//===-- StackSlotColoring.cpp - Stack slot coloring pass. -----------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements the stack slot coloring pass. // //===----------------------------------------------------------------------===// #define DEBUG_TYPE "stackcoloring" #include "VirtRegMap.h" #include "llvm/Function.h" #include "llvm/Module.h" #include "llvm/CodeGen/Passes.h" #include "llvm/CodeGen/LiveIntervalAnalysis.h" #include "llvm/CodeGen/LiveStackAnalysis.h" #include "llvm/CodeGen/MachineFrameInfo.h" #include "llvm/CodeGen/MachineInstrBuilder.h" #include "llvm/CodeGen/MachineLoopInfo.h" #include "llvm/CodeGen/MachineMemOperand.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/CodeGen/PseudoSourceValue.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Debug.h" #include "llvm/Target/TargetInstrInfo.h" #include "llvm/Target/TargetMachine.h" #include "llvm/ADT/BitVector.h" #include "llvm/ADT/SmallSet.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/Statistic.h" #include using namespace llvm; static cl::opt DisableSharing("no-stack-slot-sharing", cl::init(false), cl::Hidden, cl::desc("Suppress slot sharing during stack coloring")); static cl::opt ColorWithRegsOpt("color-ss-with-regs", cl::init(false), cl::Hidden, cl::desc("Color stack slots with free registers")); static cl::opt DCELimit("ssc-dce-limit", cl::init(-1), cl::Hidden); STATISTIC(NumEliminated, "Number of stack slots eliminated due to coloring"); STATISTIC(NumRegRepl, "Number of stack slot refs replaced with reg refs"); STATISTIC(NumLoadElim, "Number of loads eliminated"); STATISTIC(NumStoreElim, "Number of stores eliminated"); STATISTIC(NumDead, "Number of trivially dead stack accesses eliminated"); namespace { class StackSlotColoring : public MachineFunctionPass { bool ColorWithRegs; LiveStacks* LS; VirtRegMap* VRM; MachineFrameInfo *MFI; MachineRegisterInfo *MRI; const TargetInstrInfo *TII; const TargetRegisterInfo *TRI; const MachineLoopInfo *loopInfo; // SSIntervals - Spill slot intervals. std::vector SSIntervals; // SSRefs - Keep a list of frame index references for each spill slot. SmallVector, 16> SSRefs; // OrigAlignments - Alignments of stack objects before coloring. SmallVector OrigAlignments; // OrigSizes - Sizess of stack objects before coloring. SmallVector OrigSizes; // AllColors - If index is set, it's a spill slot, i.e. color. // FIXME: This assumes PEI locate spill slot with smaller indices // closest to stack pointer / frame pointer. Therefore, smaller // index == better color. BitVector AllColors; // NextColor - Next "color" that's not yet used. int NextColor; // UsedColors - "Colors" that have been assigned. BitVector UsedColors; // Assignments - Color to intervals mapping. SmallVector, 16> Assignments; public: static char ID; // Pass identification StackSlotColoring() : MachineFunctionPass(ID), ColorWithRegs(false), NextColor(-1) {} StackSlotColoring(bool RegColor) : MachineFunctionPass(ID), ColorWithRegs(RegColor), NextColor(-1) {} virtual void getAnalysisUsage(AnalysisUsage &AU) const { AU.setPreservesCFG(); AU.addRequired(); AU.addPreserved(); AU.addRequired(); AU.addRequired(); AU.addPreserved(); AU.addRequired(); AU.addPreserved(); AU.addPreservedID(MachineDominatorsID); MachineFunctionPass::getAnalysisUsage(AU); } virtual bool runOnMachineFunction(MachineFunction &MF); virtual const char* getPassName() const { return "Stack Slot Coloring"; } private: void InitializeSlots(); void ScanForSpillSlotRefs(MachineFunction &MF); bool OverlapWithAssignments(LiveInterval *li, int Color) const; int ColorSlot(LiveInterval *li); bool ColorSlots(MachineFunction &MF); bool ColorSlotsWithFreeRegs(SmallVector &SlotMapping, SmallVector, 16> &RevMap, BitVector &SlotIsReg); void RewriteInstruction(MachineInstr *MI, int OldFI, int NewFI, MachineFunction &MF); bool PropagateBackward(MachineBasicBlock::iterator MII, MachineBasicBlock *MBB, unsigned OldReg, unsigned NewReg); bool PropagateForward(MachineBasicBlock::iterator MII, MachineBasicBlock *MBB, unsigned OldReg, unsigned NewReg); void UnfoldAndRewriteInstruction(MachineInstr *MI, int OldFI, unsigned Reg, const TargetRegisterClass *RC, SmallSet &Defs, MachineFunction &MF); bool AllMemRefsCanBeUnfolded(int SS); bool RemoveDeadStores(MachineBasicBlock* MBB); }; } // end anonymous namespace char StackSlotColoring::ID = 0; INITIALIZE_PASS_BEGIN(StackSlotColoring, "stack-slot-coloring", "Stack Slot Coloring", false, false) INITIALIZE_PASS_DEPENDENCY(SlotIndexes) INITIALIZE_PASS_DEPENDENCY(LiveStacks) INITIALIZE_PASS_DEPENDENCY(VirtRegMap) INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) INITIALIZE_PASS_END(StackSlotColoring, "stack-slot-coloring", "Stack Slot Coloring", false, false) FunctionPass *llvm::createStackSlotColoringPass(bool RegColor) { return new StackSlotColoring(RegColor); } namespace { // IntervalSorter - Comparison predicate that sort live intervals by // their weight. struct IntervalSorter { bool operator()(LiveInterval* LHS, LiveInterval* RHS) const { return LHS->weight > RHS->weight; } }; } /// ScanForSpillSlotRefs - Scan all the machine instructions for spill slot /// references and update spill slot weights. void StackSlotColoring::ScanForSpillSlotRefs(MachineFunction &MF) { SSRefs.resize(MFI->getObjectIndexEnd()); // FIXME: Need the equivalent of MachineRegisterInfo for frameindex operands. for (MachineFunction::iterator MBBI = MF.begin(), E = MF.end(); MBBI != E; ++MBBI) { MachineBasicBlock *MBB = &*MBBI; unsigned loopDepth = loopInfo->getLoopDepth(MBB); for (MachineBasicBlock::iterator MII = MBB->begin(), EE = MBB->end(); MII != EE; ++MII) { MachineInstr *MI = &*MII; for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { MachineOperand &MO = MI->getOperand(i); if (!MO.isFI()) continue; int FI = MO.getIndex(); if (FI < 0) continue; if (!LS->hasInterval(FI)) continue; LiveInterval &li = LS->getInterval(FI); if (!MI->isDebugValue()) li.weight += LiveIntervals::getSpillWeight(false, true, loopDepth); SSRefs[FI].push_back(MI); } } } } /// InitializeSlots - Process all spill stack slot liveintervals and add them /// to a sorted (by weight) list. void StackSlotColoring::InitializeSlots() { int LastFI = MFI->getObjectIndexEnd(); OrigAlignments.resize(LastFI); OrigSizes.resize(LastFI); AllColors.resize(LastFI); UsedColors.resize(LastFI); Assignments.resize(LastFI); // Gather all spill slots into a list. DEBUG(dbgs() << "Spill slot intervals:\n"); for (LiveStacks::iterator i = LS->begin(), e = LS->end(); i != e; ++i) { LiveInterval &li = i->second; DEBUG(li.dump()); int FI = li.getStackSlotIndex(); if (MFI->isDeadObjectIndex(FI)) continue; SSIntervals.push_back(&li); OrigAlignments[FI] = MFI->getObjectAlignment(FI); OrigSizes[FI] = MFI->getObjectSize(FI); AllColors.set(FI); } DEBUG(dbgs() << '\n'); // Sort them by weight. std::stable_sort(SSIntervals.begin(), SSIntervals.end(), IntervalSorter()); // Get first "color". NextColor = AllColors.find_first(); } /// OverlapWithAssignments - Return true if LiveInterval overlaps with any /// LiveIntervals that have already been assigned to the specified color. bool StackSlotColoring::OverlapWithAssignments(LiveInterval *li, int Color) const { const SmallVector &OtherLIs = Assignments[Color]; for (unsigned i = 0, e = OtherLIs.size(); i != e; ++i) { LiveInterval *OtherLI = OtherLIs[i]; if (OtherLI->overlaps(*li)) return true; } return false; } /// ColorSlotsWithFreeRegs - If there are any free registers available, try /// replacing spill slots references with registers instead. bool StackSlotColoring::ColorSlotsWithFreeRegs(SmallVector &SlotMapping, SmallVector, 16> &RevMap, BitVector &SlotIsReg) { if (!