//===- ListReducer.h - Trim down list while retaining property --*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file was developed by the LLVM research group and is distributed under // the University of Illinois Open Source License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This class is to be used as a base class for operations that want to zero in // on a subset of the input which still causes the bug we are tracking. // //===----------------------------------------------------------------------===// #ifndef BUGPOINT_LIST_REDUCER_H #define BUGPOINT_LIST_REDUCER_H #include <vector> #include <iostream> #include <cstdlib> #include <algorithm> namespace llvm { extern bool BugpointIsInterrupted; template<typename ElTy> struct ListReducer { enum TestResult { NoFailure, // No failure of the predicate was detected KeepSuffix, // The suffix alone satisfies the predicate KeepPrefix // The prefix alone satisfies the predicate }; virtual ~ListReducer() {} // doTest - This virtual function should be overriden by subclasses to // implement the test desired. The testcase is only required to test to see // if the Kept list still satisfies the property, but if it is going to check // the prefix anyway, it can. // virtual TestResult doTest(std::vector<ElTy> &Prefix, std::vector<ElTy> &Kept) = 0; // reduceList - This function attempts to reduce the length of the specified // list while still maintaining the "test" property. This is the core of the // "work" that bugpoint does. // bool reduceList(std::vector<ElTy> &TheList) { std::vector<ElTy> empty; std::srand(0x6e5ea738); // Seed the random number generator switch (doTest(TheList, empty)) { case KeepPrefix: if (TheList.size() == 1) // we are done, it's the base case and it fails return true; else break; // there's definitely an error, but we need to narrow it down case KeepSuffix: // cannot be reached! std::cerr << "bugpoint ListReducer internal error: selected empty set.\n"; abort(); case NoFailure: return false; // there is no failure with the full set of passes/funcs! } // Maximal number of allowed splitting iterations, // before the elements are randomly shuffled. const unsigned MaxIterationsWithoutProgress = 3; bool ShufflingEnabled = true; Backjump: unsigned MidTop = TheList.size(); unsigned MaxIterations = MaxIterationsWithoutProgress; unsigned NumOfIterationsWithoutProgress = 0; while (MidTop > 1) { // Binary split reduction loop // Halt if the user presses ctrl-c. if (BugpointIsInterrupted) { std::cerr << "\n\n*** Reduction Interrupted, cleaning up...\n\n"; return true; } // If the loop doesn't make satisfying progress, try shuffling. // The purpose of shuffling is to avoid the heavy tails of the // distribution (improving the speed of convergence). if (ShufflingEnabled && NumOfIterationsWithoutProgress > MaxIterations) { std::vector<ElTy> ShuffledList(TheList); std::random_shuffle(ShuffledList.begin(), ShuffledList.end()); std::cerr << "\n\n*** Testing shuffled set...\n\n"; // Check that random shuffle doesn't loose the bug if (doTest(ShuffledList, empty) == KeepPrefix) { // If the bug is still here, use the shuffled list. TheList.swap(ShuffledList); MidTop = TheList.size(); // Must increase the shuffling treshold to avoid the small // probability of inifinite looping without making progress. MaxIterations += 2; std::cerr << "\n\n*** Shuffling does not hide the bug...\n\n"; } else { ShufflingEnabled = false; // Disable shuffling further on std::cerr << "\n\n*** Shuffling hides the bug...\n\n"; } NumOfIterationsWithoutProgress = 0; } unsigned Mid = MidTop / 2; std::vector<ElTy> Prefix(TheList.begin(), TheList.begin()+Mid); std::vector<ElTy> Suffix(TheList.begin()+Mid, TheList.end()); switch (doTest(Prefix, Suffix)) { case KeepSuffix: // The property still holds. We can just drop the prefix elements, and // shorten the list to the "kept" elements. TheList.swap(Suffix); MidTop = TheList.size(); // Reset progress treshold and progress counter MaxIterations = MaxIterationsWithoutProgress; NumOfIterationsWithoutProgress = 0; break; case KeepPrefix: // The predicate still holds, shorten the list to the prefix elements. TheList.swap(Prefix); MidTop = TheList.size(); // Reset progress treshold and progress counter MaxIterations = MaxIterationsWithoutProgress; NumOfIterationsWithoutProgress = 0; break; case NoFailure: // Otherwise the property doesn't hold. Some of the elements we removed // must be necessary to maintain the property. MidTop = Mid; NumOfIterationsWithoutProgress++; break; } } // Probability of backjumping from the trimming loop back to the binary // split reduction loop. const int BackjumpProbability = 10; // Okay, we trimmed as much off the top and the bottom of the list as we // could. If there is more than two elements in the list, try deleting // interior elements and testing that. // if (TheList.size() > 2) { bool Changed = true; std::vector<ElTy> EmptyList; while (Changed) { // Trimming loop. Changed = false; // If the binary split reduction loop made an unfortunate sequence of // splits, the trimming loop might be left off with a huge number of // remaining elements (large search space). Backjumping out of that // search space and attempting a different split can significantly // improve the convergence speed. if (std::rand() % 100 < BackjumpProbability) goto Backjump; for (unsigned i = 1; i < TheList.size()-1; ++i) { // Check interior elts if (BugpointIsInterrupted) { std::cerr << "\n\n*** Reduction Interrupted, cleaning up...\n\n"; return true; } std::vector<ElTy> TestList(TheList); TestList.erase(TestList.begin()+i); if (doTest(EmptyList, TestList) == KeepSuffix) { // We can trim down the list! TheList.swap(TestList); --i; // Don't skip an element of the list Changed = true; } } // This can take a long time if left uncontrolled. For now, don't // iterate. break; } } return true; // there are some failure and we've narrowed them down } }; } // End llvm namespace #endif