//===-- Writer.cpp - Library for writing LLVM bytecode files --------------===// // // The LLVM Compiler Infrastructure // // This file was developed by the LLVM research group and is distributed under // the University of Illinois Open Source License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This library implements the functionality defined in llvm/Bytecode/Writer.h // // Note that this file uses an unusual technique of outputting all the bytecode // to a vector of unsigned char, then copies the vector to an ostream. The // reason for this is that we must do "seeking" in the stream to do back- // patching, and some very important ostreams that we want to support (like // pipes) do not support seeking. :( :( :( // //===----------------------------------------------------------------------===// #define DEBUG_TYPE "bytecodewriter" #include "WriterInternals.h" #include "llvm/Bytecode/WriteBytecodePass.h" #include "llvm/CallingConv.h" #include "llvm/Constants.h" #include "llvm/DerivedTypes.h" #include "llvm/InlineAsm.h" #include "llvm/Instructions.h" #include "llvm/Module.h" #include "llvm/SymbolTable.h" #include "llvm/TypeSymbolTable.h" #include "llvm/Support/GetElementPtrTypeIterator.h" #include "llvm/Support/Compressor.h" #include "llvm/Support/MathExtras.h" #include "llvm/Support/Streams.h" #include "llvm/System/Program.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/Statistic.h" #include #include using namespace llvm; /// This value needs to be incremented every time the bytecode format changes /// so that the reader can distinguish which format of the bytecode file has /// been written. /// @brief The bytecode version number const unsigned BCVersionNum = 7; static RegisterPass X("emitbytecode", "Bytecode Writer"); STATISTIC(BytesWritten, "Number of bytecode bytes written"); //===----------------------------------------------------------------------===// //=== Output Primitives ===// //===----------------------------------------------------------------------===// // output - If a position is specified, it must be in the valid portion of the // string... note that this should be inlined always so only the relevant IF // body should be included. inline void BytecodeWriter::output(unsigned i, int pos) { if (pos == -1) { // Be endian clean, little endian is our friend Out.push_back((unsigned char)i); Out.push_back((unsigned char)(i >> 8)); Out.push_back((unsigned char)(i >> 16)); Out.push_back((unsigned char)(i >> 24)); } else { Out[pos ] = (unsigned char)i; Out[pos+1] = (unsigned char)(i >> 8); Out[pos+2] = (unsigned char)(i >> 16); Out[pos+3] = (unsigned char)(i >> 24); } } inline void BytecodeWriter::output(int i) { output((unsigned)i); } /// output_vbr - Output an unsigned value, by using the least number of bytes /// possible. This is useful because many of our "infinite" values are really /// very small most of the time; but can be large a few times. /// Data format used: If you read a byte with the high bit set, use the low /// seven bits as data and then read another byte. inline void BytecodeWriter::output_vbr(uint64_t i) { while (1) { if (i < 0x80) { // done? Out.push_back((unsigned char)i); // We know the high bit is clear... return; } // Nope, we are bigger than a character, output the next 7 bits and set the // high bit to say that there is more coming... Out.push_back(0x80 | ((unsigned char)i & 0x7F)); i >>= 7; // Shift out 7 bits now... } } inline void BytecodeWriter::output_vbr(unsigned i) { while (1) { if (i < 0x80) { // done? Out.push_back((unsigned char)i); // We know the high bit is clear... return; } // Nope, we are bigger than a character, output the next 7 bits and set the // high bit to say that there is more coming... Out.push_back(0x80 | ((unsigned char)i & 0x7F)); i >>= 7; // Shift out 7 bits now... } } inline void BytecodeWriter::output_typeid(unsigned i) { if (i <= 0x00FFFFFF) this->output_vbr(i); else { this->output_vbr(0x00FFFFFF); this->output_vbr(i); } } inline void BytecodeWriter::output_vbr(int64_t i) { if (i < 0) output_vbr(((uint64_t)(-i) << 1) | 1); // Set low order sign bit... else output_vbr((uint64_t)i << 1); // Low order bit is clear. } inline void BytecodeWriter::output_vbr(int i) { if (i < 0) output_vbr(((unsigned)(-i) << 1) | 1); // Set low order sign bit... else output_vbr((unsigned)i << 1); // Low order bit is clear. } inline void BytecodeWriter::output(const std::string &s) { unsigned Len = s.length(); output_vbr(Len); // Strings may have an arbitrary length. Out.insert(Out.end(), s.begin(), s.end()); } inline void BytecodeWriter::output_data(const void *Ptr, const void *End) { Out.insert(Out.end(), (const unsigned char*)Ptr, (const unsigned char*)End); } inline void BytecodeWriter::output_float(float& FloatVal) { /// FIXME: This isn't optimal, it has size problems on some platforms /// where FP is not IEEE. uint32_t i = FloatToBits(FloatVal); Out.push_back( static_cast( (i ) & 0xFF)); Out.push_back( static_cast( (i >> 8 ) & 0xFF)); Out.push_back( static_cast( (i >> 16) & 0xFF)); Out.push_back( static_cast( (i >> 24) & 0xFF)); } inline void BytecodeWriter::output_double(double& DoubleVal) { /// FIXME: This