//===-- ModuloSchedulingSuperBlock.cpp - ModuloScheduling--------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file was developed by the LLVM research group and is distributed under // the University of Illinois Open Source License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This ModuloScheduling pass is based on the Swing Modulo Scheduling // algorithm, but has been extended to support SuperBlocks (multiple // basic block, single entry, multipl exit loops). // //===----------------------------------------------------------------------===// #define DEBUG_TYPE "ModuloSchedSB" #include "DependenceAnalyzer.h" #include "ModuloSchedulingSuperBlock.h" #include "llvm/Constants.h" #include "llvm/ADT/Statistic.h" #include "llvm/CodeGen/MachineFunction.h" #include "llvm/CodeGen/Passes.h" #include "llvm/Support/CFG.h" #include "llvm/Support/Debug.h" #include "llvm/Support/GraphWriter.h" #include "llvm/Support/Timer.h" #include "llvm/ADT/StringExtras.h" #include "llvm/ADT/SCCIterator.h" #include "llvm/Instructions.h" #include "../MachineCodeForInstruction.h" #include "../SparcV9RegisterInfo.h" #include "../SparcV9Internals.h" #include "../SparcV9TmpInstr.h" #include #include #include #include using namespace llvm; /// Create ModuloSchedulingSBPass /// FunctionPass *llvm::createModuloSchedulingSBPass(TargetMachine & targ) { DEBUG(std::cerr << "Created ModuloSchedulingSBPass\n"); return new ModuloSchedulingSBPass(targ); } #if 1 #define TIME_REGION(VARNAME, DESC) \ NamedRegionTimer VARNAME(DESC) #else #define TIME_REGION(VARNAME, DESC) #endif //Graph Traits for printing out the dependence graph template static void WriteGraphToFileSB(std::ostream &O, const std::string &GraphName, const GraphType >) { std::string Filename = GraphName + ".dot"; O << "Writing '" << Filename << "'..."; std::ofstream F(Filename.c_str()); if (F.good()) WriteGraph(F, GT); else O << " error opening file for writing!"; O << "\n"; }; namespace llvm { Statistic<> NumLoops("moduloschedSB-numLoops", "Total Number of Loops"); Statistic<> NumSB("moduloschedSB-numSuperBlocks", "Total Number of SuperBlocks"); Statistic<> BBWithCalls("modulosched-BBCalls", "Basic Blocks rejected due to calls"); Statistic<> BBWithCondMov("modulosched-loopCondMov", "Basic Blocks rejected due to conditional moves"); Statistic<> SBResourceConstraint("modulosched-resourceConstraint", "Loops constrained by resources"); Statistic<> SBRecurrenceConstraint("modulosched-recurrenceConstraint", "Loops constrained by recurrences"); Statistic<> SBFinalIISum("modulosched-finalIISum", "Sum of all final II"); Statistic<> SBIISum("modulosched-IISum", "Sum of all theoretical II"); Statistic<> SBMSLoops("modulosched-schedLoops", "Number of loops successfully modulo-scheduled"); Statistic<> SBNoSched("modulosched-noSched", "No schedule"); Statistic<> SBSameStage("modulosched-sameStage", "Max stage is 0"); Statistic<> SBBLoops("modulosched-SBBLoops", "Number single basic block loops"); Statistic<> SBInvalid("modulosched-SBInvalid", "Number invalid superblock loops"); Statistic<> SBValid("modulosched-SBValid", "Number valid superblock loops"); Statistic<> SBSize("modulosched-SBSize", "Total size of all valid superblocks"); template<> struct DOTGraphTraits : public DefaultDOTGraphTraits { static std::string getGraphName(MSchedGraphSB *F) { return "Dependence Graph"; } static std::string getNodeLabel(MSchedGraphSBNode *Node, MSchedGraphSB *Graph) { if(!Node->isPredicate()) { if (Node->getInst()) { std::stringstream ss; ss << *(Node->getInst()); return ss.str(); //((MachineInstr*)Node->getInst()); } else return "No Inst"; } else return "Pred Node"; } static std::string getEdgeSourceLabel(MSchedGraphSBNode *Node, MSchedGraphSBNode::succ_iterator I) { //Label each edge with the type of dependence std::string edgelabel = ""; switch (I.getEdge().getDepOrderType()) { case MSchedGraphSBEdge::TrueDep: edgelabel = "True"; break; case MSchedGraphSBEdge::AntiDep: edgelabel = "Anti"; break; case MSchedGraphSBEdge::OutputDep: edgelabel = "Output"; break; case MSchedGraphSBEdge::NonDataDep: edgelabel = "Pred"; break; default: edgelabel = "Unknown"; break; } //FIXME int iteDiff = I.getEdge().getIteDiff(); std::string intStr = "(IteDiff: "; intStr += itostr(iteDiff); intStr += ")"; edgelabel += intStr; return edgelabel; } }; bool ModuloSchedulingSBPass::runOnFunction(Function &F) { bool Changed = false; //Get MachineFunction MachineFunction &MF = MachineFunction::get(&F); //Get Loop Info & Dependence Anaysis info LoopInfo &LI = getAnalysis(); DependenceAnalyzer &DA = getAnalysis(); //Worklist of superblocks std::vector > Worklist; FindSuperBlocks(F, LI, Worklist); DEBUG(if(Worklist.size() == 0) std::cerr << "No superblocks in function to ModuloSchedule\n"); //Loop over worklist and ModuloSchedule each SuperBlock for(std::vector >::iterator SB = Worklist.begin(), SBE = Worklist.end(); SB != SBE; ++SB) { //Print out Superblock DEBUG(std::cerr << "ModuloScheduling SB: \n"; for(std::vector::const_iterator BI = SB->begin(), BE = SB->end(); BI != BE; ++BI) { (*BI)->print(std::cerr);}); if(!CreateDefMap(*SB)) { defaultInst = 0; defMap.clear(); continue; } MSchedGraphSB *MSG = new MSchedGraphSB(*SB, target, indVarInstrs[*SB], DA, machineTollvm[*SB]); //Write Graph out to file DEBUG(WriteGraphToFileSB(std::cerr, F.getName(), MSG)); //Calculate Resource II int ResMII = calculateResMII(*SB); //Calculate Recurrence II int RecMII = calculateRecMII(MSG, ResMII); DEBUG(std::cerr << "Number of reccurrences found: " << recurrenceList.size() << "\n"); //Our starting initiation interval is the maximum of RecMII and ResMII if(RecMII < ResMII) ++SBRecurrenceConstraint; else ++SBResourceConstraint; II = std::max(RecMII, ResMII); int mII = II; //Print out II, RecMII, and ResMII DEBUG(std::cerr << "II starts out as " << II << " ( RecMII=" << RecMII << " and ResMII=" << ResMII << ")\n"); //Calculate Node Properties calculateNodeAttributes(MSG, ResMII); //Dump node properties if in debug mode DEBUG(for(std::map::iterator I = nodeToAttributesMap.begin(), E = nodeToAttributesMap.end(); I !=E; ++I) { std::cerr << "Node: " << *(I->first) << " ASAP: " << I->second.ASAP << " ALAP: " << I->second.ALAP << " MOB: " << I->second.MOB << " Depth: " << I->second.depth << " Height: " << I->second.height << "\n"; }); //Put nodes in order to schedule them computePartialOrder(); //Dump out partial order DEBUG(for(std::vector >::iterator I = partialOrder.begin(), E = partialOrder.end(); I !=E; ++I) { std::cerr << "Start set in PO\n"; for(std::set::iterator J = I->begin(), JE = I->end(); J != JE; ++J) std::cerr << "PO:" << **J << "\n"; }); //Place nodes in final order orderNodes(); //Dump out order of nodes DEBUG(for(std::vector::iterator I = FinalNodeOrder.begin(), E = FinalNodeOrder.end(); I != E; ++I) { std::cerr << "FO:" << **I << "\n"; }); //Finally schedule nodes bool haveSched = computeSchedule(*SB, MSG); //Print out final schedule DEBUG(schedule.print(std::cerr)); //Final scheduling step is to reconstruct the loop only if we actual have //stage > 0 if(haveSched) { //schedule.printSchedule(std::cerr); reconstructLoop(*SB); ++SBMSLoops; //Changed = true; SBIISum += mII; SBFinalIISum += II; if(schedule.getMaxStage() == 0) ++SBSameStage; } else ++SBNoSched; //Clear out our maps for the next basic block that is processed nodeToAttributesMap.clear(); partialOrder.clear(); recurrenceList.clear(); FinalNodeOrder.clear(); schedule.clear(); defMap.clear(); } return Changed; } void ModuloSchedulingSBPass::FindSuperBlocks(Function &F, LoopInfo &LI, std::vector > &Worklist) { //Get MachineFunction MachineFunction &MF = MachineFunction::get(&F); //Map of LLVM BB to machine BB std::map bbMap; for (MachineFunction::iterator BI = MF.begin(); BI != MF.end(); ++BI) { BasicBlock *llvmBB = (BasicBlock*) BI->getBasicBlock(); assert(!bbMap.count(llvmBB) && "LLVM BB already in map!"); bbMap[llvmBB] = &*BI; } //Iterate over the loops, and find super blocks for(LoopInfo::iterator LB = LI.begin(), LE = LI.end(); LB != LE; ++LB) { Loop *L = *LB; ++NumLoops; //If loop is not single entry, try the next one if(!L->getLoopPreheader()) continue; //Check size of this loop, we don't want SBB loops if(L->getBlocks().size() == 1) continue; //Check if this loop contains no sub loops if(L->getSubLoops().size() == 0) { std::vector superBlock; //Get Loop Headers BasicBlock *header = L->getHeader(); //Follow the header and make sure each BB only has one entry and is valid BasicBlock *current = header; assert(bbMap.count(current) && "LLVM BB must have corresponding Machine BB\n"); MachineBasicBlock *currentMBB = bbMap[header]; bool done = false; bool success = true; unsigned offset = 0; std::map indexMap; while(!done) { //Loop over successors of this BB, they should be in the //loop block and be valid BasicBlock *next = 0; for(succ_iterator I = succ_begin(current), E = succ_end(current); I != E; ++I) { if(L->contains(*I)) { if(!next) next = *I; else { done = true; success = false; break; } } } if(success) { superBlock.push_back(currentMBB); if(next == header) done = true; else if(!next->getSinglePredecessor()) { done = true; success = false; } else { //Check that the next BB only has one entry current = next; assert(bbMap.count(current) && "LLVM BB must have corresponding Machine BB"); currentMBB = bbMap[current]; } } } if(success) { ++NumSB; //Loop over all the blocks in the superblock for(std::vector::iterator currentMBB = superBlock.begin(), MBBEnd = superBlock.end(); currentMBB != MBBEnd; ++currentMBB) { if(!MachineBBisValid(*currentMBB, indexMap, offset)) { success = false; break; } } } if(success) { if(getIndVar(superBlock, bbMap, indexMap)) { ++SBValid; Worklist.push_back(superBlock); SBSize += superBlock.size(); } else ++SBInvalid; } } } } bool ModuloSchedulingSBPass::getIndVar(std::vector &superBlock, std::map &bbMap, std::map &indexMap) { //See if we can get induction var instructions std::set llvmSuperBlock; for(unsigned i =0; i < superBlock.size(); ++i) llvmSuperBlock.insert(superBlock[i]->getBasicBlock()); //Get Target machine instruction info const TargetInstrInfo *TMI = target.getInstrInfo(); //Get the loop back branch BranchInst *b = dyn_cast(((BasicBlock*) (superBlock[superBlock.size()-1])->getBasicBlock())->getTerminator()); std::set indVar; if(b->isConditional()) { //Get the condition for the branch Value *cond = b->getCondition(); DEBUG(std::cerr << "Condition: " << *cond << "\n"); //List of instructions associated with induction variable std::vector stack; //Add branch indVar.insert(b); if(Instruction *I = dyn_cast(cond)) if(bbMap.count(I->getParent())) { if (!assocIndVar(I, indVar, stack, bbMap, superBlock[(superBlock.size()-1)]->getBasicBlock(), llvmSuperBlock)) return false; } else return false; else return false; } else { indVar.insert(b); } //Dump out instructions associate with indvar for debug reasons DEBUG(for(std::set::iterator N = indVar.begin(), NE = indVar.end(); N != NE; ++N) { std::cerr << **N << "\n"; }); //Create map of machine instr to llvm instr std::map mllvm; for(std::vector::iterator MBB = superBlock.begin(), MBE = superBlock.end(); MBB != MBE; ++MBB) { BasicBlock *BB = (BasicBlock*) (*MBB)->getBasicBlock(); for(BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) { MachineCodeForInstruction & tempMvec = MachineCodeForInstruction::get(I); for (unsigned j = 0; j < tempMvec.size(); j++) { mllvm[tempMvec[j]] = I; } } } //Convert