//===-- ARMLoadStoreOptimizer.cpp - ARM load / store opt. pass ----*- C++ -*-=// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file contains a pass that performs load / store related peephole // optimizations. This pass should be run after register allocation. // //===----------------------------------------------------------------------===// #define DEBUG_TYPE "arm-ldst-opt" #include "ARM.h" #include "ARMAddressingModes.h" #include "ARMMachineFunctionInfo.h" #include "ARMRegisterInfo.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/Statistic.h" #include "llvm/CodeGen/MachineBasicBlock.h" #include "llvm/CodeGen/MachineFunctionPass.h" #include "llvm/CodeGen/MachineInstr.h" #include "llvm/CodeGen/MachineInstrBuilder.h" #include "llvm/CodeGen/RegisterScavenging.h" #include "llvm/Support/Compiler.h" #include "llvm/Target/MRegisterInfo.h" #include "llvm/Target/TargetInstrInfo.h" #include "llvm/Target/TargetMachine.h" using namespace llvm; STATISTIC(NumLDMGened , "Number of ldm instructions generated"); STATISTIC(NumSTMGened , "Number of stm instructions generated"); STATISTIC(NumFLDMGened, "Number of fldm instructions generated"); STATISTIC(NumFSTMGened, "Number of fstm instructions generated"); namespace { struct VISIBILITY_HIDDEN ARMLoadStoreOpt : public MachineFunctionPass { static char ID; ARMLoadStoreOpt() : MachineFunctionPass((intptr_t)&ID) {} const TargetInstrInfo *TII; const MRegisterInfo *MRI; ARMFunctionInfo *AFI; RegScavenger *RS; virtual bool runOnMachineFunction(MachineFunction &Fn); virtual const char *getPassName() const { return "ARM load / store optimization pass"; } private: struct MemOpQueueEntry { int Offset; unsigned Position; MachineBasicBlock::iterator MBBI; bool Merged; MemOpQueueEntry(int o, int p, MachineBasicBlock::iterator i) : Offset(o), Position(p), MBBI(i), Merged(false) {}; }; typedef SmallVector MemOpQueue; typedef MemOpQueue::iterator MemOpQueueIter; SmallVector MergeLDR_STR(MachineBasicBlock &MBB, unsigned SIndex, unsigned Base, int Opcode, unsigned Size, ARMCC::CondCodes Pred, unsigned PredReg, unsigned Scratch, MemOpQueue &MemOps); void AdvanceRS(MachineBasicBlock &MBB, MemOpQueue &MemOps); bool LoadStoreMultipleOpti(MachineBasicBlock &MBB); bool MergeReturnIntoLDM(MachineBasicBlock &MBB); }; char ARMLoadStoreOpt::ID = 0; } /// createARMLoadStoreOptimizationPass - returns an instance of the load / store /// optimization pass. FunctionPass *llvm::createARMLoadStoreOptimizationPass() { return new ARMLoadStoreOpt(); } static int getLoadStoreMultipleOpcode(int Opcode) { switch (Opcode) { case ARM::LDR: NumLDMGened++; return ARM::LDM; case ARM::STR: NumSTMGened++; return ARM::STM; case ARM::FLDS: NumFLDMGened++; return ARM::FLDMS; case ARM::FSTS: NumFSTMGened++; return ARM::FSTMS; case ARM::FLDD: NumFLDMGened++; return ARM::FLDMD; case ARM::FSTD: NumFSTMGened++; return ARM::FSTMD; default: abort(); } return 0; } /// mergeOps - Create and insert a LDM or STM with Base as base register and /// registers in Regs as the register operands that would be loaded / stored. /// It returns true if the transformation is done. static bool mergeOps(MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, int