isn't optimal, it has size problems on some platforms /// where FP is not IEEE. uint64_t i = DoubleToBits(DoubleVal); Out.push_back( static_cast( (i ) & 0xFF)); Out.push_back( static_cast( (i >> 8 ) & 0xFF)); Out.push_back( static_cast( (i >> 16) & 0xFF)); Out.push_back( static_cast( (i >> 24) & 0xFF)); Out.push_back( static_cast( (i >> 32) & 0xFF)); Out.push_back( static_cast( (i >> 40) & 0xFF)); Out.push_back( static_cast( (i >> 48) & 0xFF)); Out.push_back( static_cast( (i >> 56) & 0xFF)); } inline BytecodeBlock::BytecodeBlock(unsigned ID, BytecodeWriter &w, bool elideIfEmpty, bool hasLongFormat) : Id(ID), Writer(w), ElideIfEmpty(elideIfEmpty), HasLongFormat(hasLongFormat){ if (HasLongFormat) { w.output(ID); w.output(0U); // For length in long format } else { w.output(0U); /// Place holder for ID and length for this block } Loc = w.size(); } inline BytecodeBlock::~BytecodeBlock() { // Do backpatch when block goes out // of scope... if (Loc == Writer.size() && ElideIfEmpty) { // If the block is empty, and we are allowed to, do not emit the block at // all! Writer.resize(Writer.size()-(HasLongFormat?8:4)); return; } if (HasLongFormat) Writer.output(unsigned(Writer.size()-Loc), int(Loc-4)); else Writer.output(unsigned(Writer.size()-Loc) << 5 | (Id & 0x1F), int(Loc-4)); } //===----------------------------------------------------------------------===// //=== Constant Output ===// //===----------------------------------------------------------------------===// void BytecodeWriter::outputType(const Type *T) { const StructType* STy = dyn_cast(T); if(STy && STy->isPacked()) output_vbr((unsigned)Type::PackedStructTyID); else output_vbr((unsigned)T->getTypeID()); // That's all there is to handling primitive types... if (T->isPrimitiveType()) return; // We might do this if we alias a prim type: %x = type int switch (T->getTypeID()) { // Handle derived types now. case Type::IntegerTyID: output_vbr(cast(T)->getBitWidth()); break; case Type::FunctionTyID: { const FunctionType *MT = cast(T); int Slot = Table.getSlot(MT->getReturnType()); assert(Slot != -1 && "Type used but not available!!"); output_typeid((unsigned)Slot); output_vbr(unsigned(MT->getParamAttrs(0))); // Output the number of arguments to function (+1 if varargs): output_vbr((unsigned)MT->getNumParams()+MT->isVarArg()); // Output all of the arguments... FunctionType::param_iterator I = MT->param_begin(); unsigned Idx = 1; for (; I != MT->param_end(); ++I) { Slot = Table.getSlot(*I); assert(Slot != -1 && "Type used but not available!!"); output_typeid((unsigned)Slot); output_vbr(unsigned(MT->getParamAttrs(Idx))); Idx++; } // Terminate list with VoidTy if we are a varargs function... if (MT->isVarArg()) output_typeid((unsigned)Type::VoidTyID); break; } case Type::ArrayTyID: { const ArrayType *AT = cast(T); int Slot = Table.getSlot(AT->getElementType()); assert(Slot != -1 && "Type used but not available!!"); output_typeid((unsigned)Slot); output_vbr(AT->getNumElements()); break; } case Type::PackedTyID: { const PackedType *PT = cast(T); int Slot = Table.getSlot(PT->getElementType()); assert(Slot != -1 && "Type used but not available!!"); output_typeid((unsigned)Slot); output_vbr(PT->getNumElements()); break; } case Type::StructTyID: { const StructType *ST = cast(T); // Output all of the element types... for (StructType::element_iterator I = ST->element_begin(), E = ST->element_end(); I != E; ++I) { int Slot = Table.getSlot(*I); assert(Slot != -1 && "Type used but not available!!"); output_typeid((unsigned)Slot); } // Terminate list with VoidTy output_typeid((unsigned)Type::VoidTyID); break; } case Type::PointerTyID: { const PointerType *PT = cast(T); int Slot = Table.getSlot(PT->getElementType()); assert(Slot != -1 && "Type used but not available!!"); output_typeid((unsigned)Slot); break; } case Type::OpaqueTyID: // No need to emit anything, just the count of opaque types is enough. break; default: cerr << __FILE__ << ":" << __LINE__ << ": Don't know how to serialize" << " Type '" << T->getDescription() << "'\n"; break; } } void BytecodeWriter::outputConstant(const Constant *CPV) { assert(((CPV->getType()->isPrimitiveType() || CPV->getType()->isInteger()) || !CPV->isNullValue()) && "Shouldn't output null constants!"); // We must check for a ConstantExpr before switching by type because // a ConstantExpr can be of any type, and has no explicit value. // if (const ConstantExpr *CE = dyn_cast(CPV)) { // FIXME: Encoding of constant exprs could be much more compact! assert(CE->getNumOperands() > 0 && "ConstantExpr with 0 operands"); assert(CE->getNumOperands() != 1 || CE->isCast()); output_vbr(1+CE->getNumOperands()); // flags as an expr output_vbr(CE->getOpcode()); // Put out the CE op code for (User::const_op_iterator OI = CE->op_begin(); OI != CE->op_end(); ++OI){ int Slot = Table.getSlot(*OI); assert(Slot != -1 && "Unknown constant used in ConstantExpr!!"); output_vbr((unsigned)Slot); Slot = Table.getSlot((*OI)->getType()); output_typeid((unsigned)Slot); } if (CE->isCompare()) output_vbr((unsigned)CE->getPredicate()); return; } else if (isa(CPV)) { output_vbr(1U); // 1 -> UndefValue constant. return; } else { output_vbr(0U); // flag