list of LLVM Instructions to list of Machine instructions std::map mIndVar; for(std::set::iterator N = indVar.begin(), NE = indVar.end(); N != NE; ++N) { //If we have a load, we can't handle this loop because //there is no way to preserve dependences between loads //and stores if(isa(*N)) return false; MachineCodeForInstruction & tempMvec = MachineCodeForInstruction::get(*N); for (unsigned j = 0; j < tempMvec.size(); j++) { MachineOpCode OC = (tempMvec[j])->getOpcode(); if(TMI->isNop(OC)) continue; if(!indexMap.count(tempMvec[j])) continue; mIndVar[(MachineInstr*) tempMvec[j]] = indexMap[(MachineInstr*) tempMvec[j]]; DEBUG(std::cerr << *(tempMvec[j]) << " at index " << indexMap[(MachineInstr*) tempMvec[j]] << "\n"); } } //Put into a map for future access indVarInstrs[superBlock] = mIndVar; machineTollvm[superBlock] = mllvm; return true; } bool ModuloSchedulingSBPass::assocIndVar(Instruction *I, std::set &indVar, std::vector &stack, std::map &bbMap, const BasicBlock *last, std::set &llvmSuperBlock) { stack.push_back(I); //If this is a phi node, check if its the canonical indvar if(PHINode *PN = dyn_cast(I)) { if(llvmSuperBlock.count(PN->getParent())) { if (Instruction *Inc = dyn_cast(PN->getIncomingValueForBlock(last))) if (Inc->getOpcode() == Instruction::Add && Inc->getOperand(0) == PN) if (ConstantInt *CI = dyn_cast(Inc->getOperand(1))) if (CI->equalsInt(1)) { //We have found the indvar, so add the stack, and inc instruction to the set indVar.insert(stack.begin(), stack.end()); indVar.insert(Inc); stack.pop_back(); return true; } return false; } } else { //Loop over each of the instructions operands, check if they are an instruction and in this BB for(unsigned i = 0; i < I->getNumOperands(); ++i) { if(Instruction *N = dyn_cast(I->getOperand(i))) { if(bbMap.count(N->getParent())) if(!assocIndVar(N, indVar, stack, bbMap, last, llvmSuperBlock)) return false; } } } stack.pop_back(); return true; } /// This function checks if a Machine Basic Block is valid for modulo /// scheduling. This means that it has no control flow (if/else or /// calls) in the block. Currently ModuloScheduling only works on /// single basic block loops. bool ModuloSchedulingSBPass::MachineBBisValid(const MachineBasicBlock *BI, std::map &indexMap, unsigned &offset) { //Check size of our basic block.. make sure we have more then just the terminator in it if(BI->getBasicBlock()->size() == 1) return false; //Get Target machine instruction info const TargetInstrInfo *TMI = target.getInstrInfo(); unsigned count = 0; for(MachineBasicBlock::const_iterator I = BI->begin(), E = BI->end(); I != E; ++I) { //Get opcode to check instruction type MachineOpCode OC = I->getOpcode(); //Look for calls if(TMI->isCall(OC)) { ++BBWithCalls; return false; } //Look for conditional move if(OC == V9::MOVRZr || OC == V9::MOVRZi || OC == V9::MOVRLEZr || OC == V9::MOVRLEZi || OC == V9::MOVRLZr || OC == V9::MOVRLZi || OC == V9::MOVRNZr || OC == V9::MOVRNZi || OC == V9::MOVRGZr || OC == V9::MOVRGZi || OC == V9::MOVRGEZr || OC == V9::MOVRGEZi || OC == V9::MOVLEr || OC == V9::MOVLEi || OC == V9::MOVLEUr || OC == V9::MOVLEUi || OC == V9::MOVFLEr || OC == V9::MOVFLEi || OC == V9::MOVNEr || OC == V9::MOVNEi || OC == V9::MOVNEGr || OC == V9::MOVNEGi || OC == V9::MOVFNEr || OC == V9::MOVFNEi) { ++BBWithCondMov; return false; } indexMap[I] = count + offset; if(TMI->isNop(OC)) continue; ++count; } offset += count; return true; } } bool ModuloSchedulingSBPass::CreateDefMap(std::vector &SB) { defaultInst = 0; for(std::vector::iterator BI = SB.begin(), BE = SB.end(); BI != BE; ++BI) { for(MachineBasicBlock::const_iterator I = (*BI)->begin(), E = (*BI)->end(); I != E; ++I) { for(unsigned opNum = 0; opNum < I->getNumOperands(); ++opNum) { const MachineOperand &mOp = I->getOperand(opNum); if(mOp.getType() == MachineOperand::MO_VirtualRegister && mOp.isDef()) { Value *V = mOp.getVRegValue(); //assert if this is the second def we have seen if(defMap.count(V) && isa(V)) DEBUG(std::cerr << "FIXME: Dup def for phi!\n"); else { //assert(!defMap.count(V) && "Def already in the map"); if(defMap.count(V)) return false; defMap[V] = (MachineInstr*) &*I; } } //See if we can use this Value* as our defaultInst if(!defaultInst && mOp.getType() == MachineOperand::MO_VirtualRegister) { Value *V = mOp.getVRegValue(); if(!isa(V) && !isa(V) && !isa(V) && !isa(V)) defaultInst = (Instruction*) V; } } } } if(!defaultInst) return false; return true; } //ResMII is calculated by determining the usage count for each resource //and using the maximum. //FIXME: In future there should be a way to get alternative resources //for each instruction int ModuloSchedulingSBPass::calculateResMII(std::vector &superBlock) { TIME_REGION(X, "calculateResMII"); const TargetInstrInfo *mii = target.getInstrInfo(); const TargetSchedInfo *msi = target.getSchedInfo(); int ResMII = 0; //Map to keep track of usage count of each resource std::map resourceUsageCount; for(std::vector::iterator BI = superBlock.begin(), BE = superBlock.end(); BI != BE; ++BI) { for(MachineBasicBlock::const_iterator I = (*BI)->begin(), E = (*BI)->end(); I != E; ++I) { //Get resource usage for this instruction InstrRUsage rUsage = msi->getInstrRUsage(I->getOpcode()); std::vector > resources = rUsage.resourcesByCycle; //Loop over resources in each cycle and increments their usage count for(unsigned i=0; i < resources.size(); ++i) for(unsigned j=0; j < resources[i].size(); ++j) { if(!resourceUsageCount.count(resources[i][j])) { resourceUsageCount[resources[i][j]] = 1; } else { resourceUsageCount[resources[i][j]] = resourceUsageCount[resources[i][j]] + 1; } } } } //Find maximum usage count //Get max number of instructions that can be issued at once. (FIXME) int issueSlots = msi->maxNumIssueTotal; for(std::map::iterator RB = resourceUsageCount.begin(), RE = resourceUsageCount.end(); RB != RE; ++RB) { //Get the total number of the resources in our cpu int resourceNum = CPUResource::getCPUResource(RB->first)->maxNumUsers; //Get total usage count for this resources unsigned usageCount = RB->second; //Divide the usage count by either the max number we can issue or the number of //resources (whichever is its upper bound) double finalUsageCount; DEBUG(std::cerr << "Resource Num: " << RB->first << " Usage: " << usageCount << " TotalNum: " << resourceNum << "\n"); if( resourceNum <= issueSlots) finalUsageCount = ceil(1.0 * usageCount / resourceNum); else finalUsageCount = ceil(1.0 * usageCount / issueSlots); //Only keep track of the max ResMII = std::max( (int) finalUsageCount, ResMII); } return ResMII; } /// calculateRecMII - Calculates the value of the highest recurrence /// By value we mean the total latency/distance int ModuloSchedulingSBPass::calculateRecMII(MSchedGraphSB *graph, int MII) { TIME_REGION(X, "calculateRecMII"); findAllCircuits(graph, MII); int RecMII = 0; for(std::set > >::iterator I = recurrenceList.begin(), E=recurrenceList.end(); I !=E; ++I) { RecMII = std::max(RecMII, I->first); } return MII; } int CircCountSB; void ModuloSchedulingSBPass::unblock(MSchedGraphSBNode *u, std::set &blocked, std::map > &B) { //Unblock u DEBUG(std::cerr << "Unblocking: " << *u << "\n"); blocked.erase(u); //std::set toErase; while (!B[u].empty()) { MSchedGraphSBNode *W = *B[u].begin(); B[u].erase(W); //toErase.insert(*W); DEBUG(std::cerr << "Removed: " << *W << "from B-List\n"); if(blocked.count(W)) unblock(W, blocked, B); } } void ModuloSchedulingSBPass::addSCC(std::vector &SCC, std::map &newNodes) { int totalDelay = 0; int totalDistance = 0; std::vector recc; MSchedGraphSBNode *start = 0; MSchedGraphSBNode *end = 0; //Loop over recurrence, get delay and distance for(std::vector::iterator N = SCC.begin(), NE = SCC.end(); N != NE; ++N) { DEBUG(std::cerr << **N << "\n"); totalDelay += (*N)->getLatency(); for(unsigned i = 0; i < (*N)->succ_size(); ++i) { MSchedGraphSBEdge *edge = (*N)->getSuccessor(i); if(find(SCC.begin(), SCC.end(), edge->getDest()) != SCC.end()) { totalDistance += edge->getIteDiff(); if(edge->getIteDiff() > 0) if(!start && !end) { start = *N; end = edge->getDest(); } } } //Get the original node recc.push_back(newNodes[*N]); } DEBUG(std::cerr << "End Recc\n"); assert( (start && end) && "Must have start and end node to ignore edge for SCC"); if(start && end) { //Insert reccurrence into the list DEBUG(std::cerr << "Ignore Edge from!!: " << *start << " to " << *end << "\n"); edgesToIgnore.insert(std::make_pair(newNodes[start], (newNodes[end])->getInEdgeNum(newNodes[start]))); } int lastII = totalDelay / totalDistance; recurrenceList.insert(std::make_pair(lastII, recc)); } bool ModuloSchedulingSBPass::circuit(MSchedGraphSBNode *v, std::vector &stack, std::set &blocked, std::vector &SCC, MSchedGraphSBNode *s, std::map > &B, int II, std::map &newNodes) { bool f = false; DEBUG(std::cerr << "Finding Circuits Starting with: ( " << v << ")"<< *v << "\n"); //Push node onto the stack stack.push_back(v); //block this node blocked.insert(v); //Loop over all successors of node v that are in the scc, create Adjaceny list std::set AkV; for(MSchedGraphSBNode::succ_iterator I = v->succ_begin(), E = v->succ_end(); I != E; ++I) { if((std::find(SCC.begin(), SCC.end(), *I) != SCC.end())) { AkV.insert(*I); } } for(std::set::iterator I = AkV.begin(), E = AkV.end(); I != E; ++I) { if(*I == s) { //We have a circuit, so add it to our list addRecc(stack, newNodes); f = true; } else if(!blocked.count(*I)) { if(circuit(*I, stack, blocked, SCC, s, B, II, newNodes)) f = true; } else DEBUG(std::cerr << "Blocked: " << **I << "\n"); } if(f) { unblock(v, blocked, B); } else { for(std::set::iterator I = AkV.begin(), E = AkV.end(); I != E; ++I) B[*I].insert(v); } //Pop v stack.pop_back(); return f; } void ModuloSchedulingSBPass::addRecc(std::vector &stack, std::map &newNodes) { std::vector recc; //Dump recurrence for now DEBUG(std::cerr << "Starting Recc\n"); int totalDelay = 0; int totalDistance = 0; MSchedGraphSBNode *lastN = 0; MSchedGraphSBNode *start = 0; MSchedGraphSBNode *end = 0; //Loop over recurrence, get delay and distance for(std::vector::iterator N = stack.begin(), NE = stack.end(); N != NE; ++N) { DEBUG(std::cerr << **N << "\n"); totalDelay += (*N)->getLatency(); if(lastN) { int iteDiff = (*N)->getInEdge(lastN).getIteDiff(); totalDistance += iteDiff; if(iteDiff > 0) { start = lastN; end = *N; } } //Get the original node lastN = *N; recc.push_back(newNodes[*N]); } //Get the loop edge totalDistance += lastN->getIteDiff(*stack.begin()); DEBUG(std::cerr << "End Recc\n"); CircCountSB++; if(start && end) { //Insert reccurrence into the list DEBUG(std::cerr << "Ignore Edge from!!: " << *start << " to " << *end << "\n"); edgesToIgnore.insert(std::make_pair(newNodes[start], (newNodes[end])->getInEdgeNum(newNodes[start]))); } else { //Insert reccurrence into the list DEBUG(std::cerr << "Ignore Edge from: " << *lastN << " to " << **stack.begin() << "\n"); edgesToIgnore.insert(std::make_pair(newNodes[lastN], newNodes[(*stack.begin())]->getInEdgeNum(newNodes[lastN]))); } //Adjust II until we get close to the inequality delay - II*distance <= 0 int RecMII = II; //Starting value int value = totalDelay-(RecMII * totalDistance); int lastII = II; while(value < 0) { lastII = RecMII; RecMII--; value = totalDelay-(RecMII * totalDistance); } recurrenceList.insert(std::make_pair(lastII, recc)); } void ModuloSchedulingSBPass::findAllCircuits(MSchedGraphSB *g, int II) { CircCountSB = 0; //Keep old to new node mapping information std::map newNodes; //copy the graph MSchedGraphSB *MSG = new MSchedGraphSB(*g, newNodes); DEBUG(std::cerr << "Finding All Circuits\n"); //Set of blocked nodes std::set blocked; //Stack holding current circuit std::vector stack; //Map for B Lists std::map > B; //current node MSchedGraphSBNode *s; //Iterate over the graph until its down to one node or empty while(MSG->size() > 1) { //Write Graph out to file //WriteGraphToFile(std::cerr, "Graph" + utostr(MSG->size()), MSG); DEBUG(std::cerr << "Graph Size: " << MSG->size() << "\n"); DEBUG(std::cerr << "Finding strong component Vk with least vertex\n"); //Iterate over all the SCCs in the graph std::set Visited; std::vector Vk; MSchedGraphSBNode* s = 0; int numEdges = 0; //Find scc with the least vertex for (MSchedGraphSB::iterator GI = MSG->begin(), E = MSG->end(); GI != E; ++GI) if (Visited.insert(GI->second).second) { for (scc_iterator SCCI = scc_begin(GI->second), E = scc_end(GI->second); SCCI != E; ++SCCI) { std::vector &nextSCC = *SCCI; if (Visited.insert(nextSCC[0]).second) { Visited.insert(nextSCC.begin()+1, nextSCC.end()); if(nextSCC.size() > 1) { DEBUG(std::cerr << "SCC size: " << nextSCC.size() << "\n"); for(unsigned i = 0; i < nextSCC.size(); ++i) { //Loop over successor and see if in scc, then count edge MSchedGraphSBNode *node = nextSCC[i]; for(MSchedGraphSBNode::succ_iterator S = node->succ_begin(), SE = node->succ_end(); S != SE; ++S) { if(find(nextSCC.begin(), nextSCC.end(), *S) != nextSCC.end()) numEdges++; } } DEBUG(std::cerr << "Num Edges: " << numEdges << "\n"); } //Ignore self loops if(nextSCC.size() > 1) { //Get least vertex in Vk if(!s) { s = nextSCC[0]; Vk = nextSCC; } for(unsigned i = 0; i < nextSCC.size(); ++i) { if(nextSCC[i] < s) { s = nextSCC[i]; Vk = nextSCC; } } } } } } //Process SCC DEBUG(for(std::vector::iterator N = Vk.begin(), NE = Vk.end(); N != NE; ++N) { std::cerr << *((*N)->getInst()); }); //Iterate over all nodes in this scc for(std::vector::iterator N = Vk.begin(), NE = Vk.end(); N != NE; ++N) { blocked.erase(*N); B[*N].clear(); } if(Vk.size() > 1) { if(numEdges < 98) circuit(s, stack, blocked, Vk, s, B, II, newNodes); else addSCC(Vk, newNodes); //Delete nodes from the graph //Find all nodes up to s and delete them std::vector nodesToRemove; nodesToRemove.push_back(s); for(MSchedGraphSB::iterator N = MSG->begin(), NE = MSG->end(); N != NE; ++N) { if(N->second < s ) nodesToRemove.push_back(N->second); } for(std::vector::iterator N = nodesToRemove.begin(), NE = nodesToRemove.end(); N != NE; ++N) { DEBUG(std::cerr << "Deleting Node: " << **N << "\n"); MSG->deleteNode(*N); } } else break; } DEBUG(std::cerr << "Num Circuits found: " << CircCountSB << "\n"); } /// calculateNodeAttributes - The following properties are calculated for /// each node in the dependence graph: ASAP, ALAP, Depth, Height, and /// MOB. void ModuloSchedulingSBPass::calculateNodeAttributes(MSchedGraphSB *graph, int MII) { TIME_REGION(X, "calculateNodeAttributes"); assert(nodeToAttributesMap.empty() && "Node attribute map was not cleared"); //Loop over the nodes and add them to the map for(MSchedGraphSB::iterator I = graph->begin(), E = graph->end(); I != E; ++I) { DEBUG(std::cerr << "Inserting node into attribute map: " << *I->second << "\n"); //Assert if its already in the map assert(nodeToAttributesMap.count(I->second) == 0 && "Node attributes are already in the map"); //Put into the map with default attribute values nodeToAttributesMap[I->second] = MSNodeSBAttributes(); } //Create set to deal with reccurrences std::set visitedNodes; //Now Loop over map and calculate the node attributes for(std::map::iterator I = nodeToAttributesMap.begin(), E = nodeToAttributesMap.end(); I != E; ++I) { calculateASAP(I->first, MII, (MSchedGraphSBNode*) 0); visitedNodes.clear(); } int maxASAP = findMaxASAP(); //Calculate ALAP which depends on ASAP being totally calculated for(std::map::iterator I = nodeToAttributesMap.begin(), E = nodeToAttributesMap.end(); I != E; ++I) { calculateALAP(I->first, MII, maxASAP, (MSchedGraphSBNode*) 0); visitedNodes.clear(); } //Calculate MOB which depends on ASAP being totally calculated, also do depth and height for(std::map::iterator I = nodeToAttributesMap.begin(), E = nodeToAttributesMap.end(); I != E; ++I) { (I->second).MOB = std::max(0,(I->second).ALAP - (I->second).ASAP); DEBUG(std::cerr << "MOB: " << (I->second).MOB << " (" << *(I->first) << ")\n"); calculateDepth(I->first, (MSchedGraphSBNode*) 0); calculateHeight(I->first, (MSchedGraphSBNode*) 0); } } /// ignoreEdge - Checks to see if this edge of a recurrence should be ignored or not bool ModuloSchedulingSBPass::ignoreEdge(MSchedGraphSBNode *srcNode, MSchedGraphSBNode *destNode) { if(destNode == 0 || srcNode ==0) return false; bool findEdge = edgesToIgnore.count(std::make_pair(srcNode, destNode->getInEdgeNum(srcNode))); DEBUG(std::cerr << "Ignoring edge? from: " << *srcNode << " to " << *destNode << "\n"); return findEdge; } /// calculateASAP - Calculates the int ModuloSchedulingSBPass::calculateASAP(MSchedGraphSBNode *node, int MII, MSchedGraphSBNode *destNode) { DEBUG(std::cerr << "Calculating ASAP for " << *node << "\n"); //Get current node attributes MSNodeSBAttributes &attributes = nodeToAttributesMap.find(node)->second; if(attributes.ASAP != -1) return attributes.ASAP; int maxPredValue = 0; //Iterate over all of the predecessors and find max for(MSchedGraphSBNode::pred_iterator P = node->pred_begin(), E = node->pred_end(); P != E; ++P) { //Only process if we are not ignoring the edge if(!ignoreEdge(*P, node)) { int predASAP = -1; predASAP = calculateASAP(*P, MII, node); assert(predASAP != -1 && "ASAP has not been calculated"); int iteDiff = node->getInEdge(*P).getIteDiff(); int currentPredValue = predASAP + (*P)->getLatency() - (iteDiff * MII); DEBUG(std::cerr << "pred ASAP: " << predASAP << ", iteDiff: " << iteDiff << ", PredLatency: " << (*P)->getLatency() << ", Current ASAP pred: " << currentPredValue << "\n"); maxPredValue = std::max(maxPredValue, currentPredValue); } } attributes.ASAP = maxPredValue; DEBUG(std::cerr << "ASAP: " << attributes.ASAP << " (" << *node << ")\n"); return maxPredValue; } int ModuloSchedulingSBPass::calculateALAP(MSchedGraphSBNode *node, int MII, int maxASAP, MSchedGraphSBNode *srcNode) { DEBUG(std::cerr << "Calculating ALAP for " << *node << "\n"); MSNodeSBAttributes &attributes = nodeToAttributesMap.find(node)->second; if(attributes.ALAP != -1) return attributes.ALAP; if(node->hasSuccessors()) { //Trying to deal with the issue where the node has successors, but //we are ignoring all of the edges to them. So this is my hack for //now.. there is probably a more elegant way of doing this (FIXME) bool processedOneEdge = false; //FIXME, set to something high to start int minSuccValue = 9999999; //Iterate over all of the predecessors and fine max for(MSchedGraphSBNode::succ_iterator P = node->succ_begin(), E = node->succ_end(); P != E; ++P) { //Only process if we are not ignoring the edge if(!ignoreEdge(node, *P)) { processedOneEdge = true; int succALAP = -1; succALAP = calculateALAP(*P, MII, maxASAP, node); assert(succALAP != -1 && "Successors ALAP should have been caclulated"); int iteDiff = P.getEdge().getIteDiff(); int currentSuccValue = succALAP - node->getLatency() + iteDiff * MII; DEBUG(std::cerr << "succ ALAP: " << succALAP << ", iteDiff: " << iteDiff << ", SuccLatency: " << (*P)->getLatency() << ", Current ALAP succ: " << currentSuccValue << "\n"); minSuccValue = std::min(minSuccValue, currentSuccValue); } } if(processedOneEdge) attributes.ALAP = minSuccValue; else attributes.ALAP = maxASAP; } else attributes.ALAP = maxASAP; DEBUG(std::cerr << "ALAP: " << attributes.ALAP << " (" << *node << ")\n"); if(attributes.ALAP < 0) attributes.ALAP = 0; return attributes.ALAP; } int ModuloSchedulingSBPass::findMaxASAP() { int maxASAP = 0; for(std::map::iterator I = nodeToAttributesMap.begin(), E = nodeToAttributesMap.end(); I != E; ++I) maxASAP = std::max(maxASAP, I->second.ASAP); return maxASAP; } int ModuloSchedulingSBPass::calculateHeight(MSchedGraphSBNode *node,MSchedGraphSBNode *srcNode) { MSNodeSBAttributes &attributes = nodeToAttributesMap.find(node)->second; if(attributes.height != -1) return attributes.height; int maxHeight = 0; //Iterate over all of the predecessors and find max for(MSchedGraphSBNode::succ_iterator P = node->succ_begin(), E = node->succ_end(); P != E; ++P) { if(!ignoreEdge(node, *P)) { int succHeight = calculateHeight(*P, node); assert(succHeight != -1 && "Successors Height should have been caclulated"); int currentHeight = succHeight + node->getLatency(); maxHeight = std::max(maxHeight, currentHeight); } } attributes.height = maxHeight; DEBUG(std::cerr << "Height: " << attributes.height << " (" << *node << ")\n"); return maxHeight; } int ModuloSchedulingSBPass::calculateDepth(MSchedGraphSBNode *node, MSchedGraphSBNode *destNode) { MSNodeSBAttributes &attributes = nodeToAttributesMap.find(node)->second; if(attributes.depth != -1) return attributes.depth; int maxDepth = 0; //Iterate over all of the predecessors and fine max for(MSchedGraphSBNode::pred_iterator P = node->pred_begin(), E = node->pred_end(); P != E; ++P) { if(!ignoreEdge(*P, node)) { int predDepth = -1; predDepth = calculateDepth(*P, node); assert(predDepth != -1 && "Predecessors ASAP should have been caclulated"); int currentDepth = predDepth + (*P)->getLatency(); maxDepth = std::max(maxDepth, currentDepth); } } attributes.depth = maxDepth; DEBUG(std::cerr << "Depth: " << attributes.depth << " (" << *node << "*)\n"); return maxDepth; } void ModuloSchedulingSBPass::computePartialOrder() { TIME_REGION(X, "calculatePartialOrder"); DEBUG(std::cerr << "Computing Partial Order\n"); //Steps to add a recurrence to the partial order 1) Find reccurrence //with the highest RecMII. Add it to the partial order. 2) For each //recurrence with decreasing RecMII, add it to the partial order //along with any nodes that connect this recurrence to recurrences //already in the partial order for(std::set > >::reverse_iterator I = recurrenceList.rbegin(), E=recurrenceList.rend(); I !