//===- llvm/Analysis/ScalarEvolutionExpressions.h - SCEV Exprs --*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file defines the classes used to represent and build scalar expressions. // //===----------------------------------------------------------------------===// #ifndef LLVM_ANALYSIS_SCALAREVOLUTIONEXPRESSIONS_H #define LLVM_ANALYSIS_SCALAREVOLUTIONEXPRESSIONS_H #include "llvm/ADT/iterator_range.h" #include "llvm/ADT/SmallPtrSet.h" #include "llvm/Analysis/ScalarEvolution.h" #include "llvm/Support/ErrorHandling.h" namespace llvm { class ConstantInt; class ConstantRange; class DominatorTree; enum SCEVTypes { // These should be ordered in terms of increasing complexity to make the // folders simpler. scConstant, scTruncate, scZeroExtend, scSignExtend, scAddExpr, scMulExpr, scUDivExpr, scAddRecExpr, scUMaxExpr, scSMaxExpr, scUnknown, scCouldNotCompute }; //===--------------------------------------------------------------------===// /// SCEVConstant - This class represents a constant integer value. /// class SCEVConstant : public SCEV { friend class ScalarEvolution; ConstantInt *V; SCEVConstant(const FoldingSetNodeIDRef ID, ConstantInt *v) : SCEV(ID, scConstant), V(v) {} public: ConstantInt *getValue() const { return V; } Type *getType() const { return V->getType(); } /// Methods for support type inquiry through isa, cast, and dyn_cast: static inline bool classof(const SCEV *S) { return S->getSCEVType() == scConstant; } }; //===--------------------------------------------------------------------===// /// SCEVCastExpr - This is the base class for unary cast operator classes. /// class SCEVCastExpr : public SCEV { protected: const SCEV *Op; Type *Ty; SCEVCastExpr(const FoldingSetNodeIDRef ID, unsigned SCEVTy, const SCEV *op, Type *ty); public: const SCEV *getOperand() const { return Op; } Type *getType() const { return Ty; } /// Methods for support type inquiry through isa, cast, and dyn_cast: static inline bool classof(const SCEV *S) { return S->getSCEVType() == scTruncate || S->getSCEVType() == scZeroExtend || S->getSCEVType() == scSignExtend; } }; //===--------------------------------------------------------------------===// /// SCEVTruncateExpr - This class represents a truncation of an integer value /// to a smaller integer value. /// class SCEVTruncateExpr : public SCEVCastExpr { friend class ScalarEvolution; SCEVTruncateExpr(const FoldingSetNodeIDRef ID, const SCEV *op, Type *ty); public: /// Methods for support type inquiry through isa, cast, and dyn_cast: static inline bool classof(const SCEV *S) { return S->getSCEVType() == scTruncate; } }; //===--------------------------------------------------------------------===// /// SCEVZeroExtendExpr - This class represents a zero extension of a small /// integer value to a larger integer value. /// class SCEVZeroExtendExpr : public SCEVCastExpr { friend class ScalarEvolution; SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID, const SCEV *op, Type *ty); public: /// Methods for support type inquiry through isa, cast, and dyn_cast: static inline bool classof(const SCEV *S) { return S->getSCEVType() == scZeroExtend; } }; //===--------------------------------------------------------------------===// /// SCEVSignExtendExpr - This class represents a sign extension of a small /// integer value to a larger integer value. /// class SCEVSignExtendExpr : public SCEVCastExpr { friend class ScalarEvolution; SCEVSignExtendExpr(const FoldingSetNodeIDRef ID, const SCEV *op, Type *ty); public: /// Methods for support type inquiry through isa, cast, and dyn_cast: static inline bool classof(const SCEV *S) { return S->getSCEVType() == scSignExtend; } }; //===--------------------------------------------------------------------===// /// SCEVNAryExpr - This node is a base class providing common /// functionality for n'ary operators. /// class SCEVNAryExpr : public SCEV { protected: // Since SCEVs are immutable, ScalarEvolution allocates operand // arrays with its SCEVAllocator, so this class just needs a simple // pointer rather than a more elaborate vector-like data structure. // This also avoids the need for a non-trivial destructor. const SCEV *const *Operands; size_t NumOperands; SCEVNAryExpr(const FoldingSetNodeIDRef ID, enum SCEVTypes T, const SCEV *const *O, size_t N) : SCEV(ID, T), Operands(O), NumOperands(N) {} public: size_t getNumOperands() const { return NumOperands; } const SCEV *getOperand(unsigned i) const { assert(i < NumOperands && "Operand index out of range!"); return Operands[i]; } typedef const SCEV *const *op_iterator; typedef iterator_range op_range; op_iterator op_begin() const { return Operands; } op_iterator op_end() const { return Operands + NumOperands; } op_range operands() const { return make_range(op_begin(), op_end()); } Type *getType() const { return getOperand(0)->getType(); } NoWrapFlags getNoWrapFlags(NoWrapFlags Mask = NoWrapMask) const { return (NoWrapFlags)(SubclassData & Mask); } /// Methods for support type inquiry through isa, cast, and dyn_cast: static inline bool classof(const SCEV *S) { return S->getSCEVType() == scAddExpr || S->getSCEVType() == scMulExpr || S->getSCEVType() == scSMaxExpr || S->getSCEVType() == scUMaxExpr || S->getSCEVType() == scAddRecExpr; } }; //===--------------------------------------------------------------------===// /// SCEVCommutativeExpr - This node is the base class for n'ary commutative /// operators. /// class SCEVCommutativeExpr : public SCEVNAryExpr { protected: SCEVCommutativeExpr(const FoldingSetNodeIDRef ID, enum SCEVTypes T, const SCEV *const *O, size_t N) : SCEVNAryExpr(ID, T, O, N) {} public: /// Methods for support type inquiry through isa, cast, and dyn_cast: static inline bool classof(const SCEV *S) { return S->getSCEVType() == scAddExpr || S->getSCEVType() == scMulExpr || S->getSCEVType() == scSMaxExpr || S->getSCEVType() == scUMaxExpr; } /// Set flags for a non-recurrence without clearing previously set flags. void setNoWrapFlags(NoWrapFlags Flags) { SubclassData |= Flags; } }; //===--------------------------------------------------------------------===// /// SCEVAddExpr - This node represents an addition of some number of SCEVs. /// class SCEVAddExpr : public SCEVCommutativeExpr { friend class ScalarEvolution; SCEVAddExpr(const FoldingSetNodeIDRef ID, const SCEV *const *O, size_t N) : SCEVCommutativeExpr(ID, scAddExpr, O, N) { } public: Type *getType() const { // Use the type of the last operand, which is likely to be a pointer // type, if there is one. This doesn't usually matter, but it can help // reduce casts when the expressions are expanded. return getOperand(getNumOperands() - 1)->getType(); } /// Methods for support type inquiry through isa, cast, and dyn_cast: static inline bool classof(const SCEV *S) { return S->getSCEVType() == scAddExpr; } }; //===--------------------------------------------------------------------===// /// SCEVMulExpr - This node represents multiplication of some number of SCEVs. /// class SCEVMulExpr : public SCEVCommutativeExpr { friend class ScalarEvolution; SCEVMulExpr(const FoldingSetNodeIDRef ID, const SCEV *const *O, size_t N) : SCEVCommutativeExpr(ID, scMulExpr, O, N) { } public: /// Methods for support type inquiry through isa, cast, and dyn_cast: static inline bool classof(const SCEV *S) { return S->getSCEVType() == scMulExpr; } }; //===--------------------------------------------------------------------===// /// SCEVUDivExpr - This class represents a binary unsigned division operation. /// class SCEVUDivExpr : public SCEV { friend class ScalarEvolution; const SCEV *LHS; const SCEV *RHS; SCEVUDivExpr(const FoldingSetNodeIDRef ID, const SCEV *lhs, const SCEV *rhs) : SCEV(ID, scUDivExpr), LHS(lhs), RHS(rhs) {} public: const SCEV *getLHS() const { return LHS; } const SCEV *getRHS() const { return RHS; } Type *getType() const { // In most cases the types of LHS and RHS will be the same, but in some // crazy cases one or the other may be a pointer. ScalarEvolution doesn't // depend on the type for correctness, but handling types carefully can // avoid extra casts in the SCEVExpander. The LHS is more likely to be // a pointer type than the RHS, so use the RHS' type here. return getRHS()->getType(); } /// Methods for support type inquiry through isa, cast, and dyn_cast: static inline bool classof(const SCEV *S) { return S->getSCEVType() == scUDivExpr; } }; //===--------------------------------------------------------------------===// /// SCEVAddRecExpr - This node represents a polynomial recurrence on the trip /// count of the specified loop. This is the primary focus of the /// ScalarEvolution framework; all the other SCEV subclasses are mostly just /// supporting infrastructure to allow SCEVAddRecExpr expressions to be /// created and analyzed. /// /// All operands of an AddRec are required to be loop invariant. /// class SCEVAddRecExpr : public SCEVNAryExpr { friend class ScalarEvolution; const Loop *L; SCEVAddRecExpr(const FoldingSetNodeIDRef ID, const SCEV *const *O, size_t N, const Loop *l) : SCEVNAryExpr(ID, scAddRecExpr, O, N), L(l) {} public: const SCEV *getStart() const { return Operands[0]; } const Loop *getLoop() const { return L; } /// getStepRecurrence - This method constructs and returns the recurrence /// indicating how much this expression steps by. If this is a polynomial /// of degree N, it returns a chrec of degree N-1. /// We cannot determine whether the step recurrence has self-wraparound. const SCEV *getStepRecurrence(ScalarEvolution &SE) const { if (isAffine()) return getOperand(1); return SE.getAddRecExpr(SmallVector(op_begin()+1, op_end()), getLoop(), FlagAnyWrap); } /// isAffine - Return true if this is an affine AddRec (i.e., it represents /// an expressions A+B*x where A and B are loop invariant values. bool isAffine() const { // We know that the start value is invariant. This expression is thus // affine iff the step is also invariant. return getNumOperands() == 2; } /// isQuadratic - Return true if this is an quadratic AddRec (i.e., it /// represents an expressions A+B*x+C*x^2 where A, B and C are loop /// invariant values. This corresponds to an addrec of the form {L,+,M,+,N} bool isQuadratic() const { return getNumOperands() == 3; } /// Set flags for a recurrence without clearing any previously set flags. /// For AddRec, either NUW or NSW implies NW. Keep track of this fact here /// to make it easier to propagate flags. void setNoWrapFlags(NoWrapFlags Flags) { if (Flags & (FlagNUW | FlagNSW)) Flags = ScalarEvolution::setFlags(Flags, FlagNW); SubclassData |= Flags; } /// evaluateAtIteration - Return the value of this chain of recurrences at /// the specified iteration number. const SCEV *evaluateAtIteration(const SCEV *It, ScalarEvolution &SE) const; /// getNumIterationsInRange - Return the number of iterations of this loop /// that produce values in the specified constant range. Another way of /// looking at this is that it returns the first iteration number where the /// value is not in the condition, thus computing the exit count. If the /// iteration count can't be computed, an instance of SCEVCouldNotCompute is /// returned. const