as not a ConstantExpr (i.e. 0 operands) } switch (CPV->getType()->getTypeID()) { case Type::IntegerTyID: { // Integer types... unsigned NumBits = cast(CPV->getType())->getBitWidth(); if (NumBits <= 32) output_vbr(uint32_t(cast(CPV)->getZExtValue())); else if (NumBits <= 64) output_vbr(uint64_t(cast(CPV)->getZExtValue())); else assert("Integer types > 64 bits not supported."); break; } case Type::ArrayTyID: { const ConstantArray *CPA = cast(CPV); assert(!CPA->isString() && "Constant strings should be handled specially!"); for (unsigned i = 0, e = CPA->getNumOperands(); i != e; ++i) { int Slot = Table.getSlot(CPA->getOperand(i)); assert(Slot != -1 && "Constant used but not available!!"); output_vbr((unsigned)Slot); } break; } case Type::PackedTyID: { const ConstantPacked *CP = cast(CPV); for (unsigned i = 0, e = CP->getNumOperands(); i != e; ++i) { int Slot = Table.getSlot(CP->getOperand(i)); assert(Slot != -1 && "Constant used but not available!!"); output_vbr((unsigned)Slot); } break; } case Type::StructTyID: { const ConstantStruct *CPS = cast(CPV); for (unsigned i = 0, e = CPS->getNumOperands(); i != e; ++i) { int Slot = Table.getSlot(CPS->getOperand(i)); assert(Slot != -1 && "Constant used but not available!!"); output_vbr((unsigned)Slot); } break; } case Type::PointerTyID: assert(0 && "No non-null, non-constant-expr constants allowed!"); abort(); case Type::FloatTyID: { // Floating point types... float Tmp = (float)cast(CPV)->getValue(); output_float(Tmp); break; } case Type::DoubleTyID: { double Tmp = cast(CPV)->getValue(); output_double(Tmp); break; } case Type::VoidTyID: case Type::LabelTyID: default: cerr << __FILE__ << ":" << __LINE__ << ": Don't know how to serialize" << " type '" << *CPV->getType() << "'\n"; break; } return; } /// outputInlineAsm - InlineAsm's get emitted to the constant pool, so they can /// be shared by multiple uses. void BytecodeWriter::outputInlineAsm(const InlineAsm *IA) { // Output a marker, so we know when we have one one parsing the constant pool. // Note that this encoding is 5 bytes: not very efficient for a marker. Since // unique inline asms are rare, this should hardly matter. output_vbr(~0U); output(IA->getAsmString()); output(IA->getConstraintString()); output_vbr(unsigned(IA->hasSideEffects())); } void BytecodeWriter::outputConstantStrings() { SlotCalculator::string_iterator I = Table.string_begin(); SlotCalculator::string_iterator E = Table.string_end(); if (I == E) return; // No strings to emit // If we have != 0 strings to emit, output them now. Strings are emitted into // the 'void' type plane. output_vbr(unsigned(E-I)); output_typeid(Type::VoidTyID); // Emit all of the strings. for (I = Table.string_begin(); I != E; ++I) { const ConstantArray *Str = *I; int Slot = Table.getSlot(Str->getType()); assert(Slot != -1 && "Constant string of unknown type?"); output_typeid((unsigned)Slot); // Now that we emitted the type (which indicates the size of the string), // emit all of the characters. std::string Val = Str->getAsString(); output_data(Val.c_str(), Val.c_str()+Val.size()); } } //===----------------------------------------------------------------------===// //=== Instruction Output ===// //===----------------------------------------------------------------------===// // outputInstructionFormat0 - Output those weird instructions that have a large // number of operands or have large operands themselves. // // Format: [opcode] [type] [numargs] [arg0] [arg1] ... [arg] // void BytecodeWriter::outputInstructionFormat0(const Instruction *I, unsigned Opcode, const SlotCalculator &Table, unsigned Type) { // Opcode must have top two bits clear... output_vbr(Opcode << 2); // Instruction Opcode ID output_typeid(Type); // Result type unsigned NumArgs = I->getNumOperands(); output_vbr(NumArgs + (isa(I) || isa(I) || isa(I) || isa(I) || Opcode == 58)); if (!isa(&I)) { for (unsigned i = 0; i < NumArgs; ++i) { int Slot = Table.getSlot(I->getOperand(i)); assert(Slot >= 0 && "No slot number for value!?!?"); output_vbr((unsigned)Slot); } if (isa(I) || isa(I)) { int Slot = Table.getSlot(I->getType()); assert(Slot != -1 && "Cast return type unknown?"); output_typeid((unsigned)Slot); } else if (isa(I)) { output_vbr(unsigned(cast(I)->getPredicate())); } else if (isa(I)) { output_vbr(cast(I)->getCallingConv()); } else if (Opcode == 58) { // Call escape sequence output_vbr((cast(I)->getCallingConv() << 1) | unsigned(cast(I)->isTailCall())); } } else { int Slot = Table.getSlot(I->getOperand(0)); assert(Slot >= 0 && "No slot number for value!?!?"); output_vbr(unsigned(Slot)); // We need to encode the type of sequential type indices into their slot # unsigned Idx = 1; for (gep_type_iterator TI = gep_type_begin(I), E = gep_type_end(I); Idx != NumArgs; ++TI, ++Idx) { Slot = Table.getSlot(I->getOperand(Idx)); assert(Slot >= 0 && "No slot number for value!?!?"); if (isa(*TI)) { // These should be either 32-bits or 64-bits, however, with bit // accurate types we just distinguish between less than or equal to // 32-bits or greater than 32-bits. unsigned BitWidth = cast(I->getOperand(Idx)->getType())->getBitWidth(); assert(BitWidth == 32 || BitWidth == 64 && "Invalid bitwidth for GEP index"); unsigned IdxId = BitWidth == 32 ? 