Offset, unsigned Base, bool BaseKill, int Opcode, ARMCC::CondCodes Pred, unsigned PredReg, unsigned Scratch, SmallVector, 8> &Regs, const TargetInstrInfo *TII) { // Only a single register to load / store. Don't bother. unsigned NumRegs = Regs.size(); if (NumRegs <= 1) return false; ARM_AM::AMSubMode Mode = ARM_AM::ia; bool isAM4 = Opcode == ARM::LDR || Opcode == ARM::STR; if (isAM4 && Offset == 4) Mode = ARM_AM::ib; else if (isAM4 && Offset == -4 * (int)NumRegs + 4) Mode = ARM_AM::da; else if (isAM4 && Offset == -4 * (int)NumRegs) Mode = ARM_AM::db; else if (Offset != 0) { // If starting offset isn't zero, insert a MI to materialize a new base. // But only do so if it is cost effective, i.e. merging more than two // loads / stores. if (NumRegs <= 2) return false; unsigned NewBase; if (Opcode == ARM::LDR) // If it is a load, then just use one of the destination register to // use as the new base. NewBase = Regs[NumRegs-1].first; else { // Use the scratch register to use as a new base. NewBase = Scratch; if (NewBase == 0) return false; } int BaseOpc = ARM::ADDri; if (Offset < 0) { BaseOpc = ARM::SUBri; Offset = - Offset; } int ImmedOffset = ARM_AM::getSOImmVal(Offset); if (ImmedOffset == -1) return false; // Probably not worth it then. BuildMI(MBB, MBBI, TII->get(BaseOpc), NewBase) .addReg(Base, false, false, BaseKill).addImm(ImmedOffset) .addImm(Pred).addReg(PredReg).addReg(0); Base = NewBase; BaseKill = true; // New base is always killed right its use. } bool isDPR = Opcode == ARM::FLDD || Opcode == ARM::FSTD; bool isDef = Opcode == ARM::LDR || Opcode == ARM::FLDS || Opcode == ARM::FLDD; Opcode = getLoadStoreMultipleOpcode(Opcode); MachineInstrBuilder MIB = (isAM4) ? BuildMI(MBB, MBBI, TII->get(Opcode)).addReg(Base, false, false, BaseKill) .addImm(ARM_AM::getAM4ModeImm(Mode)).addImm(Pred).addReg(PredReg) : BuildMI(MBB, MBBI, TII->get(Opcode)).addReg(Base, false, false, BaseKill) .addImm(ARM_AM::getAM5Opc(Mode, false, isDPR ? NumRegs<<1 : NumRegs)) .addImm(Pred).addReg(PredReg); for (unsigned i = 0; i != NumRegs; ++i) MIB = MIB.addReg(Regs[i].first, isDef, false, Regs[i].second); return true; } /// MergeLDR_STR - Merge a number of load / store instructions into one or more /// load / store multiple instructions. SmallVector ARMLoadStoreOpt::MergeLDR_STR(MachineBasicBlock &MBB, unsigned SIndex, unsigned Base, int Opcode, unsigned Size, ARMCC::CondCodes Pred, unsigned PredReg, unsigned Scratch, MemOpQueue &MemOps) { SmallVector Merges; bool isAM4 = Opcode == ARM::LDR || Opcode == ARM::STR; int Offset = MemOps[SIndex].Offset; int SOffset = Offset; unsigned Pos = MemOps[SIndex].Position; MachineBasicBlock::iterator Loc = MemOps[SIndex].MBBI; unsigned PReg = MemOps[SIndex].MBBI->getOperand(0).getReg(); unsigned PRegNum = ARMRegisterInfo::getRegisterNumbering(PReg); bool isKill = MemOps[SIndex].MBBI->getOperand(0).isKill(); SmallVector, 8> Regs; Regs.push_back(std::make_pair(PReg, isKill)); for (unsigned i = SIndex+1, e = MemOps.size(); i != e; ++i) { int NewOffset = MemOps[i].Offset; unsigned Reg = MemOps[i].MBBI->getOperand(0).getReg(); unsigned RegNum = ARMRegisterInfo::getRegisterNumbering(Reg); isKill = MemOps[i].MBBI->getOperand(0).isKill(); // AM4 - register numbers in ascending order. // AM5 - consecutive register numbers in ascending order. if (NewOffset == Offset + (int)Size && ((isAM4 && RegNum > PRegNum) || RegNum == PRegNum+1)) { Offset += Size; Regs.push_back(std::make_pair(Reg, isKill)); PRegNum = RegNum; } else { // Can't merge this in. Try merge the earlier ones first. if (mergeOps(MBB, ++Loc, SOffset, Base, false, Opcode, Pred, PredReg, Scratch, Regs, TII)) { Merges.push_back(prior(Loc)); for (unsigned j = SIndex; j < i; ++j) { MBB.erase(MemOps[j].MBBI); MemOps[j].Merged = true; } } SmallVector Merges2 = MergeLDR_STR(MBB, i, Base, Opcode, Size, Pred, PredReg, Scratch,MemOps); Merges.append(Merges2.begin(), Merges2.end()); return Merges; } if (MemOps[i].Position > Pos) { Pos = MemOps[i].Position; Loc = MemOps[i].MBBI; } } bool BaseKill = Loc->findRegisterUseOperandIdx(Base, true) != -1; if (mergeOps(MBB, ++Loc, SOffset, Base, BaseKill, Opcode, Pred, PredReg, Scratch, Regs, TII)) { Merges.push_back(prior(Loc)); for (unsigned i = SIndex, e = MemOps.size(); i != e; ++i) { MBB.erase(MemOps[i].MBBI); MemOps[i].Merged = true; } } return Merges; } /// getInstrPredicate - If instruction is predicated, returns its predicate /// condition, otherwise returns AL. It also returns the condition code /// register by reference. static ARMCC::CondCodes getInstrPredicate(MachineInstr *MI, unsigned &PredReg) { int PIdx = MI->findFirstPredOperandIdx(); if (PIdx == -1) { PredReg = 0; return ARMCC::AL; } PredReg = MI->getOperand(PIdx+1).getReg(); return (ARMCC::CondCodes)MI->getOperand(PIdx).getImm(); } static inline bool isMatchingDecrement(MachineInstr *MI, unsigned Base, unsigned Bytes, ARMCC::CondCodes Pred, unsigned PredReg) { unsigned MyPredReg = 0; return (MI && MI->getOpcode() == ARM::SUBri && MI->getOperand(0).getReg() == Base && MI->getOperand(1).getReg() == Base && ARM_AM::getAM2Offset(MI->getOperand(2).getImm()) == Bytes && getInstrPredicate(MI, MyPredReg) == Pred && MyPredReg == PredReg); } static inline bool isMatchingIncrement(MachineInstr *MI, unsigned Base, unsigned Bytes, ARMCC::CondCodes Pred, unsigned PredReg) { unsigned MyPredReg = 0; return (MI && MI->getOpcode() == ARM::ADDri && MI->getOperand(0).getReg() == Base && MI->getOperand(1).getReg() == Base && ARM_AM::getAM2Offset(MI->getOperand(2).getImm()) == Bytes && getInstrPredicate(MI, MyPredReg) == Pred && MyPredReg == PredReg); } static inline unsigned getLSMultipleTransferSize(MachineInstr *MI) { switch (MI->getOpcode()) { default: return 0; case ARM::LDR: case ARM::STR: case ARM::FLDS: case ARM::FSTS: return 4; case ARM::FLDD: case ARM::FSTD: return 8; case ARM::LDM: case ARM::STM: return (MI->getNumOperands() - 4) * 4; case ARM::FLDMS: case ARM::FSTMS: case ARM::FLDMD: case ARM::FSTMD: return ARM_AM::getAM5Offset(MI->getOperand(1).getImm()) * 4; } } /// mergeBaseUpdateLSMultiple - Fold proceeding/trailing inc/dec of base /// register into the LDM/STM/FLDM{D|S}/FSTM{D|S} op when possible: /// /// stmia rn, /// rn := rn + 4 * 3; /// => /// stmia rn!, /// /// rn := rn - 4 * 3; /// ldmia rn, /// => /// ldmdb rn!, static bool mergeBaseUpdateLSMultiple(MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, bool &Advance, MachineBasicBlock::iterator &I) { MachineInstr *MI = MBBI; unsigned Base = MI->getOperand(0).getReg(); unsigned Bytes = getLSMultipleTransferSize(MI); unsigned PredReg = 0; ARMCC::CondCodes Pred = getInstrPredicate(MI, PredReg); int Opcode = MI->getOpcode(); bool isAM4 = Opcode == ARM::LDM || Opcode == ARM::STM; if (isAM4) { if (ARM_AM::getAM4WBFlag(MI->getOperand(1).getImm())) return false; // Can't use the updating AM4 sub-mode if the base register is also a dest // register. e.g. ldmdb r0!, {r0, r1, r2}. The behavior is undefined. for (unsigned i = 3, e = MI->getNumOperands(); i != e; ++i) { if (MI->getOperand(i).getReg() == Base) return false; } ARM_AM::AMSubMode Mode = ARM_AM::getAM4SubMode(MI->getOperand(1).getImm()); if (MBBI != MBB.begin()) { MachineBasicBlock::iterator PrevMBBI = prior(MBBI); if (Mode == ARM_AM::ia && isMatchingDecrement(PrevMBBI, Base, Bytes, Pred, PredReg)) { MI->getOperand(1).setImm(ARM_AM::getAM4ModeImm(ARM_AM::db, true)); MBB.erase(PrevMBBI); return true; } else if (Mode == ARM_AM::ib && isMatchingDecrement(PrevMBBI, Base, Bytes, Pred, PredReg)) { MI->getOperand(1).setImm(ARM_AM::getAM4ModeImm(ARM_AM::da, true)); MBB.erase(PrevMBBI); return true; } } if (MBBI != MBB.end()) { MachineBasicBlock::iterator NextMBBI = next(MBBI); if ((Mode == ARM_AM::ia || Mode == ARM_AM::ib) && isMatchingIncrement(NextMBBI, Base, Bytes, Pred, PredReg)) { MI->getOperand(1).setImm(ARM_AM::getAM4ModeImm(Mode, true)); if (NextMBBI == I) { Advance = true; ++I; } MBB.erase(NextMBBI); return true; } else if ((Mode == ARM_AM::da || Mode == ARM_AM::db) && isMatchingDecrement(NextMBBI, Base, Bytes, Pred, PredReg)) { MI->getOperand(1).setImm(ARM_AM::getAM4ModeImm(Mode, true)); if (NextMBBI == I) { Advance = true; ++I; } MBB.erase(NextMBBI); return true; } } } else { // FLDM{D|S}, FSTM{D|S} addressing mode 5 ops. if (ARM_AM::getAM5WBFlag(MI->getOperand(1).getImm())) return false; ARM_AM::AMSubMode Mode = ARM_AM::getAM5SubMode(MI->getOperand(1).getImm()); unsigned Offset = ARM_AM::getAM5Offset(MI->getOperand(1).getImm()); if (MBBI != MBB.begin()) { MachineBasicBlock::iterator PrevMBBI = prior(MBBI); if (Mode == ARM_AM::ia && isMatchingDecrement(PrevMBBI, Base, Bytes, Pred, PredReg)) { MI->getOperand(1).setImm(ARM_AM::getAM5Opc(ARM_AM::db, true, Offset)); MBB.erase(PrevMBBI); return true; } } if (MBBI != MBB.end()) { MachineBasicBlock::iterator NextMBBI = next(MBBI); if (Mode == ARM_AM::ia && isMatchingIncrement(NextMBBI, Base, Bytes, Pred, PredReg)) { MI->getOperand(1).setImm(ARM_AM::getAM5Opc(ARM_AM::ia, true, Offset)); if (NextMBBI == I) { Advance = true; ++I; } MBB.erase(NextMBBI); } return true; } } return false; } static unsigned getPreIndexedLoadStoreOpcode(unsigned Opc) { switch (Opc) { case ARM::LDR: return ARM::LDR_PRE; case ARM::STR: return ARM::STR_PRE; case ARM::FLDS: return ARM::FLDMS; case ARM::FLDD: return ARM::FLDMD; case ARM::FSTS: return ARM::FSTMS; case ARM::FSTD: return ARM::FSTMD; default: abort(); } return 0; } static unsigned getPostIndexedLoadStoreOpcode(unsigned Opc) { switch (Opc) { case ARM::LDR: return ARM::LDR_POST; case ARM::STR: return