(ColorWithRegs || ColorWithRegsOpt) || !VRM->HasUnusedRegisters()) return false; bool Changed = false; DEBUG(dbgs() << "Assigning unused registers to spill slots:\n"); for (unsigned i = 0, e = SSIntervals.size(); i != e; ++i) { LiveInterval *li = SSIntervals[i]; int SS = li->getStackSlotIndex(); if (!UsedColors[SS] || li->weight < 20) // If the weight is < 20, i.e. two references in a loop with depth 1, // don't bother with it. continue; // These slots allow to share the same registers. bool AllColored = true; SmallVector ColoredRegs; for (unsigned j = 0, ee = RevMap[SS].size(); j != ee; ++j) { int RSS = RevMap[SS][j]; const TargetRegisterClass *RC = LS->getIntervalRegClass(RSS); // If it's not colored to another stack slot, try coloring it // to a "free" register. if (!RC) { AllColored = false; continue; } unsigned Reg = VRM->getFirstUnusedRegister(RC); if (!Reg) { AllColored = false; continue; } if (!AllMemRefsCanBeUnfolded(RSS)) { AllColored = false; continue; } else { DEBUG(dbgs() << "Assigning fi#" << RSS << " to " << TRI->getName(Reg) << '\n'); ColoredRegs.push_back(Reg); SlotMapping[RSS] = Reg; SlotIsReg.set(RSS); Changed = true; } } // Register and its sub-registers are no longer free. while (!ColoredRegs.empty()) { unsigned Reg = ColoredRegs.back(); ColoredRegs.pop_back(); VRM->setRegisterUsed(Reg); // If reg is a callee-saved register, it will have to be spilled in // the prologue. MRI->setPhysRegUsed(Reg); for (const unsigned *AS = TRI->getAliasSet(Reg); *AS; ++AS) { VRM->setRegisterUsed(*AS); MRI->setPhysRegUsed(*AS); } } // This spill slot is dead after the rewrites if (AllColored) { MFI->RemoveStackObject(SS); ++NumEliminated; } } DEBUG(dbgs() << '\n'); return Changed; } /// ColorSlot - Assign a "color" (stack slot) to the specified stack slot. /// int StackSlotColoring::ColorSlot(LiveInterval *li) { int Color = -1; bool Share = false; if (!DisableSharing) { // Check if it's possible to reuse any of the used colors. Color = UsedColors.find_first(); while (Color != -1) { if (!OverlapWithAssignments(li, Color)) { Share = true; ++NumEliminated; break; } Color = UsedColors.find_next(Color); } } // Assign it to the first available color (assumed to be the best) if it's // not possible to share a used color with other objects. if (!Share) { assert(NextColor != -1 && "No more spill slots?"); Color = NextColor; UsedColors.set(Color); NextColor = AllColors.find_next(NextColor); } // Record the assignment. Assignments[Color].push_back(li); int FI = li->getStackSlotIndex(); DEBUG(dbgs() << "Assigning fi#" << FI << " to fi#" << Color << "\n"); // Change size and alignment of the allocated slot. If there are multiple // objects sharing the same slot, then make sure the size and alignment // are large enough for all. unsigned Align = OrigAlignments[FI]; if (!Share || Align > MFI->getObjectAlignment(Color)) MFI->setObjectAlignment(Color, Align); int64_t Size = OrigSizes[FI]; if (!Share || Size > MFI->getObjectSize(Color)) MFI->setObjectSize(Color, Size); return Color; } /// Colorslots - Color all spill stack slots and rewrite all frameindex machine /// operands in the function. bool StackSlotColoring::ColorSlots(MachineFunction &MF) { unsigned NumObjs = MFI->getObjectIndexEnd(); SmallVector SlotMapping(NumObjs, -1); SmallVector SlotWeights(NumObjs, 0.0); SmallVector, 