0 : 1; Slot = (Slot << 1) | IdxId; } output_vbr(unsigned(Slot)); } } } // outputInstrVarArgsCall - Output the absurdly annoying varargs function calls. // This are more annoying than most because the signature of the call does not // tell us anything about the types of the arguments in the varargs portion. // Because of this, we encode (as type 0) all of the argument types explicitly // before the argument value. This really sucks, but you shouldn't be using // varargs functions in your code! *death to printf*! // // Format: [opcode] [type] [numargs] [arg0] [arg1] ... [arg] // void BytecodeWriter::outputInstrVarArgsCall(const Instruction *I, unsigned Opcode, const SlotCalculator &Table, unsigned Type) { assert(isa(I) || isa(I)); // Opcode must have top two bits clear... output_vbr(Opcode << 2); // Instruction Opcode ID output_typeid(Type); // Result type (varargs type) const PointerType *PTy = cast(I->getOperand(0)->getType()); const FunctionType *FTy = cast(PTy->getElementType()); unsigned NumParams = FTy->getNumParams(); unsigned NumFixedOperands; if (isa(I)) { // Output an operand for the callee and each fixed argument, then two for // each variable argument. NumFixedOperands = 1+NumParams; } else { assert(isa(I) && "Not call or invoke??"); // Output an operand for the callee and destinations, then two for each // variable argument. NumFixedOperands = 3+NumParams; } output_vbr(2 * I->getNumOperands()-NumFixedOperands + unsigned(Opcode == 58 || isa(I))); // The type for the function has already been emitted in the type field of the // instruction. Just emit the slot # now. for (unsigned i = 0; i != NumFixedOperands; ++i) { int Slot = Table.getSlot(I->getOperand(i)); assert(Slot >= 0 && "No slot number for value!?!?"); output_vbr((unsigned)Slot); } for (unsigned i = NumFixedOperands, e = I->getNumOperands(); i != e; ++i) { // Output Arg Type ID int Slot = Table.getSlot(I->getOperand(i)->getType()); assert(Slot >= 0 && "No slot number for value!?!?"); output_typeid((unsigned)Slot); // Output arg ID itself Slot = Table.getSlot(I->getOperand(i)); assert(Slot >= 0 && "No slot number for value!?!?"); output_vbr((unsigned)Slot); } if (isa(I)) { // Emit the tail call/calling conv for invoke instructions output_vbr(cast(I)->getCallingConv()); } else if (Opcode == 58) { const CallInst *CI = cast(I); output_vbr((CI->getCallingConv() << 1) | unsigned(CI->isTailCall())); } } // outputInstructionFormat1 - Output one operand instructions, knowing that no // operand index is >= 2^12. // inline void BytecodeWriter::outputInstructionFormat1(const Instruction *I, unsigned Opcode, unsigned *Slots, unsigned Type) { // bits Instruction format: // -------------------------- // 01-00: Opcode type, fixed to 1. // 07-02: Opcode // 19-08: Resulting type plane // 31-20: Operand #1 (if set to (2^12-1), then zero operands) // output(1 | (Opcode << 2) | (Type << 8) | (Slots[0] << 20)); } // outputInstructionFormat2 - Output two operand instructions, knowing that no // operand index is >= 2^8. // inline void BytecodeWriter::outputInstructionFormat2(const Instruction *I, unsigned Opcode, unsigned *Slots, unsigned Type) { // bits Instruction format: // -------------------------- // 01-00: Opcode type, fixed to 2. // 07-02: Opcode // 15-08: Resulting type plane // 23-16: Operand #1 // 31-24: Operand #2 // output(2 | (Opcode << 2) | (Type << 8) | (Slots[0] << 16) | (Slots[1] << 24)); } // outputInstructionFormat3 - Output three operand instructions, knowing that no // operand index is >= 2^6. // inline void BytecodeWriter::outputInstructionFormat3(const Instruction *I, unsigned Opcode, unsigned *Slots, unsigned Type) { // bits Instruction format: // -------------------------- // 01-00: Opcode type, fixed to 3. // 07-02: Opcode // 13-08: Resulting type plane // 19-14: Operand #1 // 25-20: Operand #2 // 31-26: Operand #3 // output(3 | (Opcode << 2) | (Type << 8) | (Slots[0] << 14) | (Slots[1] << 20) | (Slots[2] << 26)); } void BytecodeWriter::outputInstruction(const Instruction &I) { assert(I.getOpcode() < 57 && "Opcode too big???"); unsigned Opcode = I.getOpcode(); unsigned NumOperands = I.getNumOperands(); // Encode 'tail call' as 61, 'volatile load' as 62, and 'volatile store' as // 63. if (const CallInst *CI = dyn_cast(&I)) { if (CI->getCallingConv() == CallingConv::C) { if (CI->isTailCall()) Opcode = 61; // CCC + Tail Call else ; // Opcode = Instruction::Call } else if (CI->getCallingConv() == CallingConv::Fast) { if (CI->isTailCall()) Opcode = 59; // FastCC + TailCall else Opcode = 60; // FastCC + Not Tail Call } else { Opcode = 58; // Call escape sequence. } } else if (isa(I) && cast(I).isVolatile()) { Opcode = 62; } else if (isa(I) && cast(I).isVolatile()) { Opcode = 63; } // Figure out which type to encode with the instruction. Typically we want // the type of the first parameter, as opposed to the type of the instruction // (for example, with setcc, we always know it returns bool, but the type of // the first param is actually interesting). But if we have no arguments // we take the type of the instruction