=E; ++I) { std::set new_recurrence; //Loop through recurrence and remove any nodes already in the partial order for(std::vector::const_iterator N = I->second.begin(), NE = I->second.end(); N != NE; ++N) { bool found = false; for(std::vector >::iterator PO = partialOrder.begin(), PE = partialOrder.end(); PO != PE; ++PO) { if(PO->count(*N)) found = true; } //Check if its a branch, and remove to handle special if(!found) { new_recurrence.insert(*N); } } if(new_recurrence.size() > 0) { std::vector path; std::set nodesToAdd; //Dump recc we are dealing with (minus nodes already in PO) DEBUG(std::cerr << "Recc: "); DEBUG(for(std::set::iterator R = new_recurrence.begin(), RE = new_recurrence.end(); R != RE; ++R) { std::cerr << **R ; }); //Add nodes that connect this recurrence to recurrences in the partial path for(std::set::iterator N = new_recurrence.begin(), NE = new_recurrence.end(); N != NE; ++N) searchPath(*N, path, nodesToAdd, new_recurrence); //Add nodes to this recurrence if they are not already in the partial order for(std::set::iterator N = nodesToAdd.begin(), NE = nodesToAdd.end(); N != NE; ++N) { bool found = false; for(std::vector >::iterator PO = partialOrder.begin(), PE = partialOrder.end(); PO != PE; ++PO) { if(PO->count(*N)) found = true; } if(!found) { assert("FOUND CONNECTOR"); new_recurrence.insert(*N); } } partialOrder.push_back(new_recurrence); } } //Add any nodes that are not already in the partial order //Add them in a set, one set per connected component std::set lastNodes; std::set noPredNodes; for(std::map::iterator I = nodeToAttributesMap.begin(), E = nodeToAttributesMap.end(); I != E; ++I) { bool found = false; //Check if its already in our partial order, if not add it to the final vector for(std::vector >::iterator PO = partialOrder.begin(), PE = partialOrder.end(); PO != PE; ++PO) { if(PO->count(I->first)) found = true; } if(!found) lastNodes.insert(I->first); } //For each node w/out preds, see if there is a path to one of the //recurrences, and if so add them to that current recc /*for(std::set::iterator N = noPredNodes.begin(), NE = noPredNodes.end(); N != NE; ++N) { DEBUG(std::cerr << "No Pred Path from: " << **N << "\n"); for(std::vector >::iterator PO = partialOrder.begin(), PE = partialOrder.end(); PO != PE; ++PO) { std::vector path; pathToRecc(*N, path, *PO, lastNodes); } }*/ //Break up remaining nodes that are not in the partial order ///into their connected compoenents while(lastNodes.size() > 0) { std::set ccSet; connectedComponentSet(*(lastNodes.begin()),ccSet, lastNodes); if(ccSet.size() > 0) partialOrder.push_back(ccSet); } } void ModuloSchedulingSBPass::connectedComponentSet(MSchedGraphSBNode *node, std::set &ccSet, std::set &lastNodes) { //Add to final set if( !ccSet.count(node) && lastNodes.count(node)) { lastNodes.erase(node); ccSet.insert(node); } else return; //Loop over successors and recurse if we have not seen this node before for(MSchedGraphSBNode::succ_iterator node_succ = node->succ_begin(), end=node->succ_end(); node_succ != end; ++node_succ) { connectedComponentSet(*node_succ, ccSet, lastNodes); } } void ModuloSchedulingSBPass::searchPath(MSchedGraphSBNode *node, std::vector &path, std::set &nodesToAdd, std::set &new_reccurrence) { //Push node onto the path path.push_back(node); //Loop over all successors and see if there is a path from this node to //a recurrence in the partial order, if so.. add all nodes to be added to recc for(MSchedGraphSBNode::succ_iterator S = node->succ_begin(), SE = node->succ_end(); S != SE; ++S) { //Check if we should ignore this edge first if(ignoreEdge(node,*S)) continue; //check if successor is in this recurrence, we will get to it eventually if(new_reccurrence.count(*S)) continue; //If this node exists in a recurrence already in the partial //order, then add all nodes in the path to the set of nodes to add //Check if its already in our partial order, if not add it to the //final vector bool found = false; for(std::vector >::iterator PO = partialOrder.begin(), PE = partialOrder.end(); PO != PE; ++PO) { if(PO->count(*S)) { found = true; break; } } if(!found) { nodesToAdd.insert(*S); searchPath(*S, path, nodesToAdd, new_reccurrence); } } //Pop Node off the path path.pop_back(); } void dumpIntersection(std::set &IntersectCurrent) { std::cerr << "Intersection ("; for(std::set::iterator I = IntersectCurrent.begin(), E = IntersectCurrent.end(); I != E; ++I) std::cerr << **I << ", "; std::cerr << ")\n"; } void ModuloSchedulingSBPass::orderNodes() { TIME_REGION(X, "orderNodes"); int BOTTOM_UP = 0; int TOP_DOWN = 1; //Set default order int order = BOTTOM_UP; //Loop over and find all pred nodes and schedule them first /*for(std::vector >::iterator CurrentSet = partialOrder.begin(), E= partialOrder.end(); CurrentSet != E; ++CurrentSet) { for(std::set::iterator N = CurrentSet->begin(), NE = CurrentSet->end(); N != NE; ++N) if((*N)->isPredicate()) { FinalNodeOrder.push_back(*N); CurrentSet->erase(*N); } }*/ //Loop over all the sets and place them in the final node order for(std::vector >::iterator CurrentSet = partialOrder.begin(), E= partialOrder.end(); CurrentSet != E; ++CurrentSet) { DEBUG(std::cerr << "Processing set in S\n"); DEBUG(dumpIntersection(*CurrentSet)); //Result of intersection std::set IntersectCurrent; predIntersect(*CurrentSet, IntersectCurrent); //If the intersection of predecessor and current set is not empty //sort nodes bottom up if(IntersectCurrent.size() != 0) { DEBUG(std::cerr << "Final Node Order Predecessors and Current Set interesection is NOT empty\n"); order = BOTTOM_UP; } //If empty, use successors else { DEBUG(std::cerr << "Final Node Order Predecessors and Current Set interesection is empty\n"); succIntersect(*CurrentSet, IntersectCurrent); //sort top-down if(IntersectCurrent.size() != 0) { DEBUG(std::cerr << "Final Node Order Successors and Current Set interesection is NOT empty\n"); order = TOP_DOWN; } else { DEBUG(std::cerr << "Final Node Order Successors and Current Set interesection is empty\n"); //Find node with max ASAP in current Set MSchedGraphSBNode *node; int maxASAP = 0; DEBUG(std::cerr << "Using current set of size " << CurrentSet->size() << "to find max ASAP\n"); for(std::set::iterator J = CurrentSet->begin(), JE = CurrentSet->end(); J != JE; ++J) { //Get node attributes MSNodeSBAttributes nodeAttr= nodeToAttributesMap.find(*J)->second; //assert(nodeAttr != nodeToAttributesMap.end() && "Node not in attributes map!"); if(maxASAP <= nodeAttr.ASAP) { maxASAP = nodeAttr.ASAP; node = *J; } } assert(node != 0 && "In node ordering node should not be null"); IntersectCurrent.insert(node); order = BOTTOM_UP; } } //Repeat until all nodes are put into the final order from current set while(IntersectCurrent.size() > 0) { if(order == TOP_DOWN) { DEBUG(std::cerr << "Order is TOP DOWN\n"); while(IntersectCurrent.size() > 0) { DEBUG(std::cerr << "Intersection is not empty, so find heighest height\n"); int MOB = 0; int height = 0; MSchedGraphSBNode *highestHeightNode = *(IntersectCurrent.begin()); //Find node in intersection with highest heigh and lowest MOB for(std::set::iterator I = IntersectCurrent.begin(), E = IntersectCurrent.end(); I != E; ++I) { //Get current nodes properties MSNodeSBAttributes nodeAttr= nodeToAttributesMap.find(*I)->second; if(height < nodeAttr.height) { highestHeightNode = *I; height = nodeAttr.height; MOB = nodeAttr.MOB; } else if(height == nodeAttr.height) { if(MOB > nodeAttr.height) { highestHeightNode = *I; height = nodeAttr.height; MOB = nodeAttr.MOB; } } } //Append our node with greatest height to the NodeOrder if(std::find(FinalNodeOrder.begin(), FinalNodeOrder.end(), highestHeightNode) == FinalNodeOrder.end()) { DEBUG(std::cerr << "Adding node to Final Order: " << *highestHeightNode << "\n"); FinalNodeOrder.push_back(highestHeightNode); } //Remove V from IntersectOrder IntersectCurrent.erase(std::find(IntersectCurrent.begin(), IntersectCurrent.end(), highestHeightNode)); //Intersect V's successors with CurrentSet for(MSchedGraphSBNode::succ_iterator P = highestHeightNode->succ_begin(), E = highestHeightNode->succ_end(); P != E; ++P) { //if(lower_bound(CurrentSet->begin(), // CurrentSet->end(), *P) != CurrentSet->end()) { if(std::find(CurrentSet->begin(), CurrentSet->end(), *P) != CurrentSet->end()) { if(ignoreEdge(highestHeightNode, *P)) continue; //If not already in Intersect, add if(!IntersectCurrent.count(*P)) IntersectCurrent.insert(*P); } } } //End while loop over Intersect Size //Change direction order = BOTTOM_UP; //Reset Intersect to reflect changes in OrderNodes IntersectCurrent.clear(); predIntersect(*CurrentSet, IntersectCurrent); } //End If TOP_DOWN //Begin if BOTTOM_UP else { DEBUG(std::cerr << "Order is BOTTOM UP\n"); while(IntersectCurrent.size() > 0) { DEBUG(std::cerr << "Intersection of size " << IntersectCurrent.size() << ", finding highest depth\n"); //dump intersection DEBUG(dumpIntersection(IntersectCurrent)); //Get node with highest depth, if a tie, use one with lowest //MOB int MOB = 0; int depth = 0; MSchedGraphSBNode *highestDepthNode = *(IntersectCurrent.begin()); for(std::set::iterator I = IntersectCurrent.begin(), E = IntersectCurrent.end(); I != E; ++I) { //Find node attribute in graph MSNodeSBAttributes nodeAttr= nodeToAttributesMap.find(*I)->second; if(depth < nodeAttr.depth) { highestDepthNode = *I; depth = nodeAttr.depth; MOB = nodeAttr.MOB; } else if(depth == nodeAttr.depth) { if(MOB > nodeAttr.MOB) { highestDepthNode = *I; depth = nodeAttr.depth; MOB = nodeAttr.MOB; } } } //Append highest depth node to the NodeOrder if(std::find(FinalNodeOrder.begin(), FinalNodeOrder.end(), highestDepthNode) == FinalNodeOrder.end()) { DEBUG(std::cerr << "Adding node to Final Order: " << *highestDepthNode << "\n"); FinalNodeOrder.push_back(highestDepthNode); } //Remove heightestDepthNode from IntersectOrder IntersectCurrent.erase(highestDepthNode); //Intersect heightDepthNode's pred with CurrentSet for(MSchedGraphSBNode::pred_iterator P = highestDepthNode->pred_begin(), E = highestDepthNode->pred_end(); P != E; ++P) { if(CurrentSet->count(*P)) { if(ignoreEdge(*P, highestDepthNode)) continue; //If not already in Intersect, add if(!IntersectCurrent.count(*P)) IntersectCurrent.insert(*P); } } } //End while loop over Intersect Size //Change order order = TOP_DOWN; //Reset IntersectCurrent to reflect changes in OrderNodes IntersectCurrent.clear(); succIntersect(*CurrentSet, IntersectCurrent); } //End if BOTTOM_DOWN DEBUG(std::cerr << "Current Intersection Size: " << IntersectCurrent.size() << "\n"); } //End Wrapping while loop DEBUG(std::cerr << "Ending Size of Current Set: " << CurrentSet->size() << "\n"); }//End for over all sets of nodes //FIXME: As the algorithm stands it will NEVER add an instruction such as ba (with no //data dependencies) to the final order. We add this manually. It will always be //in the last set of S since its not part of a recurrence //Loop over all the sets and place them in the final node order std::vector > ::reverse_iterator LastSet = partialOrder.rbegin(); for(std::set::iterator CurrentNode = LastSet->begin(), LastNode = LastSet->end(); CurrentNode != LastNode; ++CurrentNode) { if((*CurrentNode)->getInst()->getOpcode() == V9::BA) FinalNodeOrder.push_back(*CurrentNode); } //Return final Order //return FinalNodeOrder; } void ModuloSchedulingSBPass::predIntersect(std::set &CurrentSet, std::set &IntersectResult) { for(unsigned j=0; j < FinalNodeOrder.size(); ++j) { for(MSchedGraphSBNode::pred_iterator P = FinalNodeOrder[j]->pred_begin(), E = FinalNodeOrder[j]->pred_end(); P != E; ++P) { //Check if we are supposed to ignore this edge or not if(ignoreEdge(*P,FinalNodeOrder[j])) continue; if(CurrentSet.count(*P)) if(std::find(FinalNodeOrder.begin(), FinalNodeOrder.end(), *P) == FinalNodeOrder.end()) IntersectResult.insert(*P); } } } void ModuloSchedulingSBPass::succIntersect(std::set &CurrentSet, std::set &IntersectResult) { for(unsigned j=0; j < FinalNodeOrder.size(); ++j) { for(MSchedGraphSBNode::succ_iterator P = FinalNodeOrder[j]->succ_begin(), E = FinalNodeOrder[j]->succ_end(); P != E; ++P) { //Check if we are supposed to ignore this edge or not if(ignoreEdge(FinalNodeOrder[j],*P)) continue; if(CurrentSet.count(*P)) if(std::find(FinalNodeOrder.begin(), FinalNodeOrder.end(), *P) == FinalNodeOrder.end()) IntersectResult.insert(*P); } } } bool ModuloSchedulingSBPass::computeSchedule(std::vector &SB, MSchedGraphSB *MSG) { TIME_REGION(X, "computeSchedule"); bool success = false; //FIXME: Should be set to max II of the original loop //Cap II in order to prevent infinite loop int capII = MSG->totalDelay(); while(!success) { //Keep track of branches, but do not insert