SCEV *getNumIterationsInRange(ConstantRange Range, ScalarEvolution &SE) const; /// getPostIncExpr - Return an expression representing the value of /// this expression one iteration of the loop ahead. const SCEVAddRecExpr *getPostIncExpr(ScalarEvolution &SE) const { return cast(SE.getAddExpr(this, getStepRecurrence(SE))); } /// Methods for support type inquiry through isa, cast, and dyn_cast: static inline bool classof(const SCEV *S) { return S->getSCEVType() == scAddRecExpr; } /// Collect parametric terms occurring in step expressions. void collectParametricTerms(ScalarEvolution &SE, SmallVectorImpl &Terms) const; /// Compute the array dimensions Sizes from the set of Terms extracted from /// the memory access function of this SCEVAddRecExpr. void findArrayDimensions(ScalarEvolution &SE, SmallVectorImpl &Terms, SmallVectorImpl &Sizes) const; /// Return in Subscripts the access functions for each dimension in Sizes. const SCEV * computeAccessFunctions(ScalarEvolution &SE, SmallVectorImpl &Subscripts, SmallVectorImpl &Sizes) const; /// Split this SCEVAddRecExpr into two vectors of SCEVs representing the /// subscripts and sizes of an array access. Returns the remainder of the /// delinearization that is the offset start of the array. /// /// The delinearization is a 3 step process: the first two steps compute the /// sizes of each subscript and the third step computes the access functions /// for the delinearized array: /// /// 1. Find the terms in the step functions /// 2. Compute the array size /// 3. Compute the access function: divide the SCEV by the array size /// starting with the innermost dimensions found in step 2. The Quotient /// is the SCEV to be divided in the next step of the recursion. The /// Remainder is the subscript of the innermost dimension. Loop over all /// array dimensions computed in step 2. /// /// To compute a uniform array size for several memory accesses to the same /// object, one can collect in step 1 all the step terms for all the memory /// accesses, and compute in step 2 a unique array shape. This guarantees /// that the array shape will be the same across all memory accesses. /// /// FIXME: We could derive the result of steps 1 and 2 from a description of /// the array shape given in metadata. /// /// Example: /// /// A[][n][m] /// /// for i /// for j /// for k /// A[j+k][2i][5i] = /// /// The initial SCEV: /// /// A[{{{0,+,2*m+5}_i, +, n*m}_j, +, n*m}_k] /// /// 1. Find the different terms in the step functions: /// -> [2*m, 5, n*m, n*m] /// /// 2. Compute the array size: sort and unique them /// -> [n*m, 2*m, 5] /// find the GCD of all the terms = 1 /// divide by the GCD and erase constant terms /// -> [n*m, 2*m] /// GCD = m /// divide by GCD -> [n, 2] /// remove constant terms /// -> [n] /// size of the array is A[unknown][n][m] /// /// 3. Compute the access function /// a. Divide {{{0,+,2*m+5}_i, +, n*m}_j, +, n*m}_k by the innermost size m /// Quotient: {{{0,+,2}_i, +, n}_j, +, n}_k /// Remainder: {{{0,+,5}_i, +, 0}_j, +, 0}_k /// The remainder is the subscript of the innermost array dimension: [5i]. /// /// b. Divide Quotient: {{{0,+,2}_i, +, n}_j, +, n}_k by next outer size n /// Quotient: {{{0,+,0}_i, +, 1}_j, +, 1}_k /// Remainder: {{{0,+,2}_i, +, 0}_j, +, 0}_k /// The Remainder is the subscript of the next array dimension: [2i]. /// /// The subscript of the outermost dimension is the Quotient: [j+k]. /// /// Overall, we have: A[][n][m], and the access function: A[j+k][2i][5i]. const SCEV *delinearize(ScalarEvolution &SE, SmallVectorImpl &Subscripts, SmallVectorImpl &Sizes) const; }; //===--------------------------------------------------------------------===// /// SCEVSMaxExpr - This class represents a