itself. // const Type *Ty; switch (I.getOpcode()) { case Instruction::Select: case Instruction::Malloc: case Instruction::Alloca: Ty = I.getType(); // These ALWAYS want to encode the return type break; case Instruction::Store: Ty = I.getOperand(1)->getType(); // Encode the pointer type... assert(isa(Ty) && "Store to nonpointer type!?!?"); break; default: // Otherwise use the default behavior... Ty = NumOperands ? I.getOperand(0)->getType() : I.getType(); break; } unsigned Type; int Slot = Table.getSlot(Ty); assert(Slot != -1 && "Type not available!!?!"); Type = (unsigned)Slot; // Varargs calls and invokes are encoded entirely different from any other // instructions. if (const CallInst *CI = dyn_cast(&I)){ const PointerType *Ty =cast(CI->getCalledValue()->getType()); if (cast(Ty->getElementType())->isVarArg()) { outputInstrVarArgsCall(CI, Opcode, Table, Type); return; } } else if (const InvokeInst *II = dyn_cast(&I)) { const PointerType *Ty =cast(II->getCalledValue()->getType()); if (cast(Ty->getElementType())->isVarArg()) { outputInstrVarArgsCall(II, Opcode, Table, Type); return; } } if (NumOperands <= 3) { // Make sure that we take the type number into consideration. We don't want // to overflow the field size for the instruction format we select. // unsigned MaxOpSlot = Type; unsigned Slots[3]; Slots[0] = (1 << 12)-1; // Marker to signify 0 operands for (unsigned i = 0; i != NumOperands; ++i) { int slot = Table.getSlot(I.getOperand(i)); assert(slot != -1 && "Broken bytecode!"); if (unsigned(slot) > MaxOpSlot) MaxOpSlot = unsigned(slot); Slots[i] = unsigned(slot); } // Handle the special cases for various instructions... if (isa(I) || isa(I)) { // Cast has to encode the destination type as the second argument in the // packet, or else we won't know what type to cast to! Slots[1] = Table.getSlot(I.getType()); assert(Slots[1] != ~0U && "Cast return type unknown?"); if (Slots[1] > MaxOpSlot) MaxOpSlot = Slots[1]; NumOperands++; } else if (const AllocationInst *AI = dyn_cast(&I)) { assert(NumOperands == 1 && "Bogus allocation!"); if (AI->getAlignment()) { Slots[1] = Log2_32(AI->getAlignment())+1; if (Slots[1] > MaxOpSlot) MaxOpSlot = Slots[1]; NumOperands = 2; } } else if (isa(I) || isa(I)) { // We need to encode the compare instruction's predicate as the third // operand. Its not really a slot, but we don't want to break the // instruction format for these instructions. NumOperands++; assert(NumOperands == 3 && "CmpInst with wrong number of operands?"); Slots[2] = unsigned(cast(&I)->getPredicate()); if (Slots[2] > MaxOpSlot) MaxOpSlot = Slots[2]; } else if (const GetElementPtrInst *GEP = dyn_cast(&I)) { // We need to encode the type of sequential type indices into their slot # unsigned Idx = 1; for (gep_type_iterator I = gep_type_begin(GEP), E = gep_type_end(GEP); I != E; ++I, ++Idx) if (isa(*I)) { // These should be either 32-bits or 64-bits, however, with bit // accurate types we just distinguish between less than or equal to // 32-bits or greater than 32-bits. unsigned BitWidth = cast(GEP->getOperand(Idx)->getType())->getBitWidth(); assert(BitWidth == 32 || BitWidth == 64 && "Invalid bitwidth for GEP index"); unsigned IdxId = BitWidth == 32 ? 0 : 1; Slots[Idx] = (Slots[Idx] << 1) | IdxId; if (Slots[Idx] > MaxOpSlot) MaxOpSlot = Slots[Idx]; } } else if (Opcode == 58) { // If this is the escape sequence for call, emit the tailcall/cc info. const CallInst &CI = cast(I); ++NumOperands; if (NumOperands <= 3) { Slots[NumOperands-1] = (CI.getCallingConv() << 1)|unsigned(CI.isTailCall()); if (Slots[NumOperands-1] > MaxOpSlot) MaxOpSlot = Slots[NumOperands-1]; } } else if (isa(I)) { // Invoke escape seq has at least 4 operands to encode. ++NumOperands; } // Decide which instruction encoding to use. This is determined primarily // by the number of operands, and secondarily by whether or not the max // operand will fit into the instruction encoding. More operands == fewer // bits per operand. // switch (NumOperands) { case 0: case 1: if (MaxOpSlot < (1 << 12)-1) { // -1 because we use 4095 to indicate 0 ops outputInstructionFormat1(&I, Opcode, Slots, Type); return; } break; case 2: if (MaxOpSlot < (1 << 8)) { outputInstructionFormat2(&I, Opcode, Slots, Type); return; } break; case 3: if (MaxOpSlot < (1 << 6)) { outputInstructionFormat3(&I, Opcode, Slots, Type); return; } break; default: break; } } // If we weren't handled before here, we either have a large number of // operands or a large operand index that we are referring to. outputInstructionFormat0(&I, Opcode, Table, Type); } //===----------------------------------------------------------------------===// //=== Block Output ===// //===----------------------------------------------------------------------===// BytecodeWriter::BytecodeWriter(std::vector &o, const Module *M) : Out(o), Table(M) { // Emit the signature... static const unsigned char *Sig = (const unsigned char*)"llvm"; output_data(Sig, Sig+4); // Emit the top level CLASS block. BytecodeBlock ModuleBlock(BytecodeFormat::ModuleBlockID, *this, false, true); bool isBigEndian = M->getEndianness() == Module::BigEndian; bool hasLongPointers = M->getPointerSize() == Module::Pointer64; bool