//===-- LegalizeTypes.h - Definition of the DAG Type Legalizer class ------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file defines the DAGTypeLegalizer class. This is a private interface // shared between the code that implements the SelectionDAG::LegalizeTypes // method. // //===----------------------------------------------------------------------===// #ifndef SELECTIONDAG_LEGALIZETYPES_H #define SELECTIONDAG_LEGALIZETYPES_H #define DEBUG_TYPE "legalize-types" #include "llvm/CodeGen/SelectionDAG.h" #include "llvm/Target/TargetLowering.h" #include "llvm/ADT/DenseMap.h" #include "llvm/Support/Compiler.h" #include "llvm/Support/Debug.h" namespace llvm { //===----------------------------------------------------------------------===// /// DAGTypeLegalizer - This takes an arbitrary SelectionDAG as input and hacks /// on it until only value types the target machine can handle are left. This /// involves promoting small sizes to large sizes or splitting up large values /// into small values. /// class VISIBILITY_HIDDEN DAGTypeLegalizer { TargetLowering &TLI; SelectionDAG &DAG; public: // NodeIDFlags - This pass uses the NodeID on the SDNodes to hold information // about the state of the node. The enum has all the values. enum NodeIDFlags { /// ReadyToProcess - All operands have been processed, so this node is ready /// to be handled. ReadyToProcess = 0, /// NewNode - This is a new node that was created in the process of /// legalizing some other node. NewNode = -1, /// Processed - This is a node that has already been processed. Processed = -2 // 1+ - This is a node which has this many unlegalized operands. }; private: enum LegalizeAction { Legal, // The target natively supports this type. PromoteInteger, // Replace this integer type with a larger one. ExpandInteger, // Split this integer type into two of half the size. SoftenFloat, // Convert this float type to a same size integer type. ExpandFloat, // Split this float type into two of half the size. ScalarizeVector, // Replace this one-element vector with its element type. SplitVector // This vector type should be split into smaller vectors. }; /// ValueTypeActions - This is a bitvector that contains two bits for each /// simple value type, where the two bits correspond to the LegalizeAction /// enum from TargetLowering. This can be queried with "getTypeAction(VT)". TargetLowering::ValueTypeActionImpl ValueTypeActions; /// getTypeAction - Return how we should legalize values of this type, either /// it is already legal, or we need to promote it to a larger integer type, or /// we need to expand it into multiple registers of a smaller integer type, or /// we need to split a vector type into smaller vector types, or we need to /// convert it to a different type of the same size. LegalizeAction getTypeAction(MVT VT) const { switch (ValueTypeActions.getTypeAction(VT)) { default: assert(false && "Unknown legalize action!"); case TargetLowering::Legal: return Legal; case TargetLowering::Promote: return PromoteInteger; case TargetLowering::Expand: // Expand can mean // 1) split scalar in half, 2) convert a float to an integer, // 3) scalarize a single-element vector, 4) split a vector in two. if (!VT.isVector()) { if (VT.isInteger()) return ExpandInteger; else if (VT.getSizeInBits() == TLI.getTypeToTransformTo(VT).getSizeInBits()) return SoftenFloat; else return ExpandFloat; } else if (VT.getVectorNumElements() == 1) { return ScalarizeVector; } else { return