//===-- AlphaISelDAGToDAG.cpp - Alpha pattern matching inst selector ------===// // // The LLVM Compiler Infrastructure // // This file was developed by Andrew Lenharth and is distributed under // the University of Illinois Open Source License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file defines a pattern matching instruction selector for Alpha, // converting from a legalized dag to a Alpha dag. // //===----------------------------------------------------------------------===// #include "Alpha.h" #include "AlphaTargetMachine.h" #include "AlphaISelLowering.h" #include "llvm/CodeGen/MachineInstrBuilder.h" #include "llvm/CodeGen/MachineFunction.h" #include "llvm/CodeGen/SSARegMap.h" #include "llvm/CodeGen/SelectionDAG.h" #include "llvm/CodeGen/SelectionDAGISel.h" #include "llvm/Target/TargetOptions.h" #include "llvm/ADT/Statistic.h" #include "llvm/Constants.h" #include "llvm/GlobalValue.h" #include "llvm/Support/Debug.h" #include "llvm/Support/MathExtras.h" #include using namespace llvm; namespace { //===--------------------------------------------------------------------===// /// AlphaDAGToDAGISel - Alpha specific code to select Alpha machine /// instructions for SelectionDAG operations. /// class AlphaDAGToDAGISel : public SelectionDAGISel { AlphaTargetLowering AlphaLowering; static const int IMM_LOW = -32768; static const int IMM_HIGH = 32767; static const int IMM_MULT = 65536; public: AlphaDAGToDAGISel(TargetMachine &TM) : SelectionDAGISel(AlphaLowering), AlphaLowering(TM) {} /// getI64Imm - Return a target constant with the specified value, of type /// i64. inline SDOperand getI64Imm(int64_t Imm) { return CurDAG->getTargetConstant(Imm, MVT::i64); } // Select - Convert the specified operand from a target-independent to a // target-specific node if it hasn't already been changed. SDOperand Select(SDOperand Op); /// InstructionSelectBasicBlock - This callback is invoked by /// SelectionDAGISel when it has created a SelectionDAG for us to codegen. virtual void InstructionSelectBasicBlock(SelectionDAG &DAG); virtual const char *getPassName() const { return "Alpha DAG->DAG Pattern Instruction Selection"; } // Include the pieces autogenerated from the target description. #include "AlphaGenDAGISel.inc" private: SDOperand getGlobalBaseReg(); SDOperand SelectCALL(SDOperand Op); }; } /// getGlobalBaseReg - Output the instructions required to put the /// GOT address into a register. /// SDOperand AlphaDAGToDAGISel::getGlobalBaseReg() { return CurDAG->getRegister(AlphaLowering.getVRegGP(), MVT::i64); } /// InstructionSelectBasicBlock - This callback is invoked by /// SelectionDAGISel when it has created a SelectionDAG for us to codegen. void AlphaDAGToDAGISel::InstructionSelectBasicBlock(SelectionDAG &DAG) { DEBUG(BB->dump()); // Select target instructions for the DAG. DAG.setRoot(Select(DAG.getRoot())); CodeGenMap.clear(); DAG.RemoveDeadNodes(); // Emit machine code to BB. ScheduleAndEmitDAG(DAG); } // Select - Convert the specified operand from a target-independent