signed maximum selection. /// class SCEVSMaxExpr : public SCEVCommutativeExpr { friend class ScalarEvolution; SCEVSMaxExpr(const FoldingSetNodeIDRef ID, const SCEV *const *O, size_t N) : SCEVCommutativeExpr(ID, scSMaxExpr, O, N) { // Max never overflows. setNoWrapFlags((NoWrapFlags)(FlagNUW | FlagNSW)); } public: /// Methods for support type inquiry through isa, cast, and dyn_cast: static inline bool classof(const SCEV *S) { return S->getSCEVType() == scSMaxExpr; } }; //===--------------------------------------------------------------------===// /// SCEVUMaxExpr - This class represents an unsigned maximum selection. /// class SCEVUMaxExpr : public SCEVCommutativeExpr { friend class ScalarEvolution; SCEVUMaxExpr(const FoldingSetNodeIDRef ID, const SCEV *const *O, size_t N) : SCEVCommutativeExpr(ID, scUMaxExpr, O, N) { // Max never overflows. setNoWrapFlags((NoWrapFlags)(FlagNUW | FlagNSW)); } public: /// Methods for support type inquiry through isa, cast, and dyn_cast: static inline bool classof(const SCEV *S) { return S->getSCEVType() == scUMaxExpr; } }; //===--------------------------------------------------------------------===// /// SCEVUnknown - This means that we are dealing with an entirely unknown SCEV /// value, and only represent it as its LLVM Value. This is the "bottom" /// value for the analysis. /// class SCEVUnknown : public SCEV, private CallbackVH { friend class ScalarEvolution; // Implement CallbackVH. void deleted() override; void allUsesReplacedWith(Value *New) override; /// SE - The parent ScalarEvolution value. This is used to update /// the parent's maps when the value associated with a SCEVUnknown /// is deleted or RAUW'd. ScalarEvolution *SE; /// Next - The next pointer in the linked list of all /// SCEVUnknown instances owned by a ScalarEvolution. SCEVUnknown *Next; SCEVUnknown(const FoldingSetNodeIDRef ID, Value *V, ScalarEvolution *se, SCEVUnknown *next) : SCEV(ID, scUnknown), CallbackVH(V), SE(se), Next(next) {} public: Value *getValue() const { return getValPtr(); } /// isSizeOf, isAlignOf, isOffsetOf - Test whether this is a special /// constant representing a type size, alignment, or field offset in /// a target-independent manner, and hasn't happened to have been /// folded with other operations into something unrecognizable. This /// is mainly only useful for pretty-printing and other situations /// where it isn't absolutely required for these to succeed. bool isSizeOf(Type *&AllocTy) const; bool isAlignOf(Type *&AllocTy) const; bool isOffsetOf(Type *&STy, Constant *&FieldNo) const; Type *getType() const { return getValPtr()->getType(); } /// Methods for support type inquiry through isa, cast, and dyn_cast: static inline bool classof(const SCEV *S) { return S->getSCEVType() == scUnknown; } }; /// SCEVVisitor - This class defines a simple visitor class that may be used /// for various SCEV analysis purposes. template struct SCEVVisitor { RetVal visit(const SCEV *S) { switch (S->getSCEVType()) { case scConstant: return ((SC*)this)->visitConstant((const SCEVConstant*)S); case scTruncate: return ((SC*)this)->visitTruncateExpr((const SCEVTruncateExpr*)S); case scZeroExtend: return ((SC*)this)->visitZeroExtendExpr((const SCEVZeroExtendExpr*)S); case scSignExtend: return ((SC*)this)->visitSignExtendExpr((const SCEVSignExtendExpr*)S); case scAddExpr: return ((SC*)this)->visitAddExpr((const SCEVAddExpr*)S); case scMulExpr: return ((SC*)this)->visitMulExpr((const SCEVMulExpr*)S); case scUDivExpr: return ((SC*)this)->visitUDivExpr((const SCEVUDivExpr*)S); case scAddRecExpr: return ((SC*)this)->visitAddRecExpr((const SCEVAddRecExpr*)S); case scSMaxExpr: return ((SC*)this)->visitSMaxExpr((const SCEVSMaxExpr*)S); case scUMaxExpr: return ((SC*)this)->visitUMaxExpr((const SCEVUMaxExpr*)S); case scUnknown: return ((SC*)this)->visitUnknown((const SCEVUnknown*)S); case scCouldNotCompute: return ((SC*)this)->visitCouldNotCompute((const SCEVCouldNotCompute*)S); default: llvm_unreachable("Unknown SCEV type!"); } } RetVal visitCouldNotCompute(const SCEVCouldNotCompute *S) { llvm_unreachable("Invalid use of SCEVCouldNotCompute!"); } }; /// Visit all nodes in the expression tree using worklist traversal. /// /// Visitor implements: /// // return true to follow this node. /// bool follow(const SCEV *S); /// // return true to terminate the search. /// bool isDone(); template class SCEVTraversal { SV &Visitor; SmallVector Worklist; SmallPtrSet Visited; void push(const SCEV *S) { if (Visited.insert(S) && Visitor.follow(S)) Worklist.push_back(S); } public: SCEVTraversal(SV& V): Visitor(V) {} void visitAll(const SCEV *Root) { push(Root); while (!Worklist.empty() && !Visitor.isDone()) { const SCEV *S = Worklist.pop_back_val(); switch (S->getSCEVType()) { case scConstant: case scUnknown: break; case scTruncate: case scZeroExtend: case scSignExtend: push(cast(S)->getOperand()); break; case scAddExpr: case scMulExpr: case scSMaxExpr: case scUMaxExpr: case scAddRecExpr: { const SCEVNAryExpr *NAry = cast(S); for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end(); I != E; ++I) { push(*I); } break; } case scUDivExpr: { const SCEVUDivExpr *UDiv = cast(S); push(UDiv->getLHS()); push(UDiv->getRHS()); break; } case scCouldNotCompute: llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); default: llvm_unreachable("Unknown SCEV kind!"); } } } }; /// Use SCEVTraversal to visit all nodes in the givien expression tree. template void visitAll(const SCEV *Root, SV& Visitor) { SCEVTraversal T(Visitor); T.visitAll(Root); } typedef DenseMap ValueToValueMap; /// The SCEVParameterRewriter takes a scalar evolution expression and updates /// the SCEVUnknown components following the Map (Value -> Value). struct SCEVParameterRewriter : public SCEVVisitor { public: static const SCEV *rewrite(const SCEV *Scev, ScalarEvolution &SE, ValueToValueMap &Map, bool InterpretConsts = false) { SCEVParameterRewriter Rewriter(SE, Map, InterpretConsts); return Rewriter.visit(Scev); } SCEVParameterRewriter(ScalarEvolution &S, ValueToValueMap &M, bool C) : SE(S), Map(M), InterpretConsts(C) {} const SCEV *visitConstant(const SCEVConstant *Constant) { return Constant; } const SCEV *visitTruncateExpr(const SCEVTruncateExpr *Expr) { const SCEV *Operand = visit(Expr->getOperand()); return SE.getTruncateExpr(Operand, Expr->getType()); } const SCEV *visitZeroExtendExpr(const SCEVZeroExtendExpr *Expr) { const SCEV *Operand = visit(Expr->getOperand()); return SE.getZeroExtendExpr(Operand, Expr->getType()); } const SCEV *visitSignExtendExpr(const SCEVSignExtendExpr *Expr) { const SCEV *Operand = visit(Expr->getOperand()); return SE.getSignExtendExpr(Operand, Expr->getType()); } const SCEV *visitAddExpr(const SCEVAddExpr *Expr) { SmallVector Operands; for (int i = 0, e = Expr->getNumOperands(); i < e; ++i) Operands.push_back(visit(Expr->getOperand(i))); return SE.getAddExpr(Operands); } const SCEV *visitMulExpr(const SCEVMulExpr *Expr) { SmallVector Operands; for (int i = 0, e = Expr->getNumOperands(); i < e; ++i) Operands.push_back(visit(Expr->getOperand(i))); return SE.getMulExpr(Operands); } const SCEV *visitUDivExpr(const SCEVUDivExpr *Expr) { return SE.getUDivExpr(visit(Expr->getLHS()), visit(Expr->getRHS())); } const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) { SmallVector Operands; for (int i = 0, e = Expr->getNumOperands(); i < e; ++i) Operands.push_back(visit(Expr->getOperand(i))); return