SplitVector; } } } /// isTypeLegal - Return true if this type is legal on this target. bool isTypeLegal(MVT VT) const { return ValueTypeActions.getTypeAction(VT) == TargetLowering::Legal; } /// IgnoreNodeResults - Pretend all of this node's results are legal. bool IgnoreNodeResults(SDNode *N) const { return N->getOpcode() == ISD::TargetConstant; } /// PromotedIntegers - For integer nodes that are below legal width, this map /// indicates what promoted value to use. DenseMap PromotedIntegers; /// ExpandedIntegers - For integer nodes that need to be expanded this map /// indicates which operands are the expanded version of the input. DenseMap > ExpandedIntegers; /// SoftenedFloats - For floating point nodes converted to integers of /// the same size, this map indicates the converted value to use. DenseMap SoftenedFloats; /// ExpandedFloats - For float nodes that need to be expanded this map /// indicates which operands are the expanded version of the input. DenseMap > ExpandedFloats; /// ScalarizedVectors - For nodes that are <1 x ty>, this map indicates the /// scalar value of type 'ty' to use. DenseMap ScalarizedVectors; /// SplitVectors - For nodes that need to be split this map indicates /// which operands are the expanded version of the input. DenseMap > SplitVectors; /// ReplacedNodes - For nodes that have been replaced with another, /// indicates the replacement node to use. DenseMap ReplacedNodes; /// Worklist - This defines a worklist of nodes to process. In order to be /// pushed onto this worklist, all operands of a node must have already been /// processed. SmallVector Worklist; public: explicit DAGTypeLegalizer(SelectionDAG &dag) : TLI(dag.getTargetLoweringInfo()), DAG(dag), ValueTypeActions(TLI.getValueTypeActions()) { assert(MVT::LAST_VALUETYPE <= 32 && "Too many value types for ValueTypeActions to hold!"); } void run(); /// ReanalyzeNode - Recompute the NodeID and correct processed operands /// for the specified node, adding it to the worklist if ready. SDNode *ReanalyzeNode(SDNode *N) { N->setNodeId(NewNode); return AnalyzeNewNode(N); } void NoteDeletion(SDNode *Old, SDNode *New) { ExpungeNode(Old); ExpungeNode(New); for (unsigned i = 0, e = Old->getNumValues(); i != e; ++i) ReplacedNodes[SDValue(Old, i)] = SDValue(New, i); } private: void AnalyzeNewNode(SDValue &Val); SDNode *AnalyzeNewNode(SDNode *N); void ReplaceValueWith(SDValue From, SDValue To); void ReplaceNodeWith(SDNode *From, SDNode *To); void RemapNode(SDValue &N); void ExpungeNode(SDNode *N); // Common routines. SDValue CreateStackStoreLoad(SDValue Op, MVT DestVT); SDValue MakeLibCall(RTLIB::Libcall LC, MVT RetVT, const SDValue *Ops, unsigned NumOps, bool isSigned); SDValue BitConvertToInteger(SDValue Op); SDValue JoinIntegers(SDValue Lo, SDValue Hi); void SplitInteger(SDValue Op, SDValue &Lo, SDValue &Hi); void SplitInteger(SDValue Op, MVT LoVT, MVT HiVT, SDValue &Lo, SDValue &Hi); SDValue GetVectorElementPointer(SDValue VecPtr, MVT EltVT, SDValue Index); //===--------------------------------------------------------------------===// // Integer Promotion Support: LegalizeIntegerTypes.cpp //===--------------------------------------------------------------------===// SDValue GetPromotedInteger(SDValue Op) { SDValue &PromotedOp = PromotedIntegers[Op]; RemapNode(PromotedOp); assert(PromotedOp.getNode() && "Operand wasn't promoted?"); return PromotedOp; } void SetPromotedInteger(SDValue Op, SDValue Result); /// ZExtPromotedInteger - Get a promoted operand and zero extend it to the /// final size. SDValue ZExtPromotedInteger(SDValue Op) { MVT OldVT = Op.getValueType(); Op = GetPromotedInteger(Op); return DAG.getZeroExtendInReg(Op, OldVT); } // Integer Result Promotion. void PromoteIntegerResult(SDNode *N, unsigned ResNo); SDValue PromoteIntRes_AssertSext(SDNode *N); SDValue PromoteIntRes_AssertZext(SDNode *N); SDValue PromoteIntRes_BIT_CONVERT(SDNode *N); SDValue PromoteIntRes_BSWAP(SDNode *N); SDValue PromoteIntRes_BUILD_PAIR(SDNode *N); SDValue PromoteIntRes_Constant(SDNode *N); SDValue PromoteIntRes_CTLZ(SDNode *N); SDValue PromoteIntRes_CTPOP(SDNode *N); SDValue PromoteIntRes_CTTZ(SDNode *N); SDValue PromoteIntRes_EXTRACT_VECTOR_ELT(SDNode *N); SDValue PromoteIntRes_FP_TO_XINT(SDNode *N); SDValue PromoteIntRes_INT_EXTEND(SDNode *N); SDValue PromoteIntRes_LOAD(LoadSDNode *N); SDValue PromoteIntRes_SDIV(SDNode *N); SDValue PromoteIntRes_SELECT (SDNode *N); SDValue PromoteIntRes_SELECT_CC(SDNode *N); SDValue PromoteIntRes_SETCC(SDNode *N); SDValue PromoteIntRes_SHL(SDNode *N); SDValue PromoteIntRes_SimpleIntBinOp(SDNode *N); SDValue PromoteIntRes_SIGN_EXTEND_INREG(SDNode *N); SDValue PromoteIntRes_SRA(SDNode *N); SDValue PromoteIntRes_SRL(SDNode *N); SDValue PromoteIntRes_TRUNCATE(SDNode *N); SDValue PromoteIntRes_UDIV(SDNode *N); SDValue PromoteIntRes_UNDEF(SDNode *N); SDValue PromoteIntRes_VAARG(SDNode *N); // Integer Operand Promotion. bool PromoteIntegerOperand(SDNode *N, unsigned OperandNo); SDValue PromoteIntOp_ANY_EXTEND(SDNode *N); SDValue PromoteIntOp_BUILD_PAIR(SDNode *N); SDValue PromoteIntOp_BR_CC(SDNode *N, unsigned OpNo); SDValue PromoteIntOp_BRCOND(SDNode *N, unsigned OpNo); SDValue PromoteIntOp_BUILD_VECTOR(SDNode *N); SDValue PromoteIntOp_FP_EXTEND(SDNode *N); SDValue PromoteIntOp_FP_ROUND(SDNode *N); SDValue PromoteIntOp_INT_TO_FP(SDNode *N); SDValue PromoteIntOp_INSERT_VECTOR_ELT(SDNode *N, unsigned OpNo); SDValue PromoteIntOp_MEMBARRIER(SDNode *N); SDValue PromoteIntOp_SELECT(SDNode *N, unsigned OpNo); SDValue PromoteIntOp_SELECT_CC(SDNode *N, unsigned OpNo); SDValue PromoteIntOp_SETCC(SDNode *N, unsigned OpNo); SDValue PromoteIntOp_SIGN_EXTEND(SDNode *N); SDValue PromoteIntOp_STORE(StoreSDNode *N, unsigned OpNo); SDValue PromoteIntOp_TRUNCATE(SDNode *N); SDValue PromoteIntOp_ZERO_EXTEND(SDNode *N); void PromoteSetCCOperands(SDValue &LHS,SDValue &RHS, ISD::CondCode Code); //===--------------------------------------------------------------------===// // Integer Expansion Support: LegalizeIntegerTypes.cpp //===--------------------------------------------------------------------===// void GetExpandedInteger(SDValue Op, SDValue &Lo, SDValue &Hi); void SetExpandedInteger(SDValue Op, SDValue Lo, SDValue Hi); // Integer Result Expansion. void ExpandIntegerResult(SDNode *N, unsigned ResNo); void ExpandIntRes_ANY_EXTEND (SDNode *N, SDValue &Lo, SDValue &Hi); void ExpandIntRes_AssertSext (SDNode *N, SDValue &Lo, SDValue &Hi); void ExpandIntRes_AssertZext (SDNode *N, SDValue &Lo, SDValue &Hi); void ExpandIntRes_Constant (SDNode *N, SDValue &Lo, SDValue &Hi); void ExpandIntRes_CTLZ (SDNode *N, SDValue &Lo, SDValue &Hi); void ExpandIntRes_CTPOP (SDNode *N, SDValue &Lo, SDValue &Hi); void ExpandIntRes_CTTZ (SDNode *N, SDValue &Lo, SDValue &Hi); void ExpandIntRes_LOAD (LoadSDNode *N, SDValue &Lo, SDValue &Hi); void ExpandIntRes_SIGN_EXTEND (SDNode *N, SDValue &Lo, SDValue &Hi); void ExpandIntRes_SIGN_EXTEND_INREG (SDNode *N, SDValue &Lo, SDValue &Hi); void ExpandIntRes_TRUNCATE (SDNode *N, SDValue &Lo, SDValue &Hi); void ExpandIntRes_ZERO_EXTEND (SDNode *N, SDValue &Lo, SDValue &Hi); void ExpandIntRes_FP_TO_SINT (SDNode *N, SDValue &Lo, SDValue &Hi); void ExpandIntRes_FP_TO_UINT (SDNode *N, SDValue &Lo, SDValue &Hi); void ExpandIntRes_Logical (SDNode *N, SDValue &Lo, SDValue &Hi); void ExpandIntRes_ADDSUB (SDNode *N, SDValue &Lo, SDValue &Hi); void ExpandIntRes_ADDSUBC (SDNode *N, SDValue &Lo, SDValue &Hi); void ExpandIntRes_ADDSUBE (SDNode *N, SDValue &Lo, SDValue &Hi); void ExpandIntRes_BSWAP (SDNode *N, SDValue &Lo, SDValue &Hi); void ExpandIntRes_MUL (SDNode *N, SDValue &Lo, SDValue &Hi); void ExpandIntRes_SDIV (SDNode *N, SDValue &Lo, SDValue &Hi); void ExpandIntRes_SREM (SDNode *N, SDValue &Lo, SDValue &Hi); void ExpandIntRes_UDIV (SDNode *N, SDValue &Lo, SDValue &Hi); void ExpandIntRes_UREM (SDNode *N, SDValue &Lo, SDValue &Hi); void ExpandIntRes_Shift (SDNode *N, SDValue &Lo, SDValue &Hi); void ExpandShiftByConstant(SDNode *N, unsigned Amt, SDValue &Lo, SDValue &Hi); bool ExpandShiftWithKnownAmountBit(SDNode *N, SDValue &Lo, SDValue &Hi); // Integer Operand Expansion. bool ExpandIntegerOperand(SDNode *N, unsigned OperandNo); SDValue ExpandIntOp_BIT_CONVERT(SDNode *N); SDValue ExpandIntOp_BR_CC(SDNode *N); SDValue ExpandIntOp_BUILD_VECTOR(SDNode *N); SDValue ExpandIntOp_EXTRACT_ELEMENT(SDNode *N); SDValue ExpandIntOp_SELECT_CC(SDNode *N); SDValue ExpandIntOp_SETCC(SDNode *N); SDValue ExpandIntOp_SINT_TO_FP(SDNode *N); SDValue ExpandIntOp_STORE(StoreSDNode *N, unsigned OpNo); SDValue ExpandIntOp_TRUNCATE(SDNode *N); SDValue ExpandIntOp_UINT_TO_FP(SDNode *N); void IntegerExpandSetCCOperands(SDValue &NewLHS, SDValue &NewRHS, ISD::CondCode &CCCode); //===--------------------------------------------------------------------===// // Float to Integer Conversion Support: LegalizeFloatTypes.cpp //===--------------------------------------------------------------------===// SDValue GetSoftenedFloat(SDValue Op) { SDValue &SoftenedOp = SoftenedFloats[Op]; RemapNode(SoftenedOp); assert(SoftenedOp.getNode() && "Operand wasn't converted to integer?"); return SoftenedOp; } void SetSoftenedFloat(SDValue Op, SDValue Result); // Result Float to Integer Conversion. void SoftenFloatResult(SDNode *N, unsigned OpNo); SDValue SoftenFloatRes_BIT_CONVERT(SDNode *N); SDValue SoftenFloatRes_BUILD_PAIR(SDNode *N); SDValue SoftenFloatRes_ConstantFP(ConstantFPSDNode *N); SDValue SoftenFloatRes_FABS(SDNode *N); SDValue SoftenFloatRes_FADD(SDNode *N); SDValue SoftenFloatRes_FCOPYSIGN(SDNode *N); SDValue SoftenFloatRes_FDIV(SDNode *N); SDValue SoftenFloatRes_FMUL(SDNode *N); SDValue SoftenFloatRes_FP_EXTEND(SDNode *N); SDValue SoftenFloatRes_FP_ROUND(SDNode *N); SDValue SoftenFloatRes_FPOWI(SDNode *N); SDValue SoftenFloatRes_FSUB(SDNode *N); SDValue SoftenFloatRes_LOAD(SDNode *N); SDValue SoftenFloatRes_SELECT(SDNode *N); SDValue SoftenFloatRes_SELECT_CC(SDNode *N); SDValue SoftenFloatRes_SINT_TO_FP(SDNode *N); SDValue SoftenFloatRes_UINT_TO_FP(SDNode *N); // Operand Float to Integer Conversion. bool SoftenFloatOperand(SDNode *N, unsigned OpNo); SDValue SoftenFloatOp_BIT_CONVERT(SDNode *N); SDValue SoftenFloatOp_BR_CC(SDNode *N); SDValue SoftenFloatOp_FP_ROUND(SDNode *N); SDValue SoftenFloatOp_FP_TO_SINT(SDNode *N); SDValue SoftenFloatOp_FP_TO_UINT(SDNode *N); SDValue SoftenFloatOp_SELECT_CC(SDNode *N); SDValue SoftenFloatOp_SETCC(SDNode *N); SDValue