countInst, numPaths, MethNo, threshold); } } //print the graph (for debugging) void printGraph(Graph &g){ vector lt=g.getAllNodes(); cerr<<"Graph---------------------\n"; for(vector::iterator LI=lt.begin(); LI!=lt.end(); ++LI){ cerr<<((*LI)->getElement())->getName()<<"->"; Graph::nodeList nl=g.getNodeList(*LI); for(Graph::nodeList::iterator NI=nl.begin(); NI!=nl.end(); ++NI){ cerr<<":"<<"("<<(NI->element->getElement()) ->getName()<<":"<element->getWeight()<<","<weight<<"," <randId<<")"; } cerr<<"\n"; } cerr<<"--------------------Graph\n"; }