into the schedule std::vector branches; //Loop over the final node order and process each node for(std::vector::iterator I = FinalNodeOrder.begin(), E = FinalNodeOrder.end(); I != E; ++I) { //CalculateEarly and Late start bool initialLSVal = false; bool initialESVal = false; int EarlyStart = 0; int LateStart = 0; bool hasSucc = false; bool hasPred = false; bool sched; if((*I)->isBranch()) if((*I)->hasPredecessors()) sched = true; else sched = false; else sched = true; if(sched) { //Loop over nodes in the schedule and determine if they are predecessors //or successors of the node we are trying to schedule for(MSScheduleSB::schedule_iterator nodesByCycle = schedule.begin(), nodesByCycleEnd = schedule.end(); nodesByCycle != nodesByCycleEnd; ++nodesByCycle) { //For this cycle, get the vector of nodes schedule and loop over it for(std::vector::iterator schedNode = nodesByCycle->second.begin(), SNE = nodesByCycle->second.end(); schedNode != SNE; ++schedNode) { if((*I)->isPredecessor(*schedNode)) { int diff = (*I)->getInEdge(*schedNode).getIteDiff(); int ES_Temp = nodesByCycle->first + (*schedNode)->getLatency() - diff * II; DEBUG(std::cerr << "Diff: " << diff << " Cycle: " << nodesByCycle->first << "\n"); DEBUG(std::cerr << "Temp EarlyStart: " << ES_Temp << " Prev EarlyStart: " << EarlyStart << "\n"); if(initialESVal) EarlyStart = std::max(EarlyStart, ES_Temp); else { EarlyStart = ES_Temp; initialESVal = true; } hasPred = true; } if((*I)->isSuccessor(*schedNode)) { int diff = (*schedNode)->getInEdge(*I).getIteDiff(); int LS_Temp = nodesByCycle->first - (*I)->getLatency() + diff * II; DEBUG(std::cerr << "Diff: " << diff << " Cycle: " << nodesByCycle->first << "\n"); DEBUG(std::cerr << "Temp LateStart: " << LS_Temp << " Prev LateStart: " << LateStart << "\n"); if(initialLSVal) LateStart = std::min(LateStart, LS_Temp); else { LateStart = LS_Temp; initialLSVal = true; } hasSucc = true; } } } } else { branches.push_back(*I); continue; } //Check if the node has no pred or successors and set Early Start to its ASAP if(!hasSucc && !hasPred) EarlyStart = nodeToAttributesMap.find(*I)->second.ASAP; DEBUG(std::cerr << "Has Successors: " << hasSucc << ", Has Pred: " << hasPred << "\n"); DEBUG(std::cerr << "EarlyStart: " << EarlyStart << ", LateStart: " << LateStart << "\n"); //Now, try to schedule this node depending upon its pred and successor in the schedule //already if(!hasSucc && hasPred) success = scheduleNode(*I, EarlyStart, (EarlyStart + II -1)); else if(!hasPred && hasSucc) success = scheduleNode(*I, LateStart, (LateStart - II +1)); else if(hasPred && hasSucc) { if(EarlyStart > LateStart) { success = false; //LateStart = EarlyStart; DEBUG(std::cerr << "Early Start can not be later then the late start cycle, schedule fails\n"); } else success = scheduleNode(*I, EarlyStart, std::min(LateStart, (EarlyStart + II -1))); } else success = scheduleNode(*I, EarlyStart, EarlyStart + II - 1); if(!success) { ++II; schedule.clear(); break; } } if(success) { DEBUG(std::cerr << "Constructing Schedule Kernel\n"); success = schedule.constructKernel(II, branches, indVarInstrs[SB]); DEBUG(std::cerr << "Done Constructing Schedule Kernel\n"); if(!success) { ++II; schedule.clear(); } DEBUG(std::cerr << "Final II: " << II << "\n"); } if(II >= capII) { DEBUG(std::cerr << "Maximum II reached, giving up\n"); return false; } assert(II < capII && "The II should not exceed the original loop number of cycles"); } return true; } bool ModuloSchedulingSBPass::scheduleNode(MSchedGraphSBNode *node, int start, int end) { bool success = false; DEBUG(std::cerr << *node << " (Start Cycle: " << start << ", End Cycle: " << end << ")\n"); //Make sure start and end are not negative //if(start < 0) { //start = 0; //} //if(end < 0) //end = 0; bool forward = true; if(start > end) forward = false; bool increaseSC = true; int cycle = start ; while(increaseSC) { increaseSC = false; increaseSC = schedule.insert(node, cycle, II); if(!increaseSC) return true; //Increment cycle to try again if(forward) { ++cycle; DEBUG(std::cerr << "Increase cycle: " << cycle << "\n"); if(cycle > end) return false; } else { --cycle; DEBUG(std::cerr << "Decrease cycle: " << cycle << "\n"); if(cycle < end) return false; } } return success; } void ModuloSchedulingSBPass::reconstructLoop(std::vector &SB) { TIME_REGION(X, "reconstructLoop"); DEBUG(std::cerr << "Reconstructing Loop\n"); //First find the value *'s that we need to "save" std::map > valuesToSave; //Keep track of instructions we have already seen and their stage because //we don't want to "save" values if they are used in the kernel immediately std::map lastInstrs; std::set seenBranchesBB; const TargetInstrInfo *MTI = target.getInstrInfo(); std::map > > instrsMovedDown; std::map branchStage; //Loop over kernel and only look at instructions from a stage > 0 //Look at its operands and save values *'s that are read for(MSScheduleSB::kernel_iterator I = schedule.kernel_begin(), E = schedule.kernel_end(); I != E; ++I) { if(I->second !=0) { //For this instruction, get the Value*'s that it reads and put them into the set. //Assert if there is an operand of another type that we need to save const MachineInstr *inst = I->first; lastInstrs[inst] = I->second; for(unsigned i=0; i < inst->getNumOperands(); ++i) { //get machine operand const MachineOperand &mOp = inst->getOperand(i); if(mOp.getType() == MachineOperand::MO_VirtualRegister && mOp.isUse()) { //find the value in the map if (const Value* srcI = mOp.getVRegValue()) { if(isa(srcI) || isa(srcI)) continue; //Before we declare this Value* one that we should save //make sure its def is not of the same stage as this instruction //because it will be consumed before its used Instruction *defInst = (Instruction*) srcI; //Should we save this value? bool save = true; //Continue if not in the def map, loop invariant code does not need to be saved if(!defMap.count(srcI)) continue; MachineInstr *defInstr = defMap[srcI]; if(lastInstrs.count(defInstr)) { if(lastInstrs[defInstr] == I->second) { save = false; } } if(save) valuesToSave[srcI] = std::make_pair(I->first, i); } } if(mOp.getType() != MachineOperand::MO_VirtualRegister && mOp.isUse()) { assert("Our assumption is wrong. We have another type of register that needs to be saved\n"); } } } //Do a check to see if instruction was moved below its original branch if(MTI->isBranch(I->first->getOpcode())) { seenBranchesBB.insert(I->first->getParent()); branchStage[I->first->getParent()] = I->second; } else { instrsMovedDown[I->first->getParent()].push_back(std::make_pair(I->first, I->second)); //assert(seenBranchesBB.count(I->first->getParent()) && "Instruction moved below branch\n"); } } //The new loop will consist of one or more prologues, the kernel, and one or more epilogues. //Map to keep track of old to new values std::map > newValues; //Map to keep track of old to new values in kernel std::map > kernelPHIs; //Another map to keep track of what machine basic blocks these new value*s are in since //they have no llvm instruction equivalent std::map newValLocation; std::vector > prologues; std::vector > llvm_prologues; //Map to keep track of where the inner branches go std::map sideExits; //Write prologue if(schedule.getMaxStage() != 0) writePrologues(prologues, SB, llvm_prologues, valuesToSave, newValues, newValLocation); std::vector llvmKernelBBs; std::vector machineKernelBBs; Function *parent = (Function*) SB[0]->getBasicBlock()->getParent(); for(unsigned i = 0; i < SB.size(); ++i) { llvmKernelBBs.push_back(new BasicBlock("Kernel", parent)); machineKernelBBs.push_back(new MachineBasicBlock(llvmKernelBBs[i])); (((MachineBasicBlock*)SB[0])->getParent())->getBasicBlockList().push_back(machineKernelBBs[i]); } writeKernel(llvmKernelBBs, machineKernelBBs, valuesToSave, newValues, newValLocation, kernelPHIs); std::vector > epilogues; std::vector > llvm_epilogues; //Write epilogues if(schedule.getMaxStage() != 0) writeEpilogues(epilogues, SB, llvm_epilogues, valuesToSave, newValues, newValLocation, kernelPHIs); //Fix our branches fixBranches(prologues, llvm_prologues, machineKernelBBs, llvmKernelBBs, epilogues, llvm_epilogues, SB, sideExits); //Print out epilogues and prologue DEBUG(for(std::vector >::iterator PI = prologues.begin(), PE = prologues.end(); PI != PE; ++PI) { std::cerr << "PROLOGUE\n"; for(std::vector::iterator I = PI->begin(), E = PI->end(); I != E; ++I) (*I)->print(std::cerr); }); DEBUG(std::cerr << "KERNEL\n"); DEBUG(for(std::vector::iterator I = machineKernelBBs.begin(), E = machineKernelBBs.end(); I != E; ++I) { (*I)->print(std::cerr);}); DEBUG(for(std::vector >::iterator EI = epilogues.begin(), EE = epilogues.end(); EI != EE; ++EI) { std::cerr << "EPILOGUE\n"; for(std::vector::iterator I = EI->begin(), E = EI->end(); I != E; ++I) (*I)->print(std::cerr); }); //Remove phis removePHIs(SB, prologues, epilogues, machineKernelBBs, newValLocation); //Print out epilogues and prologue DEBUG(for(std::vector >::iterator PI = prologues.begin(), PE = prologues.end(); PI != PE; ++PI) { std::cerr << "PROLOGUE\n"; for(std::vector::iterator I = PI->begin(), E = PI->end(); I != E; ++I) (*I)->print(std::cerr); }); DEBUG(std::cerr << "KERNEL\n"); DEBUG(for(std::vector::iterator I = machineKernelBBs.begin(), E = machineKernelBBs.end(); I != E; ++I) { (*I)->print(std::cerr);}); DEBUG(for(std::vector >::iterator EI = epilogues.begin(), EE = epilogues.end(); EI != EE; ++EI) { std::cerr << "EPILOGUE\n"; for(std::vector::iterator I = EI->begin(), E = EI->end(); I != E; ++I) (*I)->print(std::cerr); }); writeSideExits(prologues, llvm_prologues, epilogues, llvm_epilogues, sideExits, instrsMovedDown, SB, machineKernelBBs, branchStage); DEBUG(std::cerr << "New Machine Function" << "\n"); } void ModuloSchedulingSBPass::fixBranches(std::vector > &prologues, std::vector > &llvm_prologues, std::vector &machineKernelBB, std::vector &llvmKernelBB, std::vector > &epilogues, std::vector > &llvm_epilogues, std::vector &SB, std::map &sideExits) { const TargetInstrInfo *TMI = target.getInstrInfo(); //Get exit BB BasicBlock *last = (BasicBlock*) SB[SB.size()-1]->getBasicBlock(); BasicBlock *kernel_exit = 0; bool sawFirst = false; for(succ_iterator I = succ_begin(last), E = succ_end(last); I != E; ++I) { if (*I != SB[0]->getBasicBlock()) { kernel_exit = *I; break; } else sawFirst = true; } if(!kernel_exit && sawFirst) { kernel_exit = (BasicBlock*) SB[0]->getBasicBlock(); } assert(kernel_exit && "Kernel Exit can not be null"); if(schedule.getMaxStage() != 0) { //Fix prologue branches for(unsigned i = 0; i < prologues.size(); ++i) { for(unsigned j = 0; j < prologues[i].size(); ++j) { MachineBasicBlock *currentMBB = prologues[i][j]; //Find terminator since getFirstTerminator does not work! for(MachineBasicBlock::reverse_iterator mInst = currentMBB->rbegin(), mInstEnd = currentMBB->rend(); mInst != mInstEnd; ++mInst) { MachineOpCode OC = mInst->getOpcode(); //If its a branch update its branchto if(TMI->isBranch(OC)) { for(unsigned opNum = 0; opNum < mInst->getNumOperands(); ++opNum) { MachineOperand &mOp = mInst->getOperand(opNum); if (mOp.getType() == MachineOperand::MO_PCRelativeDisp) { //Check if we are branching to the kernel, if not branch to epilogue if(mOp.getVRegValue() == SB[0]->getBasicBlock()) { if(i >= prologues.size()-1) mOp.setValueReg(llvmKernelBB[0]); else mOp.setValueReg(llvm_prologues[i+1][0]); } else if( (mOp.getVRegValue() == kernel_exit) && (j == prologues[i].size()-1)) { mOp.setValueReg(llvm_epilogues[i][0]); } else if(mOp.getVRegValue() == SB[j+1]->getBasicBlock()) { mOp.setValueReg(llvm_prologues[i][j+1]); } } } DEBUG(std::cerr << "New Prologue Branch: " << *mInst << "\n"); } } //Update llvm basic block with our new branch instr DEBUG(std::cerr << SB[i]->getBasicBlock()->getTerminator() << "\n"); const BranchInst *branchVal = dyn_cast(SB[i]->getBasicBlock()->getTerminator()); //Check for inner branch if(j < prologues[i].size()-1) { //Find our side exit LLVM basic block BasicBlock *sideExit = 0; for(unsigned s = 0; s < branchVal->getNumSuccessors(); ++s) { if(branchVal->getSuccessor(s) != SB[i+1]->getBasicBlock()) sideExit = branchVal->getSuccessor(s); } assert(sideExit && "Must have side exit llvm basic block"); TerminatorInst *newBranch = new BranchInst(sideExit, llvm_prologues[i][j+1], branchVal->getCondition(), llvm_prologues[i][j]); } else { //If last prologue if(i == prologues.size()-1) { TerminatorInst *newBranch = new BranchInst(llvmKernelBB[0], llvm_epilogues[i][0], branchVal->getCondition(), llvm_prologues[i][j]); } else { TerminatorInst *newBranch = new BranchInst(llvm_prologues[i+1][0], llvm_epilogues[i][0], branchVal->getCondition(), llvm_prologues[i][j]); } } } } } //Fix up kernel machine branches for(unsigned i = 0; i < machineKernelBB.size(); ++i) { MachineBasicBlock *currentMBB = machineKernelBB[i]; for(MachineBasicBlock::reverse_iterator mInst = currentMBB->rbegin(), mInstEnd = currentMBB->rend(); mInst != mInstEnd; ++mInst) { MachineOpCode OC = mInst->getOpcode(); if(TMI->isBranch(OC)) { for(unsigned opNum = 0; opNum < mInst->getNumOperands(); ++opNum) { MachineOperand &mOp = mInst->getOperand(opNum); if(mOp.getType() == MachineOperand::MO_PCRelativeDisp) { //Deal with inner kernel branches if(i < machineKernelBB.size()-1) { if(mOp.getVRegValue() == SB[i+1]->getBasicBlock()) mOp.setValueReg(llvmKernelBB[i+1]); //Side exit! else { sideExits[SB[i]] = mOp.getVRegValue(); } } else { if(mOp.getVRegValue() == SB[0]->getBasicBlock()) mOp.setValueReg(llvmKernelBB[0]); else { if(llvm_epilogues.size() > 0) mOp.setValueReg(llvm_epilogues[0][0]); } } } } } } //Update kernelLLVM branches const BranchInst *branchVal = dyn_cast(SB[0]->getBasicBlock()->getTerminator()); //deal with inner branch if(i < machineKernelBB.size()-1) { //Find our side exit LLVM basic block BasicBlock *sideExit = 0; for(unsigned s = 0; s < branchVal->getNumSuccessors(); ++s) { if(branchVal->getSuccessor(s) != SB[i+1]->getBasicBlock()) sideExit = branchVal->getSuccessor(s); } assert(sideExit && "Must have side exit llvm basic block"); TerminatorInst *newBranch = new BranchInst(sideExit, llvmKernelBB[i+1], branchVal->getCondition(), llvmKernelBB[i]); } else { //Deal with outter branches if(epilogues.size() > 0) { TerminatorInst *newBranch = new BranchInst(llvmKernelBB[0], llvm_epilogues[0][0], branchVal->getCondition(), llvmKernelBB[i]); } else { TerminatorInst *newBranch = new BranchInst(llvmKernelBB[0], kernel_exit, branchVal->getCondition(), llvmKernelBB[i]); } } } if(schedule.getMaxStage() != 0) { //Lastly add unconditional branches for the epilogues for(unsigned i = 0; i < epilogues.size(); ++i) { for(unsigned j=0; j < epilogues[i].size(); ++j) { //Now since we don't have fall throughs, add a unconditional //branch to the next prologue //Before adding these, we need to check if the epilogue already has //a branch in it bool hasBranch = false; /*if(j < epilogues[i].size()-1) { MachineBasicBlock *currentMBB = epilogues[i][j]; for(MachineBasicBlock::reverse_iterator mInst = currentMBB->rbegin(), mInstEnd = currentMBB->rend(); mInst != mInstEnd; ++mInst) { MachineOpCode OC = mInst->getOpcode(); //If its a branch update its branchto if(TMI->isBranch(OC)) { hasBranch = true; for(unsigned opNum = 0; opNum < mInst->getNumOperands(); ++opNum) { MachineOperand &mOp = mInst->getOperand(opNum); if (mOp.getType() == MachineOperand::MO_PCRelativeDisp) { if(mOp.getVRegValue() != sideExits[SB[j]]) { mOp.setValueReg(llvm_epilogues[i][j+1]); } } } DEBUG(std::cerr << "New Epilogue Branch: " << *mInst << "\n"); } } if(hasBranch) { const BranchInst *branchVal = dyn_cast(SB[j]->getBasicBlock()->getTerminator()); TerminatorInst *newBranch = new BranchInst((BasicBlock*)sideExits[SB[j]], llvm_epilogues[i][j+1], branchVal->getCondition(), llvm_epilogues[i][j]); } }*/ if(!hasBranch) { //Handle inner branches if(j < epilogues[i].size()-1) { BuildMI(epilogues[i][j], V9::BA, 1).addPCDisp(llvm_epilogues[i][j+1]); TerminatorInst *newBranch = new BranchInst(llvm_epilogues[i][j+1], llvm_epilogues[i][j]); } else { //Check if this is the last epilogue if(i != epilogues.size()-1) { BuildMI(epilogues[i][j], V9::BA, 1).addPCDisp(llvm_epilogues[i+1][0]); //Add unconditional branch to end of epilogue TerminatorInst *newBranch = new BranchInst(llvm_epilogues[i+1][0], llvm_epilogues[i][j]); } else { BuildMI(epilogues[i][j], V9::BA, 1).addPCDisp(kernel_exit); TerminatorInst *newBranch = new BranchInst(kernel_exit, llvm_epilogues[i][j]); } } //Add one more nop! BuildMI(epilogues[i][j], V9::NOP, 0); } } } } //Find all llvm basic blocks that branch to the loop entry and //change to our first prologue. const BasicBlock *llvmBB = SB[0]->getBasicBlock(); std::vectorPreds (pred_begin(llvmBB), pred_end(llvmBB)); for(std::vector::iterator P = Preds.begin(), PE = Preds.end(); P != PE; ++P) { if(*P == SB[SB.size()-1]->getBasicBlock()) continue; else { DEBUG(std::cerr << "Found our entry BB\n"); DEBUG((*P)->print(std::cerr)); //Get the Terminator instruction for this basic block and print it out //DEBUG(std::cerr << *((*P)->getTerminator()) << "\n"); //Update the terminator TerminatorInst *term = ((BasicBlock*)*P)->getTerminator(); for(unsigned i=0; i < term->getNumSuccessors(); ++i) { if(term->getSuccessor(i) == llvmBB) { DEBUG(std::cerr << "Replacing successor bb\n"); if(llvm_prologues.size() > 0) { term->setSuccessor(i, llvm_prologues[0][0]); DEBUG(std::cerr << "New Term" << *((*P)->getTerminator()) << "\n"); //Also update its corresponding machine instruction MachineCodeForInstruction & tempMvec = MachineCodeForInstruction::get(term); for (unsigned j = 0; j < tempMvec.size(); j++) { MachineInstr *temp = tempMvec[j]; MachineOpCode opc = temp->getOpcode(); if(TMI->isBranch(opc)) { DEBUG(std::cerr << *temp << "\n"); //Update branch for(unsigned opNum = 0; opNum < temp->getNumOperands(); ++opNum) { MachineOperand &mOp = temp->getOperand(opNum); if (mOp.getType() == MachineOperand::MO_PCRelativeDisp) { if(mOp.getVRegValue() == llvmBB) mOp.setValueReg(llvm_prologues[0][0]); } } } } } else { term->setSuccessor(i, llvmKernelBB[0]); //Also update its corresponding machine instruction MachineCodeForInstruction & tempMvec = MachineCodeForInstruction::get(term); for(unsigned j = 0; j < tempMvec.size(); j++) { MachineInstr *temp = tempMvec[j]; MachineOpCode opc = temp->getOpcode(); if(TMI->isBranch(opc)) { DEBUG(std::cerr << *temp << "\n"); //Update branch for(unsigned opNum = 0; opNum < temp->getNumOperands(); ++opNum) { MachineOperand &mOp = temp->getOperand(opNum); if(mOp.getType() == MachineOperand::MO_PCRelativeDisp) { if(mOp.getVRegValue() == llvmBB) mOp.setValueReg(llvmKernelBB[0]); } } } } } } } break; } } } void ModuloSchedulingSBPass::writePrologues(std::vector > &prologues, std::vector &origSB, std::vector > &llvm_prologues, std::map > &valuesToSave, std::map > &newValues, std::map &newValLocation) { //Keep a map to easily know whats in the kernel std::map > inKernel; int maxStageCount = 0; //Keep a map of new values we consumed in case they need to be added back std::map > consumedValues; DEBUG(schedule.print(std::cerr)); for(MSScheduleSB::kernel_iterator I = schedule.kernel_begin(), E = schedule.kernel_end(); I != E; ++I) { maxStageCount = std::max(maxStageCount, I->second); //Put int the map so we know what instructions in each stage are in the kernel DEBUG(std::cerr << "Inserting instruction " << *(I->first) << " into map at stage " << I->second << "\n"); inKernel[I->second].insert(I->first); } //Get target information to look at machine operands const TargetInstrInfo *mii = target.getInstrInfo(); //Now write the prologues for(int i = 0; i < maxStageCount; ++i) { std::vector current_prologue; std::vector current_llvm_prologue; for(std::vector::iterator MB = origSB.begin(), MBE = origSB.end(); MB != MBE; ++MB) { const MachineBasicBlock *MBB = *MB; //Create new llvm and machine bb BasicBlock *llvmBB = new BasicBlock("PROLOGUE", (Function*) (MBB->getBasicBlock()->getParent())); MachineBasicBlock *machineBB = new MachineBasicBlock(llvmBB); DEBUG(std::cerr << "i=" << i << "\n"); for(int j = i; j >= 0; --j) { //iterate over instructions in original bb for(MachineBasicBlock::const_iterator MI = MBB->begin(), ME = MBB->end(); ME != MI; ++MI) { if(inKernel[j].count(&*MI)) { MachineInstr *instClone = MI->clone(); machineBB->push_back(instClone); //If its a branch, insert a nop if(mii->isBranch(instClone->getOpcode())) BuildMI(machineBB, V9::NOP, 0); DEBUG(std::cerr << "Cloning: " << *MI << "\n"); //After cloning, we may need to save the value that this instruction defines for(unsigned opNum=0; opNum < MI->getNumOperands(); ++opNum) { Instruction *tmp; //get machine operand MachineOperand &mOp = instClone->getOperand(opNum); if(mOp.getType() == MachineOperand::MO_VirtualRegister && mOp.isDef()) { //Check if this is a value we should save if(valuesToSave.count(mOp.getVRegValue())) { //Save copy in tmpInstruction tmp = new TmpInstruction(mOp.getVRegValue()); //Add TmpInstruction to safe LLVM Instruction MCFI MachineCodeForInstruction & tempMvec = MachineCodeForInstruction::get(defaultInst); tempMvec.addTemp((Value*) tmp); DEBUG(std::cerr << "Value: " << *(mOp.getVRegValue()) << " New Value: " << *tmp << " Stage: " << i << "\n"); newValues[mOp.getVRegValue()][i]= tmp; newValLocation[tmp] = machineBB; DEBUG(std::cerr << "Machine Instr Operands: " << *(mOp.getVRegValue()) << ", 0, " << *tmp << "\n"); //Create machine instruction and put int machineBB MachineInstr *saveValue; if(mOp.getVRegValue()->getType() == Type::FloatTy) saveValue = BuildMI(machineBB, V9::FMOVS, 3).addReg(mOp.getVRegValue()).addRegDef(tmp); else if(mOp.getVRegValue()->getType() == Type::DoubleTy) saveValue = BuildMI(machineBB, V9::FMOVD, 3).addReg(mOp.getVRegValue()).addRegDef(tmp); else saveValue = BuildMI(machineBB, V9::ORr, 3).addReg(mOp.getVRegValue()).addImm(0).addRegDef(tmp); DEBUG(std::cerr << "Created new machine instr: " << *saveValue << "\n"); } } //We may also need to update the value that we use if //its from an earlier prologue if(j != 0) { if(mOp.getType() == MachineOperand::MO_VirtualRegister && mOp.isUse()) { if(newValues.count(mOp.getVRegValue())) { if(newValues[mOp.getVRegValue()].count(i-1)) { Value *oldV = mOp.getVRegValue(); DEBUG(std::cerr << "Replaced this value: " << mOp.getVRegValue() << " With:" << (newValues[mOp.getVRegValue()][i-1]) << "\n"); //Update the operand with the right value mOp.setValueReg(newValues[mOp.getVRegValue()][i-1]); //Remove this value since we have consumed it //NOTE: Should this only be done if j != maxStage? consumedValues[oldV][i-1] = (newValues[oldV][i-1]); DEBUG(std::cerr << "Deleted value: " << consumedValues[oldV][i-1] << "\n"); newValues[oldV].erase(i-1); } } else if(consumedValues.count(mOp.getVRegValue())) assert(!consumedValues[mOp.getVRegValue()].count(i-1) && "Found a case where we need the value"); } } } } } } (((MachineBasicBlock*)MBB)->getParent())->getBasicBlockList().push_back(machineBB); current_prologue.push_back(machineBB); current_llvm_prologue.push_back(llvmBB); } prologues.push_back(current_prologue); llvm_prologues.push_back(current_llvm_prologue); } } void ModuloSchedulingSBPass::writeEpilogues(std::vector > &epilogues, std::vector &origSB, std::vector > &llvm_epilogues, std::map > &valuesToSave, std::map > &newValues,std::map &newValLocation, std::map > &kernelPHIs ) { std::map > inKernel; const TargetInstrInfo *MTI = target.getInstrInfo(); for(MSScheduleSB::kernel_iterator I = schedule.kernel_begin(), E = schedule.kernel_end(); I != E; ++I) { //Put int the map so we know what instructions in each stage are in the kernel inKernel[I->second].insert(I->first); } std::map valPHIs; //some debug stuff, will remove later DEBUG(for(std::map >::iterator V = newValues.begin(), E = newValues.end(); V !=E; ++V) { std::cerr << "Old Value: " << *(V->first) << "\n"; for(std::map::iterator I = V->second.begin(), IE = V->second.end(); I != IE; ++I) std::cerr << "Stage: " << I->first << " Value: " << *(I->second) << "\n"; }); //Now write the epilogues for(int i = schedule.getMaxStage()-1; i >= 0; --i) { std::vector current_epilogue; std::vector current_llvm_epilogue; for(std::vector::iterator MB = origSB.begin(), MBE = origSB.end(); MB != MBE; ++MB) { const MachineBasicBlock *MBB = *MB; BasicBlock *llvmBB = new BasicBlock("EPILOGUE", (Function*) (MBB->getBasicBlock()->getParent())); MachineBasicBlock *machineBB = new MachineBasicBlock(llvmBB); DEBUG(std::cerr << " Epilogue #: " << i << "\n"); std::map inEpilogue; for(MachineBasicBlock::const_iterator MI = MBB->begin(), ME = MBB->end(); ME != MI; ++MI) { for(int j=schedule.getMaxStage(); j > i; --j) { if(inKernel[j].count(&*MI)) { DEBUG(std::cerr << "Cloning instruction " << *MI << "\n"); MachineInstr *clone = MI->clone(); //Update operands that need to use the result from the phi for(unsigned opNum=0; opNum < clone->getNumOperands(); ++opNum) { //get machine operand const MachineOperand &mOp = clone->getOperand(opNum); if((mOp.getType() == MachineOperand::MO_VirtualRegister && mOp.isUse())) { DEBUG(std::cerr << "Writing PHI for " << (mOp.getVRegValue()) << "\n"); //If this is the last instructions for the max iterations ago, don't update operands if(inEpilogue.count(mOp.getVRegValue())) if(inEpilogue[mOp.getVRegValue()] == i) continue; //Quickly write appropriate phis for this operand if(newValues.count(mOp.getVRegValue())) { if(newValues[mOp.getVRegValue()].count(i)) { Instruction *tmp = new TmpInstruction(newValues[mOp.getVRegValue()][i]); //Get machine code for this instruction MachineCodeForInstruction & tempMvec = MachineCodeForInstruction::get(defaultInst); tempMvec.addTemp((Value*) tmp); //assert of no kernelPHI for this value assert(kernelPHIs[mOp.getVRegValue()][i] !=0 && "Must have final kernel phi to construct epilogue phi"); MachineInstr *saveValue = BuildMI(machineBB, V9::PHI, 3).addReg(newValues[mOp.getVRegValue()][i]).addReg(kernelPHIs[mOp.getVRegValue()][i]).addRegDef(tmp); DEBUG(std::cerr << "Resulting PHI: " << *saveValue << "\n"); valPHIs[mOp.getVRegValue()] = tmp; } } if(valPHIs.count(mOp.getVRegValue())) { //Update the operand in the cloned instruction clone->getOperand(opNum).setValueReg(valPHIs[mOp.getVRegValue()]); } } else if((mOp.getType() == MachineOperand::MO_VirtualRegister && mOp.isDef())) { inEpilogue[mOp.getVRegValue()] = i; } } machineBB->push_back(clone); //if(MTI->isBranch(clone->getOpcode())) //BuildMI(machineBB, V9::NOP, 0); } } } (((MachineBasicBlock*)MBB)->getParent())->getBasicBlockList().push_back(machineBB); current_epilogue.push_back(machineBB); current_llvm_epilogue.push_back(llvmBB); } DEBUG(std::cerr << "EPILOGUE #" << i << "\n"); DEBUG(for(std::vector::iterator B = current_epilogue.begin(), BE = current_epilogue.end(); B != BE; ++B) { (*B)->print(std::cerr);}); epilogues.push_back(current_epilogue); llvm_epilogues.push_back(current_llvm_epilogue); } } void ModuloSchedulingSBPass::writeKernel(std::vector &llvmBB, std::vector &machineBB, std::map > &valuesToSave, std::map > &newValues, std::map &newValLocation, std::map > &kernelPHIs) { //Keep track of operands that are read and saved from a previous iteration. The new clone //instruction will use the result of the phi instead. std::map finalPHIValue; std::map kernelValue; //Branches are a special case std::vector branches; //Get target information to look at machine operands const TargetInstrInfo *mii = target.getInstrInfo(); unsigned index = 0; int numBr = 0; bool seenBranch = false; //Create TmpInstructions for the final phis for(MSScheduleSB::kernel_iterator I = schedule.kernel_begin(), E = schedule.kernel_end(); I != E; ++I) { DEBUG(std::cerr << "Stage: " << I->second << " Inst: " << *(I->first) << "\n";); //Clone instruction const MachineInstr *inst = I->first; MachineInstr *instClone = inst->clone(); if(seenBranch && !mii->isBranch(instClone->getOpcode())) { index++; seenBranch = false; numBr = 0; } else if(seenBranch && (numBr == 2)) { index++; numBr = 0; } //Insert into machine basic block assert(index < machineBB.size() && "Must have a valid index into kernel MBBs"); machineBB[index]->push_back(instClone); if(mii->isBranch(instClone->getOpcode())) { BuildMI(machineBB[index], V9::NOP, 0); seenBranch = true; numBr++; } DEBUG(std::cerr << "Cloned Inst: " << *instClone << "\n"); //Loop over Machine Operands for(unsigned i=0; i < inst->getNumOperands(); ++i) { //get machine operand const MachineOperand &mOp = inst->getOperand(i); if(I->second != 0) { if(mOp.getType() == MachineOperand::MO_VirtualRegister && mOp.isUse()) { //Check to see where this operand is defined if this instruction is from max stage if(I->second == schedule.getMaxStage()) { DEBUG(std::cerr << "VREG: " << *(mOp.getVRegValue()) << "\n"); } //If its in the value saved, we need to create a temp instruction and use that instead if(valuesToSave.count(mOp.getVRegValue())) { //Check if we already have a final PHI value for this if(!finalPHIValue.count(mOp.getVRegValue())) { //Only create phi if the operand def is from a stage before this one if(schedule.defPreviousStage(mOp.getVRegValue(), I->second)) { TmpInstruction *tmp = new TmpInstruction(mOp.getVRegValue()); //Get machine code for this instruction MachineCodeForInstruction & tempMvec = MachineCodeForInstruction::get(defaultInst); tempMvec.addTemp((Value*) tmp); //Update the operand in the cloned instruction instClone->getOperand(i).setValueReg(tmp); //save this as our final phi finalPHIValue[mOp.getVRegValue()] = tmp; newValLocation[tmp] = machineBB[index]; } } else { //Use the previous final phi value instClone->getOperand(i).setValueReg(finalPHIValue[mOp.getVRegValue()]); } } } } if(I->second != schedule.getMaxStage()) { if(mOp.getType() == MachineOperand::MO_VirtualRegister && mOp.isDef()) { if(valuesToSave.count(mOp.getVRegValue())) { TmpInstruction *tmp = new TmpInstruction(mOp.getVRegValue()); //Get machine code for this instruction MachineCodeForInstruction & tempVec = MachineCodeForInstruction::get(defaultInst); tempVec.addTemp((Value*) tmp); //Create new machine instr and put in MBB MachineInstr *saveValue; if(mOp.getVRegValue()->getType() == Type::FloatTy) saveValue = BuildMI(machineBB[index], V9::FMOVS, 3).addReg(mOp.getVRegValue()).addRegDef(tmp); else if(mOp.getVRegValue()->getType() == Type::DoubleTy) saveValue = BuildMI(machineBB[index], V9::FMOVD, 3).addReg(mOp.getVRegValue()).addRegDef(tmp); else saveValue = BuildMI(machineBB[index], V9::ORr, 3).addReg(mOp.getVRegValue()).addImm(0).addRegDef(tmp); //Save for future cleanup kernelValue[mOp.getVRegValue()] = tmp; newValLocation[tmp] = machineBB[index]; kernelPHIs[mOp.getVRegValue()][schedule.getMaxStage()-1] = tmp; } } } } } //Loop over each value we need to generate phis for for(std::map >::iterator V = newValues.begin(), E = newValues.end(); V != E; ++V) { DEBUG(std::cerr << "Writing phi for" << *(V->first)); DEBUG(std::cerr << "\nMap of Value* for this phi\n"); DEBUG(for(std::map::iterator I = V->second.begin(), IE = V->second.end(); I != IE; ++I) { std::cerr << "Stage: " << I->first; std::cerr << " Value: " << *(I->second) << "\n"; }); //If we only have one current iteration live, its safe to set //lastPhi = to kernel value if(V->second.size() == 1) { assert(kernelValue[V->first] != 0 && "Kernel value* must exist to create phi"); MachineInstr *saveValue = BuildMI(*machineBB[0], machineBB[0]->begin(),V9::PHI, 3).addReg(V->second.begin()->second).addReg(kernelValue[V->first]).addRegDef(finalPHIValue[V->first]); DEBUG(std::cerr << "Resulting PHI (one live): " << *saveValue << "\n"); kernelPHIs[V->first][V->second.begin()->first] = kernelValue[V->first]; DEBUG(std::cerr << "Put kernel phi in at stage: " << schedule.getMaxStage()-1 << " (map stage = " << V->second.begin()->first << ")\n"); } else { //Keep track of last phi created. Instruction *lastPhi = 0; unsigned count = 1; //Loop over the the map backwards to generate phis for(std::map::reverse_iterator I = V->second.rbegin(), IE = V->second.rend(); I != IE; ++I) { if(count < (V->second).size()) { if(lastPhi == 0) { lastPhi = new TmpInstruction(I->second); //Get machine code for this instruction MachineCodeForInstruction & tempMvec = MachineCodeForInstruction::get(defaultInst); tempMvec.addTemp((Value*) lastPhi); MachineInstr *saveValue = BuildMI(*machineBB[0], machineBB[0]->begin(), V9::PHI, 3).addReg(kernelValue[V->first]).addReg(I->second).addRegDef(lastPhi); DEBUG(std::cerr << "Resulting PHI: " << *saveValue << "\n"); newValLocation[lastPhi] = machineBB[0]; } else { Instruction *tmp = new TmpInstruction(I->second); //Get machine code for this instruction MachineCodeForInstruction & tempMvec = MachineCodeForInstruction::get(defaultInst); tempMvec.addTemp((Value*) tmp); MachineInstr *saveValue = BuildMI(*machineBB[0], machineBB[0]->begin(), V9::PHI, 3).addReg(lastPhi).addReg(I->second).addRegDef(tmp); DEBUG(std::cerr << "Resulting PHI: " << *saveValue << "\n"); lastPhi = tmp; kernelPHIs[V->first][I->first] = lastPhi; newValLocation[lastPhi] = machineBB[0]; } } //Final phi value else { //The resulting value must be the Value* we created earlier assert(lastPhi != 0 && "Last phi is NULL!