SE.getAddRecExpr(Operands, Expr->getLoop(), Expr->getNoWrapFlags()); } const SCEV *visitSMaxExpr(const SCEVSMaxExpr *Expr) { SmallVector Operands; for (int i = 0, e = Expr->getNumOperands(); i < e; ++i) Operands.push_back(visit(Expr->getOperand(i))); return SE.getSMaxExpr(Operands); } const SCEV *visitUMaxExpr(const SCEVUMaxExpr *Expr) { SmallVector Operands; for (int i = 0, e = Expr->getNumOperands(); i < e; ++i) Operands.push_back(visit(Expr->getOperand(i))); return SE.getUMaxExpr(Operands); } const SCEV *visitUnknown(const SCEVUnknown *Expr) { Value *V = Expr->getValue(); if (Map.count(V)) { Value *NV = Map[V]; if (InterpretConsts && isa(NV)) return SE.getConstant(cast(NV)); return SE.getUnknown(NV); } return Expr; } const SCEV *visitCouldNotCompute(const SCEVCouldNotCompute *Expr) { return Expr; } private: ScalarEvolution &SE; ValueToValueMap ⤅ bool InterpretConsts; }; typedef DenseMap LoopToScevMapT; /// The SCEVApplyRewriter takes a scalar evolution expression and applies /// the Map (Loop -> SCEV) to all AddRecExprs. struct SCEVApplyRewriter : public SCEVVisitor { public: static const SCEV *rewrite(const SCEV *Scev, LoopToScevMapT &Map, ScalarEvolution &SE) { SCEVApplyRewriter Rewriter(SE, Map); return Rewriter.visit(Scev); } SCEVApplyRewriter(ScalarEvolution &S, LoopToScevMapT &M) : SE(S), Map(M) {} const SCEV *visitConstant(const SCEVConstant *Constant) { return Constant; } const SCEV *visitTruncateExpr(const SCEVTruncateExpr *Expr) { const SCEV *Operand = visit(Expr->getOperand()); return SE.getTruncateExpr(Operand, Expr->getType()); } const SCEV *visitZeroExtendExpr(const SCEVZeroExtendExpr *Expr) { const SCEV *Operand = visit(Expr->getOperand()); return SE.getZeroExtendExpr(Operand, Expr->getType()); } const SCEV *visitSignExtendExpr(const SCEVSignExtendExpr *Expr) { const SCEV *Operand = visit(Expr->getOperand()); return SE.getSignExtendExpr(Operand, Expr->getType()); } const SCEV *visitAddExpr(const SCEVAddExpr *Expr) { SmallVector Operands; for (int i = 0, e = Expr->getNumOperands(); i < e; ++i) Operands.push_back(visit(Expr->getOperand(i))); return SE.getAddExpr(Operands); } const SCEV *visitMulExpr(const SCEVMulExpr *Expr) { SmallVector Operands; for (int i = 0, e = Expr->getNumOperands(); i < e; ++i) Operands.push_back(visit(Expr->getOperand(i))); return SE.getMulExpr(Operands); } const SCEV *visitUDivExpr(const SCEVUDivExpr *Expr) { return SE.getUDivExpr(visit(Expr->getLHS()), visit(Expr->getRHS())); } const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) { SmallVector Operands; for (int i = 0, e = Expr->getNumOperands(); i < e; ++i) Operands.push_back(visit(Expr->getOperand(i))); const Loop *L = Expr->getLoop(); const SCEV *Res = SE.getAddRecExpr(Operands, L, Expr->getNoWrapFlags()); if (0 == Map.count(L)) return Res; const SCEVAddRecExpr *Rec = (const SCEVAddRecExpr *) Res; return Rec->evaluateAtIteration(Map[L], SE); } const SCEV *visitSMaxExpr(const SCEVSMaxExpr *Expr) { SmallVector Operands; for (int i = 0, e = Expr->getNumOperands(); i < e; ++i) Operands.push_back(visit(Expr->getOperand(i))); return SE.getSMaxExpr(Operands); } const SCEV *visitUMaxExpr(const SCEVUMaxExpr *Expr) { SmallVector Operands; for (int i = 0, e = Expr->getNumOperands(); i < e; ++i) Operands.push_back(visit(Expr->getOperand(i))); return SE.getUMaxExpr(Operands); } const SCEV *visitUnknown(const SCEVUnknown *Expr) { return Expr; } const SCEV *visitCouldNotCompute(const SCEVCouldNotCompute *Expr) { return Expr; } private: ScalarEvolution &SE; LoopToScevMapT ⤅ }; /// Applies the Map (Loop -> SCEV) to the given Scev. static inline const SCEV *apply(const SCEV *Scev, LoopToScevMapT &Map, ScalarEvolution &SE) { return SCEVApplyRewriter::rewrite(Scev, Map, SE); } } #endif