to a // target-specific node if it hasn't already been changed. SDOperand AlphaDAGToDAGISel::Select(SDOperand Op) { SDNode *N = Op.Val; if (N->getOpcode() >= ISD::BUILTIN_OP_END && N->getOpcode() < AlphaISD::FIRST_NUMBER) return Op; // Already selected. // If this has already been converted, use it. std::map::iterator CGMI = CodeGenMap.find(Op); if (CGMI != CodeGenMap.end()) return CGMI->second; switch (N->getOpcode()) { default: break; case ISD::TAILCALL: case ISD::CALL: return SelectCALL(Op); case ISD::DYNAMIC_STACKALLOC: { if (!isa(N->getOperand(2)) || cast(N->getOperand(2))->getValue() != 0) { std::cerr << "Cannot allocate stack object with greater alignment than" << " the stack alignment yet!"; abort(); } SDOperand Chain = Select(N->getOperand(0)); SDOperand Amt = Select(N->getOperand(1)); SDOperand Reg = CurDAG->getRegister(Alpha::R30, MVT::i64); SDOperand Val = CurDAG->getCopyFromReg(Chain, Alpha::R30, MVT::i64); Chain = Val.getValue(1); // Subtract the amount (guaranteed to be a multiple of the stack alignment) // from the stack pointer, giving us the result pointer. SDOperand Result = CurDAG->getTargetNode(Alpha::SUBQ, MVT::i64, Val, Amt); // Copy this result back into R30. Chain = CurDAG->getNode(ISD::CopyToReg, MVT::Other, Chain, Reg, Result); // Copy this result back out of R30 to make sure we're not using the stack // space without decrementing the stack pointer. Result = CurDAG->getCopyFromReg(Chain, Alpha::R30, MVT::i64); // Finally, replace the DYNAMIC_STACKALLOC with the copyfromreg. CodeGenMap[Op.getValue(0)] = Result; CodeGenMap[Op.getValue(1)] = Result.getValue(1); return SDOperand(Result.Val, Op.ResNo); } case ISD::BRCOND: { SDOperand Chain = Select(N->getOperand(0)); SDOperand CC = Select(N->getOperand(1)); MachineBasicBlock *Dest = cast(N->getOperand(2))->getBasicBlock(); CurDAG->SelectNodeTo(N, Alpha::BNE, MVT::Other, CC, CurDAG->getBasicBlock(Dest), Chain); return SDOperand(N, 0); } case ISD::LOAD: case ISD::EXTLOAD: case ISD::ZEXTLOAD: case ISD::SEXTLOAD: { SDOperand Chain = Select(N->getOperand(0)); SDOperand Address = Select(N->getOperand(1)); unsigned opcode = N->getOpcode(); unsigned Opc = Alpha::WTF; if (opcode == ISD::LOAD) switch (N->getValueType(0)) { default: N->dump(); assert(0 && "Bad load!"); case MVT::i64: Opc = Alpha::LDQ; break; case MVT::f64: Opc = Alpha::LDT; break; case MVT::f32: Opc = Alpha::LDS; break; } else switch (cast(N->getOperand(3))->getVT()) { default: N->dump(); assert(0 && "Bad sign extend!"); case MVT::i32: Opc = Alpha::LDL; assert(opcode != ISD::ZEXTLOAD && "Not sext"); break; case MVT::i16: Opc = Alpha::LDWU; assert(opcode != ISD::SEXTLOAD && "Not zext"); break; case MVT::i1: //FIXME: Treat i1 as i8 since there are problems otherwise case MVT::i8: Opc = Alpha::LDBU; assert(opcode != ISD::SEXTLOAD && "Not zext"); break; } CurDAG->SelectNodeTo(N, Opc, N->getValueType(0), MVT::Other, getI64Imm(0), Address, Chain); return SDOperand(N, Op.ResNo); } case ISD::STORE: case ISD::TRUNCSTORE: { SDOperand Chain = Select(N->getOperand(0)); SDOperand Value = Select(N->getOperand(1)); SDOperand Address = Select(N->getOperand(2)); unsigned Opc = Alpha::WTF; if (N->getOpcode() == ISD::STORE) { switch (N->getOperand(1).getValueType()) { case MVT::i64: Opc = Alpha::STQ; break; case MVT::f64: Opc = Alpha::STT; break; case MVT::f32: Opc = Alpha::STS; break; default: assert(0 && "Bad store!"); }; } else { //TRUNCSTORE switch (cast(N->getOperand(4))->getVT()) { case MVT::i32: Opc = Alpha::STL; break; case MVT::i16: Opc = Alpha::STW; break; case MVT::i8: Opc = Alpha::STB; break; default: assert(0 && "Bad truncstore!"); }; } CurDAG->SelectNodeTo(N, Opc, MVT::Other, Value, getI64Imm(0), Address, Chain); return SDOperand(N, 0); } case ISD::BR: { CurDAG->SelectNodeTo(N, Alpha::BR_DAG, MVT::Other, N->getOperand(1), Select(N->getOperand(0))); return SDOperand(N, 0); } case ISD::FrameIndex: { int FI = cast(N)->getIndex(); CurDAG->SelectNodeTo(N, Alpha::LDA, MVT::i64, CurDAG->getTargetFrameIndex(FI, MVT::i32), getI64Imm(0)); return SDOperand(N, 0); } case ISD::ConstantPool: { Constant *C = cast(N)->get(); SDOperand Tmp, CPI = CurDAG->getTargetConstantPool(C, MVT::i64); Tmp = CurDAG->getTargetNode(Alpha::LDAHr, MVT::i64, CPI, getGlobalBaseReg()); CurDAG->SelectNodeTo(N, Alpha::LDAr, MVT::i64, CPI, Tmp); return SDOperand(N, 0); } case ISD::GlobalAddress: { GlobalValue *GV = cast(N)->getGlobal(); SDOperand GA = CurDAG->getTargetGlobalAddress(GV, MVT::i64); CurDAG->SelectNodeTo(N, Alpha::LDQl, MVT::i64, GA, getGlobalBaseReg()); return SDOperand(N, 0); } case ISD::ExternalSymbol: CurDAG->SelectNodeTo(N, Alpha::LDQl, MVT::i64, CurDAG->getTargetExternalSymbol(cast(N)->getSymbol(), MVT::i64), CurDAG->getRegister(AlphaLowering.getVRegGP(), MVT::i64)); return SDOperand(N, 0); case ISD::CALLSEQ_START: case ISD::CALLSEQ_END: { unsigned Amt = cast(N->getOperand(1))->getValue(); unsigned Opc = N->getOpcode() == ISD::CALLSEQ_START ? Alpha::ADJUSTSTACKDOWN : Alpha::ADJUSTSTACKUP; CurDAG->SelectNodeTo(N, Opc, MVT::Other, getI64Imm(Amt), Select(N->getOperand(0))); return SDOperand(N, 0); } case ISD::RET: { SDOperand Chain = Select(N->getOperand(0)); // Token chain. if (N->getNumOperands() == 2) { SDOperand Val = Select(N->getOperand(1)); if (N->getOperand(1).getValueType() == MVT::i64) { Chain = CurDAG->getCopyToReg(Chain, Alpha::R0, Val); } } //BuildMI(BB, Alpha::RET, 2, Alpha::R31).addReg(Alpha::R26).addImm(1); // FIXME: add restoring of the RA to R26 to the chain // Finally, select this to a ret instruction. CurDAG->SelectNodeTo(N, Alpha::RETDAG, MVT::Other, Chain); return SDOperand(N, 0); } case ISD::Constant: { int64_t val = (int64_t)cast(N)->getValue(); if (val > (int64_t)IMM_HIGH +(int64_t)IMM_HIGH* (int64_t)IMM_MULT || val < (int64_t)IMM_LOW + (int64_t)IMM_LOW * (int64_t)IMM_MULT) { MachineConstantPool *CP = BB->getParent()->getConstantPool(); ConstantUInt *C = ConstantUInt::get(Type::getPrimitiveType(Type::ULongTyID) , val); SDOperand Tmp, CPI = CurDAG->getTargetConstantPool(C, MVT::i64); Tmp = CurDAG->getTargetNode(Alpha::LDAHr, MVT::i64, CPI, getGlobalBaseReg()); CurDAG->SelectNodeTo(N, Alpha::LDAr, MVT::i64, CPI, Tmp); return SDOperand(N, 0); } } case ISD::ConstantFP: if (ConstantFPSDNode *CN = dyn_cast(N)) { bool isDouble = N->getValueType(0) == MVT::f64; MVT::ValueType T = isDouble ? MVT::f64 : MVT::f32; if (CN->isExactlyValue(+0.0)) { CurDAG->SelectNodeTo(N, isDouble ? Alpha::CPYST : Alpha::CPYSS, T, CurDAG->getRegister(Alpha::F31, T), CurDAG->getRegister(Alpha::F31, T)); return SDOperand(N, 0); } else if ( CN->isExactlyValue(-0.0)) { CurDAG->SelectNodeTo(N, isDouble ? Alpha::CPYSNT : Alpha::CPYSNS, T, CurDAG->getRegister(Alpha::F31, T), CurDAG->getRegister(Alpha::F31, T)); return SDOperand(N, 0); } else { abort(); } } } return SelectCode(Op); } SDOperand AlphaDAGToDAGISel::SelectCALL(SDOperand Op) { //TODO: add flag stuff to prevent nondeturministic breakage! SDNode *N = Op.Val; SDOperand Chain = Select(N->getOperand(0)); SDOperand Addr = Select(N->getOperand(1)); // unsigned CallOpcode; std::vector CallOperands; std::vector TypeOperands; //grab the arguments for(int i = 2, e = N->getNumOperands(); i < e; ++i) { TypeOperands.push_back(N->getOperand(i).getValueType()); CallOperands.push_back(Select(N->getOperand(i))); } int count = N->getNumOperands() - 2; static const unsigned args_int[] = {Alpha::R16, Alpha::R17, Alpha::R18, Alpha::R19, Alpha::R20, Alpha::R21}; static const unsigned args_float[] = {Alpha::F16, Alpha::F17, Alpha::F18, Alpha::F19, Alpha::F20, Alpha::F21}; for (int i = 0; i < std::min(6, count); ++i) { if (MVT::isInteger(TypeOperands[i])) { Chain = CurDAG->getCopyToReg(Chain, args_int[i], CallOperands[i]); } else if (TypeOperands[i] == MVT::f64 || TypeOperands[i] == MVT::f64) { Chain = CurDAG->getCopyToReg(Chain, args_float[i], CallOperands[i]); } else assert(0 && "Unknown operand"); } assert(CallOperands.size() <= 6 && "Too big a call"); Chain = CurDAG->getCopyToReg(Chain, Alpha::R27, Addr); // Finally, once everything is in registers to pass to the call, emit the // call itself. Chain = CurDAG->getTargetNode(Alpha::JSRDAG, MVT::Other, Chain ); std::vector CallResults; switch (N->getValueType(0)) { default: assert(0 && "Unexpected ret value!"); case MVT::Other: break; case MVT::i64: Chain = CurDAG->getCopyFromReg(Chain, Alpha::R0, MVT::i64).getValue(1); CallResults.push_back(Chain.getValue(0)); break; case MVT::f32: Chain = CurDAG->getCopyFromReg(Chain, Alpha::F0, MVT::f32).getValue(1); CallResults.push_back(Chain.getValue(0)); break; case MVT::f64: Chain = CurDAG->getCopyFromReg(Chain, Alpha::F0, MVT::f64).getValue(1); CallResults.push_back(Chain.getValue(0)); break; } CallResults.push_back(Chain); for (unsigned i = 0, e = CallResults.size(); i != e; ++i) CodeGenMap[Op.getValue(i)] = CallResults[i]; return CallResults[Op.ResNo]; } /// createAlphaISelDag - This pass converts a legalized DAG into a /// Alpha-specific DAG, ready for instruction scheduling. /// FunctionPass *llvm::createAlphaISelDag(TargetMachine &TM) { return new AlphaDAGToDAGISel(TM); }