16> RevMap(NumObjs); BitVector SlotIsReg(NumObjs); BitVector UsedColors(NumObjs); DEBUG(dbgs() << "Color spill slot intervals:\n"); bool Changed = false; for (unsigned i = 0, e = SSIntervals.size(); i != e; ++i) { LiveInterval *li = SSIntervals[i]; int SS = li->getStackSlotIndex(); int NewSS = ColorSlot(li); assert(NewSS >= 0 && "Stack coloring failed?"); SlotMapping[SS] = NewSS; RevMap[NewSS].push_back(SS); SlotWeights[NewSS] += li->weight; UsedColors.set(NewSS); Changed |= (SS != NewSS); } DEBUG(dbgs() << "\nSpill slots after coloring:\n"); for (unsigned i = 0, e = SSIntervals.size(); i != e; ++i) { LiveInterval *li = SSIntervals[i]; int SS = li->getStackSlotIndex(); li->weight = SlotWeights[SS]; } // Sort them by new weight. std::stable_sort(SSIntervals.begin(), SSIntervals.end(), IntervalSorter()); #ifndef NDEBUG for (unsigned i = 0, e = SSIntervals.size(); i != e; ++i) DEBUG(SSIntervals[i]->dump()); DEBUG(dbgs() << '\n'); #endif // Can we "color" a stack slot with a unused register? Changed |= ColorSlotsWithFreeRegs(SlotMapping, RevMap, SlotIsReg); if (!Changed) return false; // Rewrite all MO_FrameIndex operands. SmallVector, 4> NewDefs(MF.getNumBlockIDs()); for (unsigned SS = 0, SE = SSRefs.size(); SS != SE; ++SS) { bool isReg = SlotIsReg[SS]; int NewFI = SlotMapping[SS]; if (NewFI == -1 || (NewFI == (int)SS && !isReg)) continue; const TargetRegisterClass *RC = LS->getIntervalRegClass(SS); SmallVector &RefMIs = SSRefs[SS]; for (unsigned i = 0, e = RefMIs.size(); i != e; ++i) if (!isReg) RewriteInstruction(RefMIs[i], SS, NewFI, MF); else { // Rewrite to use a register instead. unsigned MBBId = RefMIs[i]->getParent()->getNumber(); SmallSet &Defs = NewDefs[MBBId]; UnfoldAndRewriteInstruction(RefMIs[i], SS, NewFI, RC, Defs, MF); } } // Delete unused stack slots. while (NextColor != -1) { DEBUG(dbgs() << "Removing unused stack object fi#" << NextColor << "\n"); MFI->RemoveStackObject(NextColor); NextColor = AllColors.find_next(NextColor); } return true; } /// AllMemRefsCanBeUnfolded - Return true if all references of the specified /// spill slot index can be unfolded. bool StackSlotColoring::AllMemRefsCanBeUnfolded(int SS) { SmallVector &RefMIs = SSRefs[SS]; for (unsigned i = 0, e = RefMIs.size(); i != e; ++i) { MachineInstr *MI = RefMIs[i]; if (TII->isLoadFromStackSlot(MI, SS) || TII->isStoreToStackSlot(MI, SS)) // Restore and spill will become copies. return true; if (!TII->getOpcodeAfterMemoryUnfold(MI->getOpcode(), false, false)) return false; for (unsigned j = 0, ee = MI->getNumOperands(); j != ee; ++j) { MachineOperand &MO = MI->getOperand(j); if (MO.isFI() && MO.getIndex() != SS) // If it uses another frameindex, we can, currently* unfold it. return false; } } return true; } /// RewriteInstruction - Rewrite specified instruction by replacing references /// to old frame index with new one. void StackSlotColoring::RewriteInstruction(MachineInstr *MI, int OldFI, int NewFI, MachineFunction &MF) { // Update the operands. for (unsigned i = 0, ee = MI->getNumOperands(); i != ee; ++i) { MachineOperand &MO = MI->getOperand(i); if (!MO.isFI()) continue; int FI = MO.getIndex(); if (FI != OldFI) continue; MO.setIndex(NewFI); } // Update the memory references. This changes the MachineMemOperands // directly. They may be in use by multiple instructions, however all // instructions using OldFI are being rewritten to use NewFI. const Value *OldSV = PseudoSourceValue::getFixedStack(OldFI); const Value *NewSV = PseudoSourceValue::getFixedStack(NewFI); for (MachineInstr::mmo_iterator I = MI->memoperands_begin(), E = MI->memoperands_end(); I != E; ++I) if ((*I)->getValue() == OldSV) (*I)->setValue(NewSV); } /// PropagateBackward - Traverse backward and look for the definition of /// OldReg. If it can successfully update all of the references with NewReg, /// do so and return true. bool StackSlotColoring::PropagateBackward(MachineBasicBlock::iterator MII, MachineBasicBlock *MBB, unsigned OldReg, unsigned NewReg) { if (MII == MBB->begin()) return false; SmallVector Uses; SmallVector Refs; while (--MII != MBB->begin()) { bool FoundDef = false; // Not counting 2address def. Uses.clear(); const TargetInstrDesc &TID = MII->getDesc(); for (unsigned i = 0, e = MII->getNumOperands(); i != e; ++i) { MachineOperand &MO = MII->getOperand(i); if (!MO.isReg()) continue; unsigned Reg = MO.getReg(); if (Reg == 0) continue; if (Reg == OldReg) { if (MO.isImplicit()) return false; // Abort the use is actually a sub-register def. We don't have enough // information to figure out if it is really legal. if (MO.getSubReg() || MII->isSubregToReg()) return false; const TargetRegisterClass *RC = TID.OpInfo[i].getRegClass(TRI); if (RC && !RC->contains(NewReg)) return false; if (MO.isUse()) { Uses.push_back(&MO); } else { Refs.push_back(&MO); if (!MII->isRegTiedToUseOperand(i)) FoundDef = true; } } else if (TRI->regsOverlap(Reg, NewReg)) { return false; } else if (TRI->regsOverlap(Reg, OldReg)) { if (!MO.isUse() || !MO.isKill()) return false; } } if (FoundDef) { // Found non-two-address def. Stop here. for (unsigned i = 0, e = Refs.size(); i != e; ++i) Refs[i]->setReg(NewReg); return true; } // Two-address uses must be updated as well. for (unsigned i = 0, e = Uses.size(); i != e; ++i) Refs.push_back(Uses[i]); } return false; } /// PropagateForward - Traverse forward and look for the kill of OldReg. If /// it can successfully update all of the uses with NewReg, do so and /// return true. bool StackSlotColoring::PropagateForward(MachineBasicBlock::iterator MII, MachineBasicBlock *MBB, unsigned OldReg, unsigned NewReg) { if (MII == MBB->end()) return false; SmallVector Uses; while (++MII != MBB->end()) { bool FoundKill = false; const TargetInstrDesc &TID = MII->getDesc(); for (unsigned i = 0, e = MII->getNumOperands(); i != e; ++i) { MachineOperand &MO = MII->getOperand(i); if (!MO.isReg()) continue; unsigned Reg = MO.getReg(); if (Reg == 0) continue; if (Reg == OldReg) { if (MO.isDef() || MO.isImplicit()) return false; // Abort the use is actually a sub-register use. We don't have enough // information to figure out if it is really legal. if (MO.getSubReg()) return false; const TargetRegisterClass *RC = TID.OpInfo[i].getRegClass(TRI); if (RC && !RC->contains(NewReg)) return false; if (MO.isKill()) FoundKill = true; Uses.push_back(&MO); } else if (TRI->regsOverlap(Reg, NewReg) || TRI->regsOverlap(Reg, OldReg)) return false; } if (FoundKill) { for (unsigned i = 0, e = Uses.size(); i != e; ++i) Uses[i]->setReg(NewReg); return true; } } return false; } /// UnfoldAndRewriteInstruction - Rewrite specified instruction by unfolding /// folded memory references and replacing those references with register /// references instead. void StackSlotColoring::UnfoldAndRewriteInstruction(MachineInstr *MI, int OldFI, unsigned Reg, const TargetRegisterClass *RC, SmallSet &Defs, MachineFunction &MF) { MachineBasicBlock *MBB = MI->getParent(); if (unsigned DstReg = TII->isLoadFromStackSlot(MI, OldFI)) { if (PropagateForward(MI, MBB, DstReg, Reg)) { DEBUG(dbgs() << "Eliminated load: "); DEBUG(MI->dump()); ++NumLoadElim; } else { BuildMI(*MBB, MI, MI->getDebugLoc(), TII->get(TargetOpcode::COPY), DstReg).addReg(Reg); ++NumRegRepl; } if (!Defs.count(Reg)) { // If this is the first use of Reg in this MBB and it wasn't previously // defined in