//===-- X86ISelLowering.h - X86 DAG Lowering Interface ----------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file was developed by Chris Lattner and is distributed under // the University of Illinois Open Source License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file defines the interfaces that X86 uses to lower LLVM code into a // selection DAG. // //===----------------------------------------------------------------------===// #ifndef X86ISELLOWERING_H #define X86ISELLOWERING_H #include "X86Subtarget.h" #include "llvm/Target/TargetLowering.h" #include "llvm/CodeGen/SelectionDAG.h" namespace llvm { namespace X86ISD { // X86 Specific DAG Nodes enum NodeType { // Start the numbering where the builtin ops leave off. FIRST_NUMBER = ISD::BUILTIN_OP_END+X86::INSTRUCTION_LIST_END, /// SHLD, SHRD - Double shift instructions. These correspond to /// X86::SHLDxx and X86::SHRDxx instructions. SHLD, SHRD, /// FAND - Bitwise logical AND of floating point values. This corresponds /// to X86::ANDPS or X86::ANDPD. FAND, /// FXOR - Bitwise logical XOR of floating point values. This corresponds /// to X86::XORPS or X86::XORPD. FXOR, /// FILD, FILD_FLAG - This instruction implements SINT_TO_FP with the /// integer source in memory and FP reg result. This corresponds to the /// X86::FILD*m instructions. It has three inputs (token chain, address, /// and source type) and two outputs (FP value and token chain). FILD_FLAG /// also produces a flag). FILD, FILD_FLAG, /// FP_TO_INT*_IN_MEM - This instruction implements FP_TO_SINT with the /// integer destination in memory and a FP reg source. This corresponds /// to the X86::FIST*m instructions and the rounding mode change stuff. It /// has two inputs (token chain and address) and two outputs (int value and /// token chain). FP_TO_INT16_IN_MEM, FP_TO_INT32_IN_MEM, FP_TO_INT64_IN_MEM, /// FLD - This instruction implements an extending load to FP stack slots. /// This corresponds to the X86::FLD32m / X86::FLD64m. It takes a chain /// operand, ptr to load from, and a ValueType node indicating the type /// to load to. FLD, /// FST - This instruction implements a truncating store to FP stack /// slots. This corresponds to the X86::FST32m / X86::FST64m. It takes a /// chain operand, value to store, address, and a ValueType to store it /// as. FST, /// FP_SET_RESULT - This corresponds to FpGETRESULT pseudo instrcuction /// which copies from ST(0) to the destination. It takes a chain and writes /// a RFP result and a chain. FP_GET_RESULT, /// FP_SET_RESULT - This corresponds to FpSETRESULT pseudo instrcuction /// which copies the source operand to ST(0). It takes a chain and writes /// a chain and a flag. FP_SET_RESULT, /// CALL/TAILCALL - These operations represent an abstract X86 call /// instruction, which includes a bunch of information. In particular the /// operands of these node are: /// /// #0 - The incoming token chain /// #1 - The callee /// #2 - The number of arg bytes the caller pushes on the stack. /// #3 - The number of arg bytes the callee pops off the stack. /// #4 - The value to pass in AL/AX/EAX (optional) /// #5 - The value to pass in DL/DX/EDX (optional) /// /// The result values of these nodes are: /// /// #0 - The outgoing token chain /// #1 - The first register result value (optional) /// #2 - The second register result value (optional) /// /// The CALL vs TAILCALL distinction boils down to whether the callee is /// known not to modify the caller's stack frame, as is standard with /// LLVM. CALL, TAILCALL, /// RDTSC_DAG - This operation implements the lowering for /// readcyclecounter RDTSC_DAG, /// X86 compare and logical