SoftenFloatOp_STORE(SDNode *N, unsigned OpNo); void SoftenSetCCOperands(SDValue &NewLHS, SDValue &NewRHS, ISD::CondCode &CCCode); //===--------------------------------------------------------------------===// // Float Expansion Support: LegalizeFloatTypes.cpp //===--------------------------------------------------------------------===// void GetExpandedFloat(SDValue Op, SDValue &Lo, SDValue &Hi); void SetExpandedFloat(SDValue Op, SDValue Lo, SDValue Hi); // Float Result Expansion. void ExpandFloatResult(SDNode *N, unsigned ResNo); void ExpandFloatRes_ConstantFP(SDNode *N, SDValue &Lo, SDValue &Hi); void ExpandFloatRes_FABS (SDNode *N, SDValue &Lo, SDValue &Hi); void ExpandFloatRes_FADD (SDNode *N, SDValue &Lo, SDValue &Hi); void ExpandFloatRes_FDIV (SDNode *N, SDValue &Lo, SDValue &Hi); void ExpandFloatRes_FMUL (SDNode *N, SDValue &Lo, SDValue &Hi); void ExpandFloatRes_FNEG (SDNode *N, SDValue &Lo, SDValue &Hi); void ExpandFloatRes_FP_EXTEND (SDNode *N, SDValue &Lo, SDValue &Hi); void ExpandFloatRes_FSUB (SDNode *N, SDValue &Lo, SDValue &Hi); void ExpandFloatRes_LOAD (SDNode *N, SDValue &Lo, SDValue &Hi); void ExpandFloatRes_XINT_TO_FP(SDNode *N, SDValue &Lo, SDValue &Hi); // Float Operand Expansion. bool ExpandFloatOperand(SDNode *N, unsigned OperandNo); SDValue ExpandFloatOp_BR_CC(SDNode *N); SDValue ExpandFloatOp_FP_ROUND(SDNode *N); SDValue ExpandFloatOp_FP_TO_SINT(SDNode *N); SDValue ExpandFloatOp_FP_TO_UINT(SDNode *N); SDValue ExpandFloatOp_SELECT_CC(SDNode *N); SDValue ExpandFloatOp_SETCC(SDNode *N); SDValue ExpandFloatOp_STORE(SDNode *N, unsigned OpNo); void FloatExpandSetCCOperands(SDValue &NewLHS, SDValue &NewRHS, ISD::CondCode &CCCode); //===--------------------------------------------------------------------===// // Scalarization Support: LegalizeVectorTypes.cpp //===--------------------------------------------------------------------===// SDValue GetScalarizedVector(SDValue Op) { SDValue &ScalarizedOp = ScalarizedVectors[Op]; RemapNode(ScalarizedOp); assert(ScalarizedOp.getNode() && "Operand wasn't scalarized?"); return ScalarizedOp; } void SetScalarizedVector(SDValue Op, SDValue Result); // Vector Result Scalarization: <1 x ty> -> ty. void ScalarizeVectorResult(SDNode *N, unsigned OpNo); SDValue ScalarizeVecRes_BinOp(SDNode *N); SDValue ScalarizeVecRes_UnaryOp(SDNode *N); SDValue ScalarizeVecRes_BIT_CONVERT(SDNode *N); SDValue ScalarizeVecRes_FPOWI(SDNode *N); SDValue ScalarizeVecRes_INSERT_VECTOR_ELT(SDNode *N); SDValue ScalarizeVecRes_LOAD(LoadSDNode *N); SDValue ScalarizeVecRes_SELECT(SDNode *N); SDValue ScalarizeVecRes_UNDEF(SDNode *N); SDValue ScalarizeVecRes_VECTOR_SHUFFLE(SDNode *N); SDValue ScalarizeVecRes_VSETCC(SDNode *N); // Vector Operand Scalarization: <1 x ty> -> ty. bool ScalarizeVectorOperand(SDNode *N, unsigned OpNo); SDValue ScalarizeVecOp_BIT_CONVERT(SDNode *N); SDValue ScalarizeVecOp_EXTRACT_VECTOR_ELT(SDNode *N); SDValue ScalarizeVecOp_STORE(StoreSDNode *N, unsigned OpNo); //===--------------------------------------------------------------------===// // Vector Splitting Support: LegalizeVectorTypes.cpp //===--------------------------------------------------------------------===// void GetSplitVector(SDValue Op, SDValue &Lo, SDValue &Hi); void SetSplitVector(SDValue Op, SDValue Lo, SDValue Hi); // Vector Result Splitting: <128 x ty> -> 2 x <64 x ty>. void SplitVectorResult(SDNode *N, unsigned OpNo); void SplitVecRes_BinOp(SDNode *N, SDValue &Lo, SDValue &Hi); void