MBB, add it to livein. MBB->addLiveIn(Reg); Defs.insert(Reg); } } else if (unsigned SrcReg = TII->isStoreToStackSlot(MI, OldFI)) { if (MI->killsRegister(SrcReg) && PropagateBackward(MI, MBB, SrcReg, Reg)) { DEBUG(dbgs() << "Eliminated store: "); DEBUG(MI->dump()); ++NumStoreElim; } else { BuildMI(*MBB, MI, MI->getDebugLoc(), TII->get(TargetOpcode::COPY), Reg) .addReg(SrcReg); ++NumRegRepl; } // Remember reg has been defined in MBB. Defs.insert(Reg); } else { SmallVector NewMIs; bool Success = TII->unfoldMemoryOperand(MF, MI, Reg, false, false, NewMIs); Success = Success; // Silence compiler warning. assert(Success && "Failed to unfold!"); MachineInstr *NewMI = NewMIs[0]; MBB->insert(MI, NewMI); ++NumRegRepl; if (NewMI->readsRegister(Reg)) { if (!Defs.count(Reg)) // If this is the first use of Reg in this MBB and it wasn't previously // defined in MBB, add it to livein. MBB->addLiveIn(Reg); Defs.insert(Reg); } } MBB->erase(MI); } /// RemoveDeadStores - Scan through a basic block and look for loads followed /// by stores. If they're both using the same stack slot, then the store is /// definitely dead. This could obviously be much more aggressive (consider /// pairs with instructions between them), but such extensions might have a /// considerable compile time impact. bool StackSlotColoring::RemoveDeadStores(MachineBasicBlock* MBB) { // FIXME: This could be much more aggressive, but we need to investigate // the compile time impact of doing so. bool changed = false; SmallVector toErase; for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end(); I != E; ++I) { if (DCELimit != -1 && (int)NumDead >= DCELimit) break; MachineBasicBlock::iterator NextMI = llvm::next(I); if (NextMI == MBB->end()) continue; int FirstSS, SecondSS; unsigned LoadReg = 0; unsigned StoreReg = 0; if (!(LoadReg = TII->isLoadFromStackSlot(I, FirstSS))) continue; if (!(StoreReg = TII->isStoreToStackSlot(NextMI, SecondSS))) continue; if (FirstSS != SecondSS || LoadReg != StoreReg || FirstSS == -1) continue; ++NumDead; changed = true; if (NextMI->findRegisterUseOperandIdx(LoadReg, true, 0) != -1) { ++NumDead; toErase.push_back(I); } toErase.push_back(NextMI); ++I; } for (SmallVector::iterator I = toErase.begin(), E = toErase.end(); I != E; ++I) (*I)->eraseFromParent(); return changed; } bool StackSlotColoring::runOnMachineFunction(MachineFunction &MF) { DEBUG({ dbgs() << "********** Stack Slot Coloring **********\n" << "********** Function: " << MF.getFunction()->getName() << '\n'; }); MFI = MF.getFrameInfo(); MRI = &MF.getRegInfo(); TII = MF.getTarget().getInstrInfo(); TRI = MF.getTarget().getRegisterInfo(); LS = &getAnalysis(); VRM = &getAnalysis(); loopInfo = &getAnalysis(); bool Changed = false; unsigned NumSlots = LS->getNumIntervals(); if (NumSlots < 2) { if (NumSlots == 0 || !VRM->HasUnusedRegisters()) // Nothing to do! return false; } // If there are calls to setjmp or sigsetjmp, don't perform stack slot // coloring. The stack could be modified before the longjmp is executed, // resulting in the wrong value being used afterwards. (See // .) if (MF.callsSetJmp()) return false; // Gather spill slot references ScanForSpillSlotRefs(MF); InitializeSlots(); Changed = ColorSlots(MF); NextColor = -1; SSIntervals.clear(); for (unsigned i = 0, e = SSRefs.size(); i != e; ++i) SSRefs[i].clear(); SSRefs.clear(); OrigAlignments.clear(); OrigSizes.clear(); AllColors.clear(); UsedColors.clear(); for (unsigned i = 0, e = Assignments.size(); i != e; ++i) Assignments[i].clear(); Assignments.clear(); if (Changed) { for (MachineFunction::iterator I = MF.begin(), E = MF.end(); I != E; ++I) Changed |= RemoveDeadStores(I); } return Changed; }