compare instructions. CMP, TEST, COMI, UCOMI, /// X86 SetCC. Operand 1 is condition code, and operand 2 is the flag /// operand produced by a CMP instruction. SETCC, /// X86 conditional moves. Operand 1 and operand 2 are the two values /// to select from (operand 1 is a R/W operand). Operand 3 is the condition /// code, and operand 4 is the flag operand produced by a CMP or TEST /// instruction. It also writes a flag result. CMOV, /// X86 conditional branches. Operand 1 is the chain operand, operand 2 /// is the block to branch if condition is true, operand 3 is the /// condition code, and operand 4 is the flag operand produced by a CMP /// or TEST instruction. BRCOND, /// Return with a flag operand. Operand 1 is the chain operand, operand /// 2 is the number of bytes of stack to pop. RET_FLAG, /// REP_STOS - Repeat fill, corresponds to X86::REP_STOSx. REP_STOS, /// REP_MOVS - Repeat move, corresponds to X86::REP_MOVSx. REP_MOVS, /// LOAD_PACK Load a 128-bit packed float / double value. It has the same /// operands as a normal load. LOAD_PACK, /// GlobalBaseReg - On Darwin, this node represents the result of the popl /// at function entry, used for PIC code. GlobalBaseReg, /// TCPWrapper - A wrapper node for TargetConstantPool, /// TargetExternalSymbol, and TargetGlobalAddress. Wrapper, /// S2VEC - X86 version of SCALAR_TO_VECTOR. The destination base does not /// have to match the operand type. S2VEC, /// PEXTRW - Extract a 16-bit value from a vector and zero extend it to /// i32, corresponds to X86::PEXTRW. PEXTRW, /// PINSRW - Insert the lower 16-bits of a 32-bit value to a vector, /// corresponds to X86::PINSRW. PINSRW }; // X86 specific condition code. These correspond to X86_*_COND in // X86InstrInfo.td. They must be kept in synch. enum CondCode { COND_A = 0, COND_AE = 1, COND_B = 2, COND_BE = 3, COND_E = 4, COND_G = 5, COND_GE = 6, COND_L = 7, COND_LE = 8, COND_NE = 9, COND_NO = 10, COND_NP = 11, COND_NS = 12, COND_O = 13, COND_P = 14, COND_S = 15, COND_INVALID }; } /// Define some predicates that are used for node matching. namespace X86 { /// isPSHUFDMask - Return true if the specified VECTOR_SHUFFLE operand /// specifies a shuffle of elements that is suitable for input to PSHUFD. bool isPSHUFDMask(SDNode *N); /// isPSHUFHWMask - Return true if the specified VECTOR_SHUFFLE operand /// specifies a shuffle of elements that is suitable for input to PSHUFD. bool isPSHUFHWMask(SDNode *N); /// isPSHUFLWMask - Return true if the specified VECTOR_SHUFFLE operand /// specifies a shuffle of elements that is suitable for input to PSHUFD. bool isPSHUFLWMask(SDNode *N); /// isSHUFPMask - Return true if the specified VECTOR_SHUFFLE operand /// specifies a shuffle of elements that is suitable for input to SHUFP*. bool isSHUFPMask(SDNode *N); /// isMOVHLPSMask - Return true if the specified VECTOR_SHUFFLE operand /// specifies a shuffle of elements that is suitable for input to MOVHLPS. bool isMOVHLPSMask(SDNode *N); /// isMOVLPMask - Return true if the specified VECTOR_SHUFFLE operand /// specifies a shuffle of elements that is suitable for input to MOVLP{S|D}. bool isMOVLPMask(SDNode *N); /// isMOVHPMask - Return true if the specified VECTOR_SHUFFLE operand /// specifies a shuffle of elements that is suitable for input to MOVHP{S|D} /// as well as MOVLHPS. bool isMOVHPMask(SDNode *N); /// isUNPCKLMask - Return true if the specified VECTOR_SHUFFLE operand /// specifies a shuffle of elements that is suitable for input to UNPCKL. bool isUNPCKLMask(SDNode *N, bool V2IsSplat = false); /// isUNPCKHMask - Return true if the specified VECTOR_SHUFFLE operand /// specifies a shuffle of elements that is suitable for input to UNPCKH. bool isUNPCKHMask(SDNode *N, bool V2IsSplat = false); /// isUNPCKL_v_undef_Mask - Special case of isUNPCKLMask for canonical form /// of vector_shuffle v, v, <0, 4, 1, 5>, i.e. vector_shuffle v, undef, /// <0, 0, 1, 1> bool isUNPCKL_v_undef_Mask(SDNode *N); /// isMOVLMask - Return true if the specified VECTOR_SHUFFLE operand /// specifies a shuffle of elements that is suitable for input to MOVSS, /// MOVSD, and MOVD, i.e. setting the lowest element. bool isMOVLMask(SDNode *N); /// isMOVSHDUPMask - Return true if the specified VECTOR_SHUFFLE operand /// specifies a shuffle of elements that is suitable for input to MOVSHDUP. bool isMOVSHDUPMask(SDNode *N); /// isMOVSLDUPMask - Return true if the specified VECTOR_SHUFFLE operand /// specifies a shuffle of elements that is suitable for input to MOVSLDUP. bool isMOVSLDUPMask(SDNode *N); /// isSplatMask - Return true if the specified VECTOR_SHUFFLE operand /// specifies a splat of a single element. bool isSplatMask(SDNode *N); /// getShuffleSHUFImmediate - Return the appropriate immediate to shuffle /// the specified isShuffleMask VECTOR_SHUFFLE mask with PSHUF* and SHUFP* /// instructions. unsigned getShuffleSHUFImmediate(SDNode *N); /// getShufflePSHUFHWImmediate - Return the appropriate immediate to shuffle /// the specified isShuffleMask VECTOR_SHUFFLE mask with PSHUFHW /// instructions. unsigned getShufflePSHUFHWImmediate(SDNode *N); /// getShufflePSHUFKWImmediate - Return the appropriate immediate to shuffle /// the specified isShuffleMask VECTOR_SHUFFLE mask with PSHUFLW /// instructions. unsigned getShufflePSHUFLWImmediate(SDNode *N); } //===----------------------------------------------------------------------===// // X86TargetLowering - X86 Implementation of the TargetLowering interface class X86TargetLowering : public TargetLowering { int VarArgsFrameIndex; // FrameIndex for start of varargs area. int ReturnAddrIndex; // FrameIndex for return slot. int BytesToPopOnReturn; // Number of arg bytes ret should pop. int BytesCallerReserves; // Number of arg bytes caller makes. public: X86TargetLowering(TargetMachine &TM); // Return the number of bytes that a function should pop when it returns (in // addition to the space used by the return address). // unsigned getBytesToPopOnReturn() const { return BytesToPopOnReturn; } // Return the number of bytes that the caller reserves for arguments passed // to this function. unsigned getBytesCallerReserves() const { return BytesCallerReserves; } /// LowerOperation - Provide custom lowering hooks for some operations. /// virtual SDOperand LowerOperation(SDOperand Op, SelectionDAG &DAG); virtual std::pair LowerFrameReturnAddress(bool isFrameAddr, SDOperand Chain, unsigned Depth, SelectionDAG &DAG); virtual MachineBasicBlock *InsertAtEndOfBasicBlock(MachineInstr *MI, MachineBasicBlock *MBB); /// getTargetNodeName - This method returns the name of a target specific /// DAG node. virtual const char *getTargetNodeName(unsigned Opcode) const; /// computeMaskedBitsForTargetNode - Determine which of the bits specified /// in Mask are known to be either zero or one and return them in the /// KnownZero/KnownOne bitsets. virtual void computeMaskedBitsForTargetNode(const SDOperand Op, uint64_t Mask, uint64_t &KnownZero, uint64_t &KnownOne, unsigned Depth = 0) const; SDOperand getReturnAddressFrameIndex(SelectionDAG &DAG); std::vector getRegClassForInlineAsmConstraint(const std::string &Constraint, MVT::ValueType VT) const; /// isLegalAddressImmediate - Return true if the integer value or /// GlobalValue can be used as the offset of the target addressing mode. virtual bool isLegalAddressImmediate(int64_t V) const; virtual bool isLegalAddressImmediate(GlobalValue *GV) const; /// isShuffleMaskLegal - Targets can use this to indicate that they only /// support *some* VECTOR_SHUFFLE operations, those with specific masks. /// By default, if a target supports the VECTOR_SHUFFLE node, all mask values /// are assumed to be legal. virtual bool isShuffleMaskLegal(SDOperand Mask, MVT::ValueType VT) const; /// isVectorClearMaskLegal - Similar to isShuffleMaskLegal. This is /// used by Targets can use this to indicate if there is a suitable /// VECTOR_SHUFFLE that can be used to replace a VAND with a constant /// pool entry. virtual bool isVectorClearMaskLegal(std::vector &BVOps, MVT::ValueType EVT, SelectionDAG &DAG) const; private: /// Subtarget - Keep a pointer to the X86Subtarget around so that we can /// make the right decision when generating code for different targets. const X86Subtarget *Subtarget; /// X86ScalarSSE - Select between SSE2 or x87 floating point ops. bool X86ScalarSSE; // C Calling Convention implementation. SDOperand LowerCCCArguments(SDOperand Op, SelectionDAG &DAG); SDOperand LowerCCCCallTo(SDOperand Op, SelectionDAG &DAG); // Fast Calling Convention implementation. SDOperand LowerFastCCArguments(SDOperand Op, SelectionDAG &DAG); SDOperand LowerFastCCCallTo(SDOperand Op, SelectionDAG &DAG); SDOperand LowerBUILD_VECTOR(SDOperand Op, SelectionDAG &DAG); SDOperand LowerVECTOR_SHUFFLE(SDOperand Op, SelectionDAG &DAG); SDOperand LowerEXTRACT_VECTOR_ELT(SDOperand Op, SelectionDAG &DAG); SDOperand LowerINSERT_VECTOR_ELT(SDOperand Op, SelectionDAG &DAG); SDOperand LowerSCALAR_TO_VECTOR(SDOperand Op, SelectionDAG &DAG); SDOperand LowerConstantPool(SDOperand Op, SelectionDAG &DAG); SDOperand LowerGlobalAddress(SDOperand Op, SelectionDAG &DAG); SDOperand LowerExternalSymbol(SDOperand Op, SelectionDAG &DAG); SDOperand LowerShift(SDOperand Op, SelectionDAG &DAG); SDOperand LowerSINT_TO_FP(SDOperand Op, SelectionDAG &DAG); SDOperand LowerFP_TO_SINT(SDOperand Op, SelectionDAG &DAG); SDOperand LowerFABS(SDOperand Op, SelectionDAG &DAG); SDOperand LowerFNEG(SDOperand Op, SelectionDAG &DAG); SDOperand LowerSETCC(SDOperand Op, SelectionDAG &DAG); SDOperand LowerSELECT(SDOperand Op, SelectionDAG &DAG); SDOperand LowerBRCOND(SDOperand Op, SelectionDAG &DAG); SDOperand LowerMEMSET(SDOperand Op, SelectionDAG &DAG); SDOperand LowerMEMCPY(SDOperand Op, SelectionDAG &DAG); SDOperand LowerJumpTable(SDOperand Op, SelectionDAG &DAG); SDOperand LowerCALL(SDOperand Op, SelectionDAG &DAG); SDOperand LowerRET(SDOperand Op, SelectionDAG &DAG); SDOperand LowerFORMAL_ARGUMENTS(SDOperand Op, SelectionDAG &DAG); SDOperand LowerREADCYCLCECOUNTER(SDOperand Op, SelectionDAG &DAG); SDOperand LowerVASTART(SDOperand Op, SelectionDAG &DAG); SDOperand LowerINTRINSIC_WO_CHAIN(SDOperand Op, SelectionDAG &DAG); }; } // FASTCC_NUM_INT_ARGS_INREGS - This is the max number of integer arguments // to pass in registers. 0 is none, 1 is is "use EAX", 2 is "use EAX and // EDX". Anything more is illegal. // // FIXME: The linscan register allocator currently has problem with // coalescing. At the time of this writing, whenever it decides to coalesce // a physreg with a virtreg, this increases the size of the physreg's live // range, and the live range cannot ever be reduced. This causes problems if // too many physregs are coaleced with virtregs, which can cause the register // allocator to wedge itself. // // This code triggers this problem more often if we pass args in registers, // so disable it until this is fixed. // #define FASTCC_NUM_INT_ARGS_INREGS 0 #endif // X86ISELLOWERING_H