hasNoEndianness = M->getEndianness() == Module::AnyEndianness; bool hasNoPointerSize = M->getPointerSize() == Module::AnyPointerSize; // Output the version identifier and other information. unsigned Version = (BCVersionNum << 4) | (unsigned)isBigEndian | (hasLongPointers << 1) | (hasNoEndianness << 2) | (hasNoPointerSize << 3); output_vbr(Version); // The Global type plane comes first { BytecodeBlock CPool(BytecodeFormat::GlobalTypePlaneBlockID, *this); outputTypes(Type::FirstDerivedTyID); } // The ModuleInfoBlock follows directly after the type information outputModuleInfoBlock(M); // Output module level constants, used for global variable initializers outputConstants(false); // Do the whole module now! Process each function at a time... for (Module::const_iterator I = M->begin(), E = M->end(); I != E; ++I) outputFunction(I); // Output the symbole table for types outputTypeSymbolTable(M->getTypeSymbolTable()); // Output the symbol table for values outputValueSymbolTable(M->getValueSymbolTable()); } void BytecodeWriter::outputTypes(unsigned TypeNum) { // Write the type plane for types first because earlier planes (e.g. for a // primitive type like float) may have constants constructed using types // coming later (e.g., via getelementptr from a pointer type). The type // plane is needed before types can be fwd or bkwd referenced. const std::vector& Types = Table.getTypes(); assert(!Types.empty() && "No types at all?"); assert(TypeNum <= Types.size() && "Invalid TypeNo index"); unsigned NumEntries = Types.size() - TypeNum; // Output type header: [num entries] output_vbr(NumEntries); for (unsigned i = TypeNum; i < TypeNum+NumEntries; ++i) outputType(Types[i]); } // Helper function for outputConstants(). // Writes out all the constants in the plane Plane starting at entry StartNo. // void BytecodeWriter::outputConstantsInPlane(const std::vector &Plane, unsigned StartNo) { unsigned ValNo = StartNo; // Scan through and ignore function arguments, global values, and constant // strings. for (; ValNo < Plane.size() && (isa(Plane[ValNo]) || isa(Plane[ValNo]) || (isa(Plane[ValNo]) && cast(Plane[ValNo])->isString())); ValNo++) /*empty*/; unsigned NC = ValNo; // Number of constants for (; NC < Plane.size() && (isa(Plane[NC]) || isa(Plane[NC])); NC++) /*empty*/; NC -= ValNo; // Convert from index into count if (NC == 0) return; // Skip empty type planes... // FIXME: Most slabs only have 1 or 2 entries! We should encode this much // more compactly. // Put out type header: [num entries][type id number] // output_vbr(NC); // Put out the Type ID Number... int Slot = Table.getSlot(Plane.front()->getType()); assert (Slot != -1 && "Type in constant pool but not in function!!"); output_typeid((unsigned)Slot); for (unsigned i = ValNo; i < ValNo+NC; ++i) { const Value *V = Plane[i]; if (const Constant *C = dyn_cast(V)) outputConstant(C); else outputInlineAsm(cast(V)); } } static inline bool hasNullValue(const Type *Ty) { return Ty != Type::LabelTy && Ty != Type::VoidTy && !isa(Ty); } void BytecodeWriter::outputConstants(bool isFunction) { BytecodeBlock CPool(BytecodeFormat::ConstantPoolBlockID, *this, true /* Elide block if empty */); unsigned NumPlanes = Table.getNumPlanes(); if (isFunction) // Output the type plane before any constants! outputTypes(Table.getModuleTypeLevel()); else // Output module-level string constants before any other constants. outputConstantStrings(); for (unsigned pno = 0; pno != NumPlanes; pno++) { const std::vector &Plane = Table.getPlane(pno); if (!Plane.empty()) { // Skip empty type planes... unsigned ValNo = 0; if (isFunction) // Don't re-emit module constants ValNo += Table.getModuleLevel(pno); if (hasNullValue(Plane[0]->getType())) { // Skip zero initializer if (ValNo == 0) ValNo = 1; } // Write out constants in the plane outputConstantsInPlane(Plane, ValNo); } } } static unsigned getEncodedLinkage(const GlobalValue *GV) { switch (GV->getLinkage()) { default: assert(0 && "Invalid linkage!"); case GlobalValue::ExternalLinkage: return 0; case GlobalValue::WeakLinkage: return 1; case GlobalValue::AppendingLinkage: return 2; case GlobalValue::InternalLinkage: return 3; case GlobalValue::LinkOnceLinkage: return 4; case GlobalValue::DLLImportLinkage: return 5; case GlobalValue::DLLExportLinkage: return 6; case GlobalValue::ExternalWeakLinkage: return 7; } } static unsigned getEncodedVisibility(const GlobalValue *GV) { switch (GV->getVisibility()) { default: assert(0 && "Invalid visibility!"); case GlobalValue::DefaultVisibility: return 0; case GlobalValue::HiddenVisibility: return 1; } } void BytecodeWriter::outputModuleInfoBlock(const Module *M) { BytecodeBlock ModuleInfoBlock(BytecodeFormat::ModuleGlobalInfoBlockID, *this); // Give numbers to sections as we encounter them. unsigned SectionIDCounter = 0; std::vector SectionNames; std::map SectionID; // Output the types for the global variables in the module... for (Module::const_global_iterator I = M->global_begin(), End = M->global_end(); I != End; ++I) { int Slot = Table.getSlot(I->getType()); assert(Slot != -1 && "Module global vars is broken!"); assert((I->hasInitializer() || !I->hasInternalLinkage()) && "Global