\n"); MachineInstr *saveValue = BuildMI(*machineBB[0], machineBB[0]->begin(), V9::PHI, 3).addReg(lastPhi).addReg(I->second).addRegDef(finalPHIValue[V->first]); DEBUG(std::cerr << "Resulting PHI: " << *saveValue << "\n"); kernelPHIs[V->first][I->first] = finalPHIValue[V->first]; } ++count; } } } } void ModuloSchedulingSBPass::removePHIs(std::vector &SB, std::vector > &prologues, std::vector > &epilogues, std::vector &kernelBB, std::map &newValLocation) { //Worklist to delete things std::vector > worklist; //Worklist of TmpInstructions that need to be added to a MCFI std::vector addToMCFI; //Worklist to add OR instructions to end of kernel so not to invalidate the iterator //std::vector > newORs; const TargetInstrInfo *TMI = target.getInstrInfo(); //Start with the kernel and for each phi insert a copy for the phi //def and for each arg //phis are only in the first BB in the kernel for(MachineBasicBlock::iterator I = kernelBB[0]->begin(), E = kernelBB[0]->end(); I != E; ++I) { DEBUG(std::cerr << "Looking at Instr: " << *I << "\n"); //Get op code and check if its a phi if(I->getOpcode() == V9::PHI) { DEBUG(std::cerr << "Replacing PHI: " << *I << "\n"); Instruction *tmp = 0; for(unsigned i = 0; i < I->getNumOperands(); ++i) { //Get Operand const MachineOperand &mOp = I->getOperand(i); assert(mOp.getType() == MachineOperand::MO_VirtualRegister && "Should be a Value*\n"); if(!tmp) { tmp = new TmpInstruction(mOp.getVRegValue()); addToMCFI.push_back(tmp); } //Now for all our arguments we read, OR to the new //TmpInstruction that we created if(mOp.isUse()) { DEBUG(std::cerr << "Use: " << mOp << "\n"); //Place a copy at the end of its BB but before the branches assert(newValLocation.count(mOp.getVRegValue()) && "We must know where this value is located\n"); //Reverse iterate to find the branches, we can safely assume no instructions have been //put in the nop positions for(MachineBasicBlock::iterator inst = --(newValLocation[mOp.getVRegValue()])->end(), endBB = (newValLocation[mOp.getVRegValue()])->begin(); inst != endBB; --inst) { MachineOpCode opc = inst->getOpcode(); if(TMI->isBranch(opc) || TMI->isNop(opc)) continue; else { if(mOp.getVRegValue()->getType() == Type::FloatTy) BuildMI(*(newValLocation[mOp.getVRegValue()]), ++inst, V9::FMOVS, 3).addReg(mOp.getVRegValue()).addRegDef(tmp); else if(mOp.getVRegValue()->getType() == Type::DoubleTy) BuildMI(*(newValLocation[mOp.getVRegValue()]), ++inst, V9::FMOVD, 3).addReg(mOp.getVRegValue()).addRegDef(tmp); else BuildMI(*(newValLocation[mOp.getVRegValue()]), ++inst, V9::ORr, 3).addReg(mOp.getVRegValue()).addImm(0).addRegDef(tmp); break; } } } else { //Remove the phi and replace it with an OR DEBUG(std::cerr << "Def: " << mOp << "\n"); //newORs.push_back(std::make_pair(tmp, mOp.getVRegValue())); if(tmp->getType() == Type::FloatTy) BuildMI(*kernelBB[0], I, V9::FMOVS, 3).addReg(tmp).addRegDef(mOp.getVRegValue()); else if(tmp->getType() == Type::DoubleTy) BuildMI(*kernelBB[0], I, V9::FMOVD, 3).addReg(tmp).addRegDef(mOp.getVRegValue()); else BuildMI(*kernelBB[0], I, V9::ORr, 3).addReg(tmp).addImm(0).addRegDef(mOp.getVRegValue()); worklist.push_back(std::make_pair(kernelBB[0], I)); } } } } //Add TmpInstructions to some MCFI if(addToMCFI.size() > 0) { MachineCodeForInstruction & tempMvec = MachineCodeForInstruction::get(defaultInst); for(unsigned x = 0; x < addToMCFI.size(); ++x) { tempMvec.addTemp(addToMCFI[x]); } addToMCFI.clear(); } //Remove phis from epilogue for(std::vector >::iterator MB = epilogues.begin(), ME = epilogues.end(); MB != ME; ++MB) { for(std::vector::iterator currentMBB = MB->begin(), currentME = MB->end(); currentMBB != currentME; ++currentMBB) { for(MachineBasicBlock::iterator I = (*currentMBB)->begin(), E = (*currentMBB)->end(); I != E; ++I) { DEBUG(std::cerr << "Looking at Instr: " << *I << "\n"); //Get op code and check if its a phi if(I->getOpcode() == V9::PHI) { Instruction *tmp = 0; for(unsigned i = 0; i < I->getNumOperands(); ++i) { //Get Operand const MachineOperand &mOp = I->getOperand(i); assert(mOp.getType() == MachineOperand::MO_VirtualRegister && "Should be a Value*\n"); if(!tmp) { tmp = new TmpInstruction(mOp.getVRegValue()); addToMCFI.push_back(tmp); } //Now for all our arguments we read, OR to the new TmpInstruction that we created if(mOp.isUse()) { DEBUG(std::cerr << "Use: " << mOp << "\n"); //Place a copy at the end of its BB but before the branches assert(newValLocation.count(mOp.getVRegValue()) && "We must know where this value is located\n"); //Reverse iterate to find the branches, we can safely assume no instructions have been //put in the nop positions for(MachineBasicBlock::iterator inst = --(newValLocation[mOp.getVRegValue()])->end(), endBB = (newValLocation[mOp.getVRegValue()])->begin(); inst != endBB; --inst) { MachineOpCode opc = inst->getOpcode(); if(TMI->isBranch(opc) || TMI->isNop(opc)) continue; else { if(mOp.getVRegValue()->getType() == Type::FloatTy) BuildMI(*(newValLocation[mOp.getVRegValue()]), ++inst, V9::FMOVS, 3).addReg(mOp.getVRegValue()).addRegDef(tmp); else if(mOp.getVRegValue()->getType() == Type::DoubleTy) BuildMI(*(newValLocation[mOp.getVRegValue()]), ++inst, V9::FMOVD, 3).addReg(mOp.getVRegValue()).addRegDef(tmp); else BuildMI(*(newValLocation[mOp.getVRegValue()]), ++inst, V9::ORr, 3).addReg(mOp.getVRegValue()).addImm(0).addRegDef(tmp); break; } } } else { //Remove the phi and replace it with an OR DEBUG(std::cerr << "Def: " << mOp << "\n"); if(tmp->getType() == Type::FloatTy) BuildMI(**currentMBB, I, V9::FMOVS, 3).addReg(tmp).addRegDef(mOp.getVRegValue()); else if(tmp->getType() == Type::DoubleTy) BuildMI(**currentMBB, I, V9::FMOVD, 3).addReg(tmp).addRegDef(mOp.getVRegValue()); else BuildMI(**currentMBB, I, V9::ORr, 3).addReg(tmp).addImm(0).addRegDef(mOp.getVRegValue()); worklist.push_back(std::make_pair(*currentMBB,I)); } } } } } } if(addToMCFI.size() > 0) { MachineCodeForInstruction & tempMvec = MachineCodeForInstruction::get(defaultInst); for(unsigned x = 0; x < addToMCFI.size(); ++x) { tempMvec.addTemp(addToMCFI[x]); } addToMCFI.clear(); } //Delete the phis for(std::vector >::iterator I = worklist.begin(), E = worklist.end(); I != E; ++I) { DEBUG(std::cerr << "Deleting PHI " << *I->second << "\n"); I->first->erase(I->second); } assert((addToMCFI.size() == 0) && "We should have added all TmpInstructions to some MachineCodeForInstruction"); } void ModuloSchedulingSBPass::writeSideExits(std::vector > &prologues, std::vector > &llvm_prologues, std::vector > &epilogues, std::vector > &llvm_epilogues, std::map &sideExits, std::map > > &instrsMovedDown, std::vector &SB, std::vector &kernelMBBs, std::map branchStage) { const TargetInstrInfo *TMI = target.getInstrInfo(); //Repeat for each side exit for(unsigned sideExitNum = 0; sideExitNum < SB.size()-1; ++sideExitNum) { std::vector > side_llvm_epilogues; std::vector > side_epilogues; MachineBasicBlock* sideMBB; BasicBlock* sideBB; //Create side exit blocks //Get the LLVM basic block BasicBlock *bb = (BasicBlock*) SB[sideExitNum]->getBasicBlock(); MachineBasicBlock *mbb = (MachineBasicBlock*) SB[sideExitNum]; int stage = branchStage[mbb]; //Create new basic blocks for our side exit instructios that were moved below the branch sideBB = new BasicBlock("SideExit", (Function*) bb->getParent()); sideMBB = new MachineBasicBlock(sideBB); (((MachineBasicBlock*)SB[0])->getParent())->getBasicBlockList().push_back(sideMBB); if(instrsMovedDown.count(mbb)) { for(std::vector >::iterator I = instrsMovedDown[mbb].begin(), E = instrsMovedDown[mbb].end(); I != E; ++I) { if(branchStage[mbb] == I->second) sideMBB->push_back((I->first)->clone()); } //Add unconditional branches to original exits BuildMI(sideMBB, V9::BA, 1).addPCDisp(sideExits[mbb]); BuildMI(sideMBB, V9::NOP, 0); //Add unconditioal branch to llvm BB BasicBlock *extBB = dyn_cast(sideExits[mbb]); assert(extBB && "Side exit basicblock can not be null"); TerminatorInst *newBranch = new BranchInst(extBB, sideBB); } //Clone epilogues and update their branches, one cloned epilogue set per side exit //only clone epilogues that are from a greater stage! for(unsigned i = 0; i < epilogues.size()-stage; ++i) { std::vector MB = epilogues[i]; std::vector newEp; std::vector newLLVMEp; for(std::vector::iterator currentMBB = MB.begin(), lastMBB = MB.end(); currentMBB != lastMBB; ++currentMBB) { BasicBlock *tmpBB = new BasicBlock("SideEpilogue", (Function*) (*currentMBB)->getBasicBlock()->getParent()); MachineBasicBlock *tmp = new MachineBasicBlock(tmpBB); //Clone instructions and insert into new MBB for(MachineBasicBlock::iterator I = (*currentMBB)->begin(), E = (*currentMBB)->end(); I != E; ++I) { MachineInstr *clone = I->clone(); if(clone->getOpcode() == V9::BA && (currentMBB+1 == lastMBB)) { //update branch to side exit for(unsigned i = 0; i < clone->getNumOperands(); ++i) { MachineOperand &mOp = clone->getOperand(i); if (mOp.getType() == MachineOperand::MO_PCRelativeDisp) { mOp.setValueReg(sideBB); } } } tmp->push_back(clone); } //Add llvm branch TerminatorInst *newBranch = new BranchInst(sideBB, tmpBB); newEp.push_back(tmp); (((MachineBasicBlock*)SB[0])->getParent())->getBasicBlockList().push_back(tmp); newLLVMEp.push_back(tmpBB); } side_llvm_epilogues.push_back(newLLVMEp); side_epilogues.push_back(newEp); } //Now stich up all the branches //Loop over prologues, and if its an inner branch and branches to our original side exit //then have it branch to the appropriate epilogue first (if it exists) for(unsigned P = 0; P < prologues.size(); ++P) { //Get BB side exit we are dealing with MachineBasicBlock *currentMBB = prologues[P][sideExitNum]; if(P >= (unsigned) stage) { //Iterate backwards of machine instructions to find the branch we need to update for(MachineBasicBlock::reverse_iterator mInst = currentMBB->rbegin(), mInstEnd = currentMBB->rend(); mInst != mInstEnd; ++mInst) { MachineOpCode OC = mInst->getOpcode(); //If its a branch update its branchto if(TMI->isBranch(OC)) { for(unsigned opNum = 0; opNum < mInst->getNumOperands(); ++opNum) { MachineOperand &mOp = mInst->getOperand(opNum); if (mOp.getType() == MachineOperand::MO_PCRelativeDisp) { //Check if we branch to side exit if(mOp.getVRegValue() == sideExits[mbb]) { mOp.setValueReg(side_llvm_epilogues[P][0]); } } } DEBUG(std::cerr << "New Prologue Branch: " << *mInst << "\n"); } } //Update llvm branch TerminatorInst *branchVal = ((BasicBlock*) currentMBB->getBasicBlock())->getTerminator(); DEBUG(std::cerr << *branchVal << "\n"); for(unsigned i=0; i < branchVal->getNumSuccessors(); ++i) { if(branchVal->getSuccessor(i) == sideExits[mbb]) { DEBUG(std::cerr << "Replacing successor bb\n"); branchVal->setSuccessor(i, side_llvm_epilogues[P][0]); } } } else { //must add BA branch because another prologue or kernel has the actual side exit branch //Add unconditional branches to original exits assert( (sideExitNum+1) < prologues[P].size() && "must have valid prologue to branch to"); BuildMI(prologues[P][sideExitNum], V9::BA, 1).addPCDisp((BasicBlock*)(prologues[P][sideExitNum+1])->getBasicBlock()); BuildMI(prologues[P][sideExitNum], V9::NOP, 0); TerminatorInst *newBranch = new BranchInst((BasicBlock*) (prologues[P][sideExitNum+1])->getBasicBlock(), (BasicBlock*) (prologues[P][sideExitNum])->getBasicBlock()); } } //Update side exits in kernel MachineBasicBlock *currentMBB = kernelMBBs[sideExitNum]; //Iterate backwards of machine instructions to find the branch we need to update for(MachineBasicBlock::reverse_iterator mInst = currentMBB->rbegin(), mInstEnd = currentMBB->rend(); mInst != mInstEnd; ++mInst) { MachineOpCode OC = mInst->getOpcode(); //If its a branch update its branchto if(TMI->isBranch(OC)) { for(unsigned opNum = 0; opNum < mInst->getNumOperands(); ++opNum) { MachineOperand &mOp = mInst->getOperand(opNum); if (mOp.getType() == MachineOperand::MO_PCRelativeDisp) { //Check if we branch to side exit if(mOp.getVRegValue() == sideExits[mbb]) { if(side_llvm_epilogues.size() > 0) mOp.setValueReg(side_llvm_epilogues[0][0]); else mOp.setValueReg(sideBB); } } } DEBUG(std::cerr << "New Prologue Branch: " << *mInst << "\n"); } } //Update llvm branch //Update llvm branch TerminatorInst *branchVal = ((BasicBlock*)currentMBB->getBasicBlock())->getTerminator(); DEBUG(std::cerr << *branchVal << "\n"); for(unsigned i=0; i < branchVal->getNumSuccessors(); ++i) { if(branchVal->getSuccessor(i) == sideExits[mbb]) { DEBUG(std::cerr << "Replacing successor bb\n"); if(side_llvm_epilogues.size() > 0) branchVal->setSuccessor(i, side_llvm_epilogues[0][0]); else branchVal->setSuccessor(i, sideBB); } } } }