//===- BugDriver.cpp - Top-Level BugPoint class implementation ------------===// // // This class contains all of the shared state and information that is used by // the BugPoint tool to track down errors in optimizations. This class is the // main driver class that invokes all sub-functionality. // //===----------------------------------------------------------------------===// #include "BugDriver.h" #include "SystemUtils.h" #include "llvm/Module.h" #include "llvm/Bytecode/Reader.h" #include "llvm/Assembly/Parser.h" #include "llvm/Transforms/Utils/Linker.h" #include "llvm/Pass.h" #include "Support/CommandLine.h" #include // Anonymous namespace to define command line options for debugging. // namespace { // Output - The user can specify a file containing the expected output of the // program. If this filename is set, it is used as the reference diff source, // otherwise the raw input run through an interpreter is used as the reference // source. // cl::opt OutputFile("output", cl::desc("Specify a reference program output " "(for miscompilation detection)")); enum DebugType { DebugCompile, DebugCodegen }; cl::opt DebugMode("mode", cl::desc("Debug mode for bugpoint:"), cl::Prefix, cl::values(clEnumValN(DebugCompile, "compile", " Compilation"), clEnumValN(DebugCodegen, "codegen", " Code generation"), 0), cl::init(DebugCompile)); } /// getPassesString - Turn a list of passes into a string which indicates the /// command line options that must be passed to add the passes. /// std::string getPassesString(const std::vector &Passes) { std::string Result; for (unsigned i = 0, e = Passes.size(); i != e; ++i) { if (i) Result += " "; Result += "-"; Result += Passes[i]->getPassArgument(); } return Result; } // DeleteFunctionBody - "Remove" the function by deleting all of its basic // blocks, making it external. // void DeleteFunctionBody(Function *F) { // First, break circular use/def chain references... for (Function::iterator I = F->begin(), E = F->end(); I != E; ++I) I->dropAllReferences(); // Next, delete all of the basic blocks. F->getBasicBlockList().clear(); F->setLinkage(GlobalValue::ExternalLinkage); assert(F->isExternal() && "This didn't make the function external!"); } BugDriver::BugDriver(const char *toolname) : ToolName(toolname), ReferenceOutputFile(OutputFile), Program(0), Interpreter(0), cbe(0), gcc(0) {} /// ParseInputFile - Given a bytecode or assembly input filename, parse and /// return it, or return null if not possible. /// Module *BugDriver::ParseInputFile(const std::string &InputFilename) const { Module *Result = 0; try { Result = ParseBytecodeFile(InputFilename); if (!Result && !(Result = ParseAssemblyFile(InputFilename))){ std::cerr << ToolName << ": could not read input file '" << InputFilename << "'!\n"; } } catch (const ParseException &E) { std::cerr << ToolName << ": " << E.getMessage() << "\n"; Result = 0; } return Result; } // This method takes the specified list of LLVM input files, attempts to load // them, either as assembly or bytecode, then link them together. It returns // true on failure (if, for example, an input bytecode file could not be // parsed), and false on success. // bool BugDriver::addSources(const std::vector &Filenames) { assert(Program == 0 && "Cannot call addSources multiple times!"); assert(!Filenames.empty() && "Must specify at least on input filename!"); // Load the first input file... Program = ParseInputFile(Filenames[0]); if (Program == 0) return true; std::cout << "Read input file : '" << Filenames[0] << "'\n"; for (unsigned i = 1, e = Filenames.size(); i != e; ++i) { std::auto_ptr M(ParseInputFile(Filenames[i])); if (M.get() == 0) return true; std::cout << "Linking in input file: '" << Filenames[i] << "'\n"; std::string ErrorMessage; if (LinkModules(Program, M.get(), &ErrorMessage)) { std::cerr << ToolName << ": error linking in '" << Filenames[i] << "': " << ErrorMessage << "\n"; return true; } } std::cout << "*** All input ok\n"; // All input files read successfully! return false; } /// run - The top level method that is invoked after all of the instance /// variables are set up from command line arguments. /// bool BugDriver::run() { // The first thing that we must do is determine what the problem is. Does the // optimization series crash the compiler, or does it produce illegal code? We // make the top-level decision by trying to run all of the passes on the the // input program, which should generate a bytecode file. If it does generate // a bytecode file, then we know the compiler didn't crash, so try to diagnose // a miscompilation. // std::cout << "Running selected passes on program to test for crash: "; if (runPasses(PassesToRun)) return debugCrash(); std::cout << "Checking for a miscompilation...\n"; // Set up the execution environment, selecting a method to run LLVM bytecode. if (initializeExecutionEnvironment()) return true; // Run the raw input to see where we are coming from. If a reference output // was specified, make sure that the raw output matches it. If not, it's a // problem in the front-end or the code generator. // bool CreatedOutput = false, Result; if (ReferenceOutputFile.empty()) { std::cout << "Generating reference output from raw program..."; if (DebugCodegen) { ReferenceOutputFile = executeProgramWithCBE("bugpoint.reference.out"); } else { ReferenceOutputFile = executeProgram("bugpoint.reference.out"); } CreatedOutput = true; std::cout << "Reference output is: " << ReferenceOutputFile << "\n"; } if (DebugMode == DebugCompile) { std::cout << "\n*** Debugging miscompilation!\n"; Result = debugMiscompilation(); } else if (DebugMode == DebugCodegen) { std::cout << "Debugging code generator problem!\n"; Result = debugCodeGenerator(); } if (CreatedOutput) removeFile(ReferenceOutputFile); return Result; } void BugDriver::PrintFunctionList(const std::vector &Funcs) { for (unsigned i = 0, e = Funcs.size(); i != e; ++i) { if (i) std::cout << ", "; std::cout << Funcs[i]->getName(); } }