must have an initializer or have external linkage!"); // Fields: bit0 = isConstant, bit1 = hasInitializer, bit2-4=Linkage, // bit5+ = Slot # for type. bool HasExtensionWord = (I->getAlignment() != 0) || I->hasSection() || (I->getVisibility() != GlobalValue::DefaultVisibility); // If we need to use the extension byte, set linkage=3(internal) and // initializer = 0 (impossible!). if (!HasExtensionWord) { unsigned oSlot = ((unsigned)Slot << 5) | (getEncodedLinkage(I) << 2) | (I->hasInitializer() << 1) | (unsigned)I->isConstant(); output_vbr(oSlot); } else { unsigned oSlot = ((unsigned)Slot << 5) | (3 << 2) | (0 << 1) | (unsigned)I->isConstant(); output_vbr(oSlot); // The extension word has this format: bit 0 = has initializer, bit 1-3 = // linkage, bit 4-8 = alignment (log2), bit 9 = has SectionID, // bits 10-12 = visibility, bits 13+ = future use. unsigned ExtWord = (unsigned)I->hasInitializer() | (getEncodedLinkage(I) << 1) | ((Log2_32(I->getAlignment())+1) << 4) | ((unsigned)I->hasSection() << 9) | (getEncodedVisibility(I) << 10); output_vbr(ExtWord); if (I->hasSection()) { // Give section names unique ID's. unsigned &Entry = SectionID[I->getSection()]; if (Entry == 0) { Entry = ++SectionIDCounter; SectionNames.push_back(I->getSection()); } output_vbr(Entry); } } // If we have an initializer, output it now. if (I->hasInitializer()) { Slot = Table.getSlot((Value*)I->getInitializer()); assert(Slot != -1 && "No slot for global var initializer!"); output_vbr((unsigned)Slot); } } output_typeid((unsigned)Table.getSlot(Type::VoidTy)); // Output the types of the functions in this module. for (Module::const_iterator I = M->begin(), End = M->end(); I != End; ++I) { int Slot = Table.getSlot(I->getType()); assert(Slot != -1 && "Module slot calculator is broken!"); assert(Slot >= Type::FirstDerivedTyID && "Derived type not in range!"); assert(((Slot << 6) >> 6) == Slot && "Slot # too big!"); unsigned CC = I->getCallingConv()+1; unsigned ID = (Slot << 5) | (CC & 15); if (I->isExternal()) // If external, we don't have an FunctionInfo block. ID |= 1 << 4; if (I->getAlignment() || I->hasSection() || (CC & ~15) != 0 || (I->isExternal() && I->hasDLLImportLinkage()) || (I->isExternal() && I->hasExternalWeakLinkage()) ) ID |= 1 << 31; // Do we need an extension word? output_vbr(ID); if (ID & (1 << 31)) { // Extension byte: bits 0-4 = alignment, bits 5-9 = top nibble of calling // convention, bit 10 = hasSectionID., bits 11-12 = external linkage type unsigned extLinkage = 0; if (I->isExternal()) { if (I->hasDLLImportLinkage()) { extLinkage = 1; } else if (I->hasExternalWeakLinkage()) { extLinkage = 2; } } ID = (Log2_32(I->getAlignment())+1) | ((CC >> 4) << 5) | (I->hasSection() << 10) | ((extLinkage & 3) << 11); output_vbr(ID); // Give section names unique ID's. if (I->hasSection()) { unsigned &Entry = SectionID[I->getSection()]; if (Entry == 0) { Entry = ++SectionIDCounter; SectionNames.push_back(I->getSection()); } output_vbr(Entry); } } } output_vbr((unsigned)Table.getSlot(Type::VoidTy) << 5); // Emit the list of dependent libraries for the Module. Module::lib_iterator LI = M->lib_begin(); Module::lib_iterator LE = M->lib_end(); output_vbr(unsigned(LE - LI)); // Emit the number of dependent libraries. for (; LI != LE; ++LI) output(*LI); // Output the target triple from the module output(M->getTargetTriple()); // Emit the table of section names. output_vbr((unsigned)SectionNames.size()); for (unsigned i = 0, e = SectionNames.size(); i != e; ++i) output(SectionNames[i]); // Output the inline asm string. output(M->getModuleInlineAsm()); } void BytecodeWriter::outputInstructions(const Function *F) { BytecodeBlock ILBlock(BytecodeFormat::InstructionListBlockID, *this); for (Function::const_iterator BB = F->begin(), E = F->end(); BB != E; ++BB) for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I!=E; ++I) outputInstruction(*I); } void BytecodeWriter::outputFunction(const Function *F) { // If this is an external function, there is nothing else to emit! if (F->isExternal()) return; BytecodeBlock FunctionBlock(BytecodeFormat::FunctionBlockID, *this); unsigned rWord = (getEncodedVisibility(F) << 16) | getEncodedLinkage(F); output_vbr(rWord); // Get slot information about the function... Table.incorporateFunction(F); if (Table.getCompactionTable().empty()) { // Output information about the constants in the function if the compaction // table is not being used. outputConstants(true); } else { // Otherwise, emit the compaction table. outputCompactionTable(); } // Output all of the instructions in the body of the function outputInstructions(F); // If needed, output the symbol table for the function... outputValueSymbolTable(F->getValueSymbolTable()); Table.purgeFunction(); } void BytecodeWriter::outputCompactionTablePlane(unsigned PlaneNo, const std::vector &Plane, unsigned StartNo) { unsigned End = Table.getModuleLevel(PlaneNo); if (Plane.empty() || StartNo == End || End == 0) return; // Nothing to emit assert(StartNo < End && "Cannot emit negative range!"); assert(StartNo < Plane.size() && End <= Plane.size()); // Do not emit the null initializer! ++StartNo; // Figure out