//===-- PPCInstrInfo.td - The PowerPC Instruction Set ------*- tablegen -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file describes the subset of the 32-bit PowerPC instruction set, as used // by the PowerPC instruction selector. // //===----------------------------------------------------------------------===// include "PPCInstrFormats.td" //===----------------------------------------------------------------------===// // PowerPC specific type constraints. // def SDT_PPCstfiwx : SDTypeProfile<0, 2, [ // stfiwx SDTCisVT<0, f64>, SDTCisPtrTy<1> ]>; def SDT_PPClfiwx : SDTypeProfile<1, 1, [ // lfiw[az]x SDTCisVT<0, f64>, SDTCisPtrTy<1> ]>; def SDT_PPCCallSeqStart : SDCallSeqStart<[ SDTCisVT<0, i32> ]>; def SDT_PPCCallSeqEnd : SDCallSeqEnd<[ SDTCisVT<0, i32>, SDTCisVT<1, i32> ]>; def SDT_PPCvperm : SDTypeProfile<1, 3, [ SDTCisVT<3, v16i8>, SDTCisSameAs<0, 1>, SDTCisSameAs<0, 2> ]>; def SDT_PPCvcmp : SDTypeProfile<1, 3, [ SDTCisSameAs<0, 1>, SDTCisSameAs<1, 2>, SDTCisVT<3, i32> ]>; def SDT_PPCcondbr : SDTypeProfile<0, 3, [ SDTCisVT<0, i32>, SDTCisVT<2, OtherVT> ]>; def SDT_PPClbrx : SDTypeProfile<1, 2, [ SDTCisInt<0>, SDTCisPtrTy<1>, SDTCisVT<2, OtherVT> ]>; def SDT_PPCstbrx : SDTypeProfile<0, 3, [ SDTCisInt<0>, SDTCisPtrTy<1>, SDTCisVT<2, OtherVT> ]>; def SDT_PPClarx : SDTypeProfile<1, 1, [ SDTCisInt<0>, SDTCisPtrTy<1> ]>; def SDT_PPCstcx : SDTypeProfile<0, 2, [ SDTCisInt<0>, SDTCisPtrTy<1> ]>; def SDT_PPCTC_ret : SDTypeProfile<0, 2, [ SDTCisPtrTy<0>, SDTCisVT<1, i32> ]>; //===----------------------------------------------------------------------===// // PowerPC specific DAG Nodes. // def PPCfre : SDNode<"PPCISD::FRE", SDTFPUnaryOp, []>; def PPCfrsqrte: SDNode<"PPCISD::FRSQRTE", SDTFPUnaryOp, []>; def PPCfcfid : SDNode<"PPCISD::FCFID", SDTFPUnaryOp, []>; def PPCfcfidu : SDNode<"PPCISD::FCFIDU", SDTFPUnaryOp, []>; def PPCfcfids : SDNode<"PPCISD::FCFIDS", SDTFPRoundOp, []>; def PPCfcfidus: SDNode<"PPCISD::FCFIDUS", SDTFPRoundOp, []>; def PPCfctidz : SDNode<"PPCISD::FCTIDZ", SDTFPUnaryOp, []>; def PPCfctiwz : SDNode<"PPCISD::FCTIWZ", SDTFPUnaryOp, []>; def PPCfctiduz: SDNode<"PPCISD::FCTIDUZ",SDTFPUnaryOp, []>; def PPCfctiwuz: SDNode<"PPCISD::FCTIWUZ",SDTFPUnaryOp, []>; def PPCstfiwx : SDNode<"PPCISD::STFIWX", SDT_PPCstfiwx, [SDNPHasChain, SDNPMayStore]>; def PPClfiwax : SDNode<"PPCISD::LFIWAX", SDT_PPClfiwx, [SDNPHasChain, SDNPMayLoad]>; def PPClfiwzx : SDNode<"PPCISD::LFIWZX", SDT_PPClfiwx, [SDNPHasChain, SDNPMayLoad]>; // Extract FPSCR (not modeled at the DAG level). def PPCmffs : SDNode<"PPCISD::MFFS", SDTypeProfile<1, 0, [SDTCisVT<0, f64>]>, []>; // Perform FADD in round-to-zero mode. def PPCfaddrtz: SDNode<"PPCISD::FADDRTZ", SDTFPBinOp, []>; def PPCfsel : SDNode<"PPCISD::FSEL", // Type constraint for fsel. SDTypeProfile<1, 3, [SDTCisSameAs<0, 2>, SDTCisSameAs<0, 3>, SDTCisFP<0>, SDTