//===-- llvm/Target/TargetInstrInfo.h - Instruction Info --------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file was developed by the LLVM research group and is distributed under // the University of Illinois Open Source License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file describes the target machine instructions to the code generator. // //===----------------------------------------------------------------------===// #ifndef LLVM_TARGET_TARGETINSTRINFO_H #define LLVM_TARGET_TARGETINSTRINFO_H #include "llvm/CodeGen/MachineBasicBlock.h" #include "llvm/CodeGen/MachineFunction.h" #include "llvm/Support/DataTypes.h" #include #include namespace llvm { class MachineInstr; class TargetMachine; class MachineCodeForInstruction; class TargetRegisterClass; class LiveVariables; //--------------------------------------------------------------------------- // Data types used to define information about a single machine instruction //--------------------------------------------------------------------------- typedef short MachineOpCode; typedef unsigned InstrSchedClass; //--------------------------------------------------------------------------- // struct TargetInstrDescriptor: // Predefined information about each machine instruction. // Designed to initialized statically. // const unsigned M_BRANCH_FLAG = 1 << 0; const unsigned M_CALL_FLAG = 1 << 1; const unsigned M_RET_FLAG = 1 << 2; const unsigned M_BARRIER_FLAG = 1 << 3; const unsigned M_DELAY_SLOT_FLAG = 1 << 4; const unsigned M_LOAD_FLAG = 1 << 5; const unsigned M_STORE_FLAG = 1 << 6; // M_CONVERTIBLE_TO_3_ADDR - This is a 2-address instruction which can be // changed into a 3-address instruction if the first two operands cannot be // assigned to the same register. The target must implement the // TargetInstrInfo::convertToThreeAddress method for this instruction. const unsigned M_CONVERTIBLE_TO_3_ADDR = 1 << 7; // This M_COMMUTABLE - is a 2- or 3-address instruction (of the form X = op Y, // Z), which produces the same result if Y and Z are exchanged. const unsigned M_COMMUTABLE = 1 << 8; // M_TERMINATOR_FLAG - Is this instruction part of the terminator for a basic // block? Typically this is things like return and branch instructions. // Various passes use this to insert code into the bottom of a basic block, but // before control flow occurs. const unsigned M_TERMINATOR_FLAG = 1 << 9; // M_USES_CUSTOM_DAG_SCHED_INSERTION - Set if this instruction requires custom // insertion support when the DAG scheduler is inserting it into a machine basic // block. const unsigned M_USES_CUSTOM_DAG_SCHED_INSERTION = 1 << 10; // M_VARIABLE_OPS - Set if this instruction can have a variable number of extra // operands in addition to the minimum number operands specified. const unsigned M_VARIABLE_OPS = 1 << 11; // M_PREDICABLE - Set if this instruction has a predicate operand that // controls execution. It may be set to 'always'. const unsigned M_PREDICABLE = 1 << 12; // M_REMATERIALIZIBLE - Set if this instruction can be trivally re-materialized // at any time, e.g. constant generation, load from constant pool. const unsigned M_REMATERIALIZIBLE = 1 << 13; // M_CLOBBERS_PRED - Set if this instruction may clobbers the condition code // register and / or registers that are used to predicate instructions. const unsigned M_CLOBBERS_PRED = 1 << 14; // M_NOT_DUPLICABLE - Set if this instruction cannot be safely duplicated. // (e.g. instructions with unique labels attached). const unsigned M_NOT_DUPLICABLE = 1 << 15; // Machine operand flags // M_LOOK_UP_PTR_REG_CLASS - Set if this operand is a pointer value and it // requires a callback to look up its register class. const unsigned M_LOOK_UP_PTR_REG_CLASS = 1 << 0; /// M_PREDICATE_OPERAND - Set if this is one of the operands that made up of the /// predicate operand that controls an M_PREDICATED instruction. const unsigned M_PREDICATE_OPERAND = 1 << 1; namespace TOI { // Operand constraints: only "tied_to" for now. enum OperandConstraint { TIED_TO = 0 // Must be allocated the same register as. }; } /// TargetOperandInfo - This holds information about one operand of a machine /// instruction, indicating the register class for register operands, etc. /// class TargetOperandInfo { public: /// RegClass - This specifies the register class enumeration of the operand /// if the operand is a register. If not, this contains 0. unsigned short RegClass; unsigned short Flags; /// Lower 16 bits are used to specify which constraints are set. The higher 16 /// bits are used to specify the value of constraints (4 bits each). unsigned int Constraints; /// Currently no other information. }; class TargetInstrDescriptor { public: MachineOpCode Opcode; // The opcode. unsigned short numOperands; // Num of args (may be more if variable_ops). const char * Name; // Assembly language mnemonic for the opcode. InstrSchedClass schedClass; // enum identifying instr sched class unsigned Flags; // flags identifying machine instr class unsigned TSFlags; // Target Specific Flag values const unsigned *ImplicitUses; // Registers implicitly read by this instr const unsigned *ImplicitDefs; // Registers implicitly defined by this instr const TargetOperandInfo *OpInfo; // 'numOperands' entries about operands. /// getOperandConstraint - Returns the value of the specific constraint if /// it is set. Returns -1 if it is not set. int getOperandConstraint(unsigned OpNum, TOI::OperandConstraint Constraint) const { assert((OpNum < numOperands || (Flags & M_VARIABLE_OPS)) && "Invalid operand # of TargetInstrInfo"); if (OpNum < numOperands && (OpInfo[OpNum].Constraints & (1 << Constraint))) { unsigned Pos = 16 + Constraint * 4; return (int)(OpInfo[OpNum].Constraints >> Pos) & 0xf; } return -1; } /// findTiedToSrcOperand - Returns the operand that is tied to the specified /// dest operand. Returns -1 if there isn't one. int findTiedToSrcOperand(unsigned OpNum) const; }; //--------------------------------------------------------------------------- /// /// TargetInstrInfo - Interface to description of machine instructions /// class TargetInstrInfo { const TargetInstrDescriptor* desc; // raw array to allow static init'n unsigned NumOpcodes; // number of entries in the desc array unsigned numRealOpCodes; // number of non-dummy op codes TargetInstrInfo(const TargetInstrInfo &); // DO NOT IMPLEMENT void operator=(const TargetInstrInfo &); // DO NOT IMPLEMENT public: TargetInstrInfo(const TargetInstrDescriptor *desc, unsigned NumOpcodes); virtual ~TargetInstrInfo(); // Invariant opcodes: All instruction sets have these as their low opcodes. enum { PHI = 0, INLINEASM = 1, LABEL = 2 }; unsigned getNumOpcodes() const { return NumOpcodes; } /// get - Return the machine instruction descriptor that corresponds to the /// specified instruction opcode. /// const TargetInstrDescriptor& get(MachineOpCode Opcode) const { assert((unsigned)Opcode < NumOpcodes); return desc[Opcode]; } const char *getName(MachineOpCode Opcode) const { return get(Opcode).Name; } int getNumOperands(MachineOpCode Opcode) const { return get(Opcode).numOperands; } InstrSchedClass getSchedClass(MachineOpCode Opcode) const { return get(Opcode).schedClass; } const unsigned *getImplicitUses(MachineOpCode Opcode) const { return get(Opcode).ImplicitUses; } const unsigned *getImplicitDefs(MachineOpCode Opcode) const { return get(Opcode).ImplicitDefs; } // // Query instruction class flags according to the machine-independent // flags listed above. // bool isReturn(MachineOpCode Opcode) const { return get(Opcode).Flags & M_RET_FLAG; } bool isCommutableInstr(MachineOpCode Opcode) const { return get(Opcode).Flags & M_COMMUTABLE; } bool isTerminatorInstr(MachineOpCode Opcode) const { return get(Opcode).Flags & M_TERMINATOR_FLAG; } bool isBranch(MachineOpCode Opcode) const { return get(Opcode).Flags & M_BRANCH_FLAG; } /// isBarrier - Returns true if the specified instruction stops control flow /// from executing the instruction immediately following it. Examples include /// unconditional branches and return instructions. bool isBarrier(MachineOpCode Opcode) const { return get(Opcode).Flags & M_BARRIER_FLAG; } bool isCall(MachineOpCode Opcode) const { return get(Opcode).Flags & M_CALL_FLAG; } bool isLoad(MachineOpCode Opcode) const { return get(Opcode).Flags & M_LOAD_FLAG; } bool isStore(MachineOpCode Opcode) const { return get(Opcode).Flags & M_STORE_FLAG; } /// hasDelaySlot - Returns true if the specified instruction has a delay slot /// which must be filled by the code generator. bool hasDelaySlot(MachineOpCode Opcode) const { return get(Opcode).Flags & M_DELAY_SLOT_FLAG; } /// usesCustomDAGSchedInsertionHook - Return true if this instruction requires /// custom insertion support when the DAG scheduler is inserting it into a /// machine basic block. bool usesCustomDAGSchedInsertionHook(MachineOpCode Opcode) const { return get(Opcode).Flags & M_USES_CUSTOM_DAG_SCHED_INSERTION; } bool hasVariableOperands(MachineOpCode Opcode) const { return get(Opcode).Flags & M_VARIABLE_OPS; } bool isPredicable(MachineOpCode Opcode) const { return get(Opcode).Flags & M_PREDICABLE; } bool clobbersPredicate(MachineOpCode Opcode) const { return get(Opcode).Flags & M_CLOBBERS_PRED; } bool isNotDuplicable(MachineOpCode Opcode) const { return get(Opcode).Flags & M_NOT_DUPLICABLE; } /// isTriviallyReMaterializable - Return true if the instruction is trivially /// rematerializable, meaning it has no side effects and requires no operands /// that aren't always available. bool isTriviallyReMaterializable(MachineInstr *MI) const { return (MI->getInstrDescriptor()->Flags & M_REMATERIALIZIBLE) && isReallyTriviallyReMaterializable(MI); } protected: /// isReallyTriviallyReMaterializable - For instructions with opcodes for /// which the M_REMATERIALIZABLE flag is set, this function tests whether the /// instruction itself is actually trivially rematerializable, considering /// its operands. This is used for targets that have instructions that are /// only trivially rematerializable for specific uses. This predicate must /// return false if the instruction has any side effects other than /// producing a value, or if it requres any address registers that are not /// always available. virtual bool isReallyTriviallyReMaterializable(MachineInstr *MI) const { return true; } public: /// getOperandConstraint - Returns the value of the specific constraint if /// it is set. Returns -1 if it is not set. int getOperandConstraint(MachineOpCode Opcode, unsigned OpNum, TOI::OperandConstraint Constraint) const { return get(Opcode).getOperandConstraint(OpNum, Constraint); } /// Return true if the instruction is a register to register move /// and leave the source and dest operands in the passed parameters. virtual bool isMoveInstr(const MachineInstr& MI, unsigned& sourceReg, unsigned& destReg) const { return false; } /// isLoadFromStackSlot - If the specified machine instruction is a direct /// load from a stack slot, return the virtual or physical register number of /// the destination along with the FrameIndex of the loaded stack slot. If /// not, return 0. This predicate must return 0 if the instruction has /// any side effects other than loading from the stack slot. virtual unsigned isLoadFromStackSlot(MachineInstr *MI, int &FrameIndex) const{ return 0; } /// isStoreToStackSlot - If the specified machine instruction is a direct /// store to a stack slot, return the virtual or physical register number of /// the source reg along with the FrameIndex of the loaded stack slot. If /// not, return 0. This predicate must return 0 if the instruction has /// any side effects other than storing to the stack slot. virtual unsigned isStoreToStackSlot(MachineInstr *MI, int &FrameIndex) const { return 0; } /// convertToThreeAddress - This method must be implemented by targets that /// set the M_CONVERTIBLE_TO_3_ADDR flag. When this flag is set, the target /// may be able to convert a two-address instruction into one or moretrue /// three-address instructions on demand. This allows the X86 target (for /// example) to convert ADD and SHL instructions into LEA instructions if they /// would require register copies due to two-addressness. /// /// This method returns a null pointer if the transformation cannot be /// performed, otherwise it returns the last new instruction. /// virtual MachineInstr * convertToThreeAddress(MachineFunction::iterator &MFI, MachineBasicBlock::iterator &MBBI, LiveVariables &LV) const { return 0; } /// commuteInstruction - If a target has any instructions that are commutable, /// but require converting to a different instruction or making non-trivial /// changes to commute them, this method can overloaded to do this. The /// default implementation of this method simply swaps the first two operands /// of MI and returns it. /// /// If a target wants to make more aggressive changes, they can construct and /// return a new machine instruction. If an instruction cannot commute, it /// can also return null. /// virtual