which encoding to use. By far the most common case we have is // to emit 0-2 entries in a compaction table plane. switch (End-StartNo) { case 0: // Avoid emitting two vbr's if possible. case 1: case 2: output_vbr((PlaneNo << 2) | End-StartNo); break; default: // Output the number of things. output_vbr((unsigned(End-StartNo) << 2) | 3); output_typeid(PlaneNo); // Emit the type plane this is break; } for (unsigned i = StartNo; i != End; ++i) output_vbr(Table.getGlobalSlot(Plane[i])); } void BytecodeWriter::outputCompactionTypes(unsigned StartNo) { // Get the compaction type table from the slot calculator const std::vector &CTypes = Table.getCompactionTypes(); // The compaction types may have been uncompactified back to the // global types. If so, we just write an empty table if (CTypes.size() == 0) { output_vbr(0U); return; } assert(CTypes.size() >= StartNo && "Invalid compaction types start index"); // Determine how many types to write unsigned NumTypes = CTypes.size() - StartNo; // Output the number of types. output_vbr(NumTypes); for (unsigned i = StartNo; i < StartNo+NumTypes; ++i) output_typeid(Table.getGlobalSlot(CTypes[i])); } void BytecodeWriter::outputCompactionTable() { // Avoid writing the compaction table at all if there is no content. if (Table.getCompactionTypes().size() >= Type::FirstDerivedTyID || (!Table.CompactionTableIsEmpty())) { BytecodeBlock CTB(BytecodeFormat::CompactionTableBlockID, *this, true/*ElideIfEmpty*/); const std::vector > &CT = Table.getCompactionTable(); // First things first, emit the type compaction table if there is one. outputCompactionTypes(Type::FirstDerivedTyID); for (unsigned i = 0, e = CT.size(); i != e; ++i) outputCompactionTablePlane(i, CT[i], 0); } } void BytecodeWriter::outputTypeSymbolTable(const TypeSymbolTable &TST) { // Do not output the block for an empty symbol table, it just wastes // space! if (TST.empty()) return; // Create a header for the symbol table BytecodeBlock SymTabBlock(BytecodeFormat::TypeSymbolTableBlockID, *this, true/*ElideIfEmpty*/); // Write the number of types output_vbr(TST.size()); // Write each of the types for (TypeSymbolTable::const_iterator TI = TST.begin(), TE = TST.end(); TI != TE; ++TI) { // Symtab entry:[def slot #][name] output_typeid((unsigned)Table.getSlot(TI->second)); output(TI->first); } } void BytecodeWriter::outputValueSymbolTable(const SymbolTable &MST) { // Do not output the Bytecode block for an empty symbol table, it just wastes // space! if (MST.isEmpty()) return; BytecodeBlock SymTabBlock(BytecodeFormat::ValueSymbolTableBlockID, *this, true/*ElideIfEmpty*/); // Now do each of the type planes in order. for (SymbolTable::plane_const_iterator PI = MST.plane_begin(), PE = MST.plane_end(); PI != PE; ++PI) { SymbolTable::value_const_iterator I = MST.value_begin(PI->first); SymbolTable::value_const_iterator End = MST.value_end(PI->first); int Slot; if (I == End) continue; // Don't mess with an absent type... // Write the number of values in this plane output_vbr((unsigned)PI->second.size()); // Write the slot number of the type for this plane Slot = Table.getSlot(PI->first); assert(Slot != -1 && "Type in symtab, but not in table!"); output_typeid((unsigned)Slot); // Write each of the values in this plane for (; I != End; ++I) { // Symtab entry: [def slot #][name] Slot = Table.getSlot(I->second); assert(Slot != -1 && "Value in symtab but has no slot number!!"); output_vbr((unsigned)Slot); output(I->first); } } } void llvm::WriteBytecodeToFile(const Module *M, OStream &Out, bool compress) { assert(M && "You can't write a null module!!"); // Make sure that std::cout is put into binary mode for systems // that care. if (Out == cout) sys::Program::ChangeStdoutToBinary(); // Create a vector of unsigned char for the bytecode output. We // reserve 256KBytes of space in the vector so that we avoid doing // lots of little allocations. 256KBytes is sufficient for a large // proportion of the bytecode files we will encounter. Larger files // will be automatically doubled in size as needed (std::vector // behavior). std::vector Buffer; Buffer.reserve(256 * 1024); // The BytecodeWriter populates Buffer for us. BytecodeWriter BCW(Buffer, M); // Keep track of how much we've written BytesWritten += Buffer.size(); // Determine start and end points of the Buffer const unsigned char *FirstByte = &Buffer.front(); // If we're supposed to compress this mess ... if (compress) { // We signal compression by using an alternate magic number for the // file. The compressed bytecode file's magic number is "llvc" instead // of "llvm". char compressed_magic[4]; compressed_magic[0] = 'l'; compressed_magic[1] = 'l'; compressed_magic[2] = 'v'; compressed_magic[3] = 'c'; Out.stream()->write(compressed_magic,4); // Compress everything after the magic number (which we altered) Compressor::compressToStream( (char*)(FirstByte+4), // Skip the magic number Buffer.size()-4, // Skip the magic number *Out.stream() // Where to write compressed data ); } else { // We're not compressing, so just write the entire block. Out.stream()->write((char*)FirstByte, Buffer.size()); } // make sure it hits disk now Out.stream()->flush(); }