ARM::STR_POST; case ARM::FLDS: return ARM::FLDMS; case ARM::FLDD: return ARM::FLDMD; case ARM::FSTS: return ARM::FSTMS; case ARM::FSTD: return ARM::FSTMD; default: abort(); } return 0; } /// mergeBaseUpdateLoadStore - Fold proceeding/trailing inc/dec of base /// register into the LDR/STR/FLD{D|S}/FST{D|S} op when possible: static bool mergeBaseUpdateLoadStore(MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, const TargetInstrInfo *TII, bool &Advance, MachineBasicBlock::iterator &I) { MachineInstr *MI = MBBI; unsigned Base = MI->getOperand(1).getReg(); bool BaseKill = MI->getOperand(1).isKill(); unsigned Bytes = getLSMultipleTransferSize(MI); int Opcode = MI->getOpcode(); bool isAM2 = Opcode == ARM::LDR || Opcode == ARM::STR; if ((isAM2 && ARM_AM::getAM2Offset(MI->getOperand(3).getImm()) != 0) || (!isAM2 && ARM_AM::getAM5Offset(MI->getOperand(2).getImm()) != 0)) return false; bool isLd = Opcode == ARM::LDR || Opcode == ARM::FLDS || Opcode == ARM::FLDD; // Can't do the merge if the destination register is the same as the would-be // writeback register. if (isLd && MI->getOperand(0).getReg() == Base) return false; unsigned PredReg = 0; ARMCC::CondCodes Pred = getInstrPredicate(MI, PredReg); bool DoMerge = false; ARM_AM::AddrOpc AddSub = ARM_AM::add; unsigned NewOpc = 0; if (MBBI != MBB.begin()) { MachineBasicBlock::iterator PrevMBBI = prior(MBBI); if (isMatchingDecrement(PrevMBBI, Base, Bytes, Pred, PredReg)) { DoMerge = true; AddSub = ARM_AM::sub; NewOpc = getPreIndexedLoadStoreOpcode(Opcode); } else if (isAM2 && isMatchingIncrement(PrevMBBI, Base, Bytes, Pred, PredReg)) { DoMerge = true; NewOpc = getPreIndexedLoadStoreOpcode(Opcode); } if (DoMerge) MBB.erase(PrevMBBI); } if (!DoMerge && MBBI != MBB.end()) { MachineBasicBlock::iterator NextMBBI = next(MBBI); if (isAM2 && isMatchingDecrement(NextMBBI, Base, Bytes, Pred, PredReg)) { DoMerge = true; AddSub = ARM_AM::sub; NewOpc = getPostIndexedLoadStoreOpcode(Opcode); } else if (isMatchingIncrement(NextMBBI, Base, Bytes, Pred, PredReg)) { DoMerge = true; NewOpc = getPostIndexedLoadStoreOpcode(Opcode); } if (DoMerge) { if (NextMBBI == I) { Advance = true; ++I; } MBB.erase(NextMBBI); } } if (!DoMerge) return false; bool isDPR = NewOpc == ARM::FLDMD || NewOpc == ARM::FSTMD; unsigned Offset = isAM2 ? ARM_AM::getAM2Opc(AddSub, Bytes, ARM_AM::no_shift) : ARM_AM::getAM5Opc((AddSub == ARM_AM::sub) ? ARM_AM::db : ARM_AM::ia, true, isDPR ? 2 : 1); if (isLd) { if (isAM2) // LDR_PRE, LDR_POST; BuildMI(MBB, MBBI, TII->get(NewOpc), MI->getOperand(0).getReg()) .addReg(Base, true) .addReg(Base).addReg(0).addImm(Offset).addImm(Pred).addReg(PredReg); else // FLDMS, FLDMD BuildMI(MBB, MBBI, TII->get(NewOpc)).addReg(Base, false, false, BaseKill) .addImm(Offset).addImm(Pred).addReg(PredReg) .addReg(MI->getOperand(0).getReg(), true); } else { MachineOperand &MO = MI->getOperand(0); if (isAM2) // STR_PRE, STR_POST; BuildMI(MBB, MBBI, TII->get(NewOpc), Base) .addReg(MO.getReg(), false, false, MO.isKill()) .addReg(Base).addReg(0).addImm(Offset).addImm(Pred).addReg(PredReg); else // FSTMS, FSTMD BuildMI(MBB, MBBI, TII->get(NewOpc)).addReg(Base).addImm(Offset) .addImm(Pred).addReg(PredReg) .addReg(MO.getReg(), false, false, MO.isKill()); } MBB.erase(MBBI); return true; } /// isMemoryOp - Returns true if instruction is a memory operations (that this /// pass is capable of operating on). static bool isMemoryOp(MachineInstr *MI) { int Opcode = MI->getOpcode(); switch (Opcode) { default: break; case ARM::LDR: case ARM::STR: return MI->getOperand(1).isRegister() && MI->getOperand(2).getReg() == 0; case ARM::FLDS: case ARM::FSTS: return MI->getOperand(1).isRegister(); case ARM::FLDD: case ARM::FSTD: return MI->getOperand(1).isRegister(); } return false; } /// AdvanceRS - Advance register scavenger to just before the earliest memory /// op that is being merged. void ARMLoadStoreOpt::AdvanceRS(MachineBasicBlock &MBB, MemOpQueue &MemOps) { MachineBasicBlock::iterator Loc = MemOps[0].MBBI; unsigned Position = MemOps[0].Position; for (unsigned i = 1, e = MemOps.size(); i != e; ++i) { if (MemOps[i].Position < Position) { Position = MemOps[i].Position; Loc = MemOps[i].MBBI; } } if (Loc != MBB.begin()) RS->forward(prior(Loc)); } /// LoadStoreMultipleOpti - An optimization pass to turn multiple LDR / STR /// ops of the same base and incrementing offset into LDM / STM ops. bool ARMLoadStoreOpt::LoadStoreMultipleOpti(MachineBasicBlock &MBB) { unsigned NumMerges = 0; unsigned NumMemOps = 0; MemOpQueue MemOps; unsigned CurrBase = 0; int CurrOpc = -1; unsigned CurrSize = 0; ARMCC::CondCodes CurrPred = ARMCC::AL; unsigned CurrPredReg = 0; unsigned Position = 0; RS->enterBasicBlock(&MBB); MachineBasicBlock::iterator MBBI = MBB.begin(), E = MBB.end(); while (MBBI != E) { bool Advance = false; bool TryMerge = false; bool Clobber = false; bool isMemOp = isMemoryOp(MBBI); if (isMemOp) { int Opcode = MBBI->getOpcode(); bool isAM2 = Opcode == ARM::LDR || Opcode == ARM::STR; unsigned Size = getLSMultipleTransferSize(MBBI); unsigned Base = MBBI->getOperand(1).getReg(); unsigned PredReg = 0; ARMCC::CondCodes Pred = getInstrPredicate(MBBI, PredReg); unsigned NumOperands = MBBI->getDesc().getNumOperands(); unsigned OffField = MBBI->getOperand(NumOperands-3).getImm(); int Offset = isAM2 ? ARM_AM::getAM2Offset(OffField) : ARM_AM::getAM5Offset(OffField) * 4; if (isAM2) { if (ARM_AM::getAM2Op(OffField) == ARM_AM::sub) Offset = -Offset; } else { if (ARM_AM::getAM5Op(OffField) == ARM_AM::sub) Offset = -Offset; } // Watch out for: // r4 := ldr [r5] // r5 := ldr [r5, #4] // r6 := ldr [r5, #8] // // The second ldr has effectively broken the chain even though it // looks like the later ldr(s) use the same base register. Try to // merge the ldr's so far, including this one. But don't try to // combine the following ldr(s). Clobber = (Opcode == ARM::LDR && Base == MBBI->getOperand(0).getReg()); if (CurrBase == 0 && !Clobber) { // Start of a new chain. CurrBase = Base; CurrOpc = Opcode; CurrSize = Size; CurrPred = Pred; CurrPredReg = PredReg; MemOps.push_back(MemOpQueueEntry(Offset, Position, MBBI)); NumMemOps++; Advance = true; } else { if (Clobber) { TryMerge = true; Advance = true; } if (CurrOpc == Opcode && CurrBase == Base && CurrPred == Pred) { // No need to match PredReg. // Continue adding to the queue. if (Offset > MemOps.back().Offset) { MemOps.push_back(MemOpQueueEntry(Offset, Position, MBBI)); NumMemOps++; Advance = true; } else { for (MemOpQueueIter I = MemOps.begin(), E = MemOps.end(); I != E; ++I) { if (Offset < I->Offset) { MemOps.insert(I, MemOpQueueEntry(Offset, Position, MBBI)); NumMemOps++; Advance = true; break; } else if (Offset == I->Offset) { // Collision! This can't be merged! break; } } } } } } if (Advance) { ++Position; ++MBBI; } else TryMerge = true; if (TryMerge) { if (NumMemOps > 1) { // Try to find a free register to use as a new base in case it's needed. // First advance to the instruction just before the start of the chain. AdvanceRS(MBB, MemOps); // Find a scratch register. Make sure it's a call clobbered register or // a spilled callee-saved register. unsigned Scratch = RS->FindUnusedReg(&ARM::GPRRegClass, true); if (!Scratch) Scratch = RS->FindUnusedReg(&ARM::GPRRegClass, AFI->getSpilledCSRegisters()); // Process the load / store instructions. RS->forward(prior(MBBI)); // Merge ops. SmallVector MBBII = MergeLDR_STR(MBB, 0, CurrBase, CurrOpc, CurrSize, CurrPred, CurrPredReg, Scratch, MemOps); // Try folding preceeding/trailing base inc/dec into the generated // LDM/STM ops. for (unsigned i = 0, e = MBBII.size(); i < e; ++i) if (mergeBaseUpdateLSMultiple(MBB, MBBII[i], Advance, MBBI)) NumMerges++; NumMerges += MBBII.size(); // Try folding preceeding/trailing base inc/dec into those load/store // that were not merged to form LDM/STM ops. for (unsigned i = 0; i != NumMemOps; ++i) if (!MemOps[i].Merged) if (mergeBaseUpdateLoadStore(MBB, MemOps[i].MBBI, TII,Advance,MBBI)) NumMerges++; // RS may be pointing to an instruction that's deleted. RS->skipTo(prior(MBBI)); } CurrBase = 0; CurrOpc = -1; CurrSize = 0; CurrPred = ARMCC::AL; CurrPredReg = 0; if (NumMemOps) { MemOps.clear(); NumMemOps = 0; } // If iterator hasn't been advanced and this is not a memory op, skip it. // It can't start a new chain anyway. if (!Advance && !isMemOp && MBBI != E) { ++Position; ++MBBI; } } } return NumMerges > 0; } /// MergeReturnIntoLDM - If this is a exit BB, try merging the return op /// (bx lr) into the preceeding stack restore so it directly restore the value /// of LR into pc. /// ldmfd sp!, {r7, lr} /// bx lr /// => /// ldmfd sp!, {r7, pc} bool ARMLoadStoreOpt::MergeReturnIntoLDM(MachineBasicBlock &MBB) { if (MBB.empty()) return false; MachineBasicBlock::iterator MBBI = prior(MBB.end()); if (MBBI->getOpcode() == ARM::BX_RET && MBBI != MBB.begin()) { MachineInstr *PrevMI = prior(MBBI); if (PrevMI->getOpcode() == ARM::LDM) { MachineOperand &MO = PrevMI->getOperand(PrevMI->getNumOperands()-1); if (MO.getReg() == ARM::LR) { PrevMI->setDesc(TII->get(ARM::LDM_RET)); MO.setReg(ARM::PC); MBB.erase(MBBI); return true; } } } return false; } bool ARMLoadStoreOpt::runOnMachineFunction(MachineFunction &Fn) { const TargetMachine &TM = Fn.getTarget(); AFI = Fn.getInfo(); TII = TM.getInstrInfo(); MRI = TM.getRegisterInfo(); RS = new RegScavenger(); bool Modified = false; for (MachineFunction::iterator MFI = Fn.begin(), E = Fn.end(); MFI != E; ++MFI) { MachineBasicBlock &MBB = *MFI; Modified |= LoadStoreMultipleOpti(MBB); Modified |= MergeReturnIntoLDM(MBB); } delete RS; return Modified; }