MachineInstr *commuteInstruction(MachineInstr *MI) const; /// AnalyzeBranch - Analyze the branching code at the end of MBB, returning /// true if it cannot be understood (e.g. it's a switch dispatch or isn't /// implemented for a target). Upon success, this returns false and returns /// with the following information in various cases: /// /// 1. If this block ends with no branches (it just falls through to its succ) /// just return false, leaving TBB/FBB null. /// 2. If this block ends with only an unconditional branch, it sets TBB to be /// the destination block. /// 3. If this block ends with an conditional branch and it falls through to /// an successor block, it sets TBB to be the branch destination block and a /// list of operands that evaluate the condition. These /// operands can be passed to other TargetInstrInfo methods to create new /// branches. /// 4. If this block ends with an conditional branch and an unconditional /// block, it returns the 'true' destination in TBB, the 'false' destination /// in FBB, and a list of operands that evaluate the condition. These /// operands can be passed to other TargetInstrInfo methods to create new /// branches. /// /// Note that RemoveBranch and InsertBranch must be implemented to support /// cases where this method returns success. /// virtual bool AnalyzeBranch(MachineBasicBlock &MBB, MachineBasicBlock *&TBB, MachineBasicBlock *&FBB, std::vector &Cond) const { return true; } /// RemoveBranch - Remove the branching code at the end of the specific MBB. /// this is only invoked in cases where AnalyzeBranch returns success. It /// returns the number of instructions that were removed. virtual unsigned RemoveBranch(MachineBasicBlock &MBB) const { assert(0 && "Target didn't implement TargetInstrInfo::RemoveBranch!"); return 0; } /// InsertBranch - Insert a branch into the end of the specified /// MachineBasicBlock. This operands to this method are the same as those /// returned by AnalyzeBranch. This is invoked in cases where AnalyzeBranch /// returns success and when an unconditional branch (TBB is non-null, FBB is /// null, Cond is empty) needs to be inserted. It returns the number of /// instructions inserted. virtual unsigned InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB, MachineBasicBlock *FBB, const std::vector &Cond) const { assert(0 && "Target didn't implement TargetInstrInfo::InsertBranch!"); return 0; } /// BlockHasNoFallThrough - Return true if the specified block does not /// fall-through into its successor block. This is primarily used when a /// branch is unanalyzable. It is useful for things like unconditional /// indirect branches (jump tables). virtual bool BlockHasNoFallThrough(MachineBasicBlock &MBB) const { return false; } /// ReverseBranchCondition - Reverses the branch condition of the specified /// condition list, returning false on success and true if it cannot be /// reversed. virtual bool ReverseBranchCondition(std::vector &Cond) const { return true; } /// insertNoop - Insert a noop into the instruction stream at the specified /// point. virtual void insertNoop(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI) const { assert(0 && "Target didn't implement insertNoop!"); abort(); } /// isPredicated - Returns true if the instruction is already predicated. /// virtual bool isPredicated(const MachineInstr *MI) const { return false; } /// isUnpredicatedTerminator - Returns true if the instruction is a /// terminator instruction that has not been predicated. virtual bool isUnpredicatedTerminator(const MachineInstr *MI) const; /// PredicateInstruction - Convert the instruction into a predicated /// instruction. It returns true if the operation was successful. virtual bool PredicateInstruction(MachineInstr *MI, const std::vector &Pred) const; /// SubsumesPredicate - Returns true if the first specified predicate /// subsumes the second, e.g. GE subsumes GT. virtual bool SubsumesPredicate(const std::vector &Pred1, const std::vector &Pred2) const { return false; } /// getPointerRegClass - Returns a TargetRegisterClass used for pointer /// values. virtual const TargetRegisterClass *getPointerRegClass() const { assert(0 && "Target didn't implement getPointerRegClass!"); abort(); return 0; // Must return a value in order to compile with VS 2005 } }; } // End llvm namespace #endif