SplitVecRes_UnaryOp(SDNode *N, SDValue &Lo, SDValue &Hi); void SplitVecRes_BIT_CONVERT(SDNode *N, SDValue &Lo, SDValue &Hi); void SplitVecRes_BUILD_PAIR(SDNode *N, SDValue &Lo, SDValue &Hi); void SplitVecRes_BUILD_VECTOR(SDNode *N, SDValue &Lo, SDValue &Hi); void SplitVecRes_CONCAT_VECTORS(SDNode *N, SDValue &Lo, SDValue &Hi); void SplitVecRes_FPOWI(SDNode *N, SDValue &Lo, SDValue &Hi); void SplitVecRes_INSERT_VECTOR_ELT(SDNode *N, SDValue &Lo, SDValue &Hi); void SplitVecRes_LOAD(LoadSDNode *N, SDValue &Lo, SDValue &Hi); void SplitVecRes_UNDEF(SDNode *N, SDValue &Lo, SDValue &Hi); void SplitVecRes_VECTOR_SHUFFLE(SDNode *N, SDValue &Lo, SDValue &Hi); void SplitVecRes_VSETCC(SDNode *N, SDValue &Lo, SDValue &Hi); // Vector Operand Splitting: <128 x ty> -> 2 x <64 x ty>. bool SplitVectorOperand(SDNode *N, unsigned OpNo); SDValue SplitVecOp_BIT_CONVERT(SDNode *N); SDValue SplitVecOp_EXTRACT_SUBVECTOR(SDNode *N); SDValue SplitVecOp_EXTRACT_VECTOR_ELT(SDNode *N); SDValue SplitVecOp_STORE(StoreSDNode *N, unsigned OpNo); SDValue SplitVecOp_VECTOR_SHUFFLE(SDNode *N, unsigned OpNo); //===--------------------------------------------------------------------===// // Generic Splitting: LegalizeTypesGeneric.cpp //===--------------------------------------------------------------------===// // Legalization methods which only use that the illegal type is split into two // not necessarily identical types. As such they can be used for splitting // vectors and expanding integers and floats. void GetSplitOp(SDValue Op, SDValue &Lo, SDValue &Hi) { if (Op.getValueType().isVector()) GetSplitVector(Op, Lo, Hi); else if (Op.getValueType().isInteger()) GetExpandedInteger(Op, Lo, Hi); else GetExpandedFloat(Op, Lo, Hi); } /// GetSplitDestVTs - Compute the VTs needed for the low/hi parts of a type /// which is split (or expanded) into two not necessarily identical pieces. void GetSplitDestVTs(MVT InVT, MVT &LoVT, MVT &HiVT); // Generic Result Splitting. void SplitRes_MERGE_VALUES(SDNode *N, SDValue &Lo, SDValue &Hi); void SplitRes_SELECT (SDNode *N, SDValue &Lo, SDValue &Hi); void SplitRes_SELECT_CC (SDNode *N, SDValue &Lo, SDValue &Hi); void SplitRes_UNDEF (SDNode *N, SDValue &Lo, SDValue &Hi); //===--------------------------------------------------------------------===// // Generic Expansion: LegalizeTypesGeneric.cpp //===--------------------------------------------------------------------===// // Legalization methods which only use that the illegal type is split into two // identical types of half the size, and that the Lo/Hi part is stored first // in memory on little/big-endian machines, followed by the Hi/Lo part. As // such they can be used for expanding integers and floats. void GetExpandedOp(SDValue Op, SDValue &Lo, SDValue &Hi) { if (Op.getValueType().isInteger()) GetExpandedInteger(Op, Lo, Hi); else GetExpandedFloat(Op, Lo, Hi); } // Generic Result Expansion. void ExpandRes_BIT_CONVERT (SDNode *N, SDValue &Lo, SDValue &Hi); void ExpandRes_BUILD_PAIR (SDNode *N, SDValue &Lo, SDValue &Hi); void ExpandRes_EXTRACT_ELEMENT (SDNode *N, SDValue &Lo, SDValue &Hi); void ExpandRes_EXTRACT_VECTOR_ELT(SDNode *N, SDValue &Lo, SDValue &Hi); void ExpandRes_NormalLoad (SDNode *N, SDValue &Lo, SDValue &Hi); // Generic Operand Expansion. SDValue ExpandOp_BIT_CONVERT (SDNode *N); SDValue ExpandOp_BUILD_VECTOR (SDNode *N); SDValue ExpandOp_EXTRACT_ELEMENT(SDNode *N); SDValue ExpandOp_NormalStore (SDNode *N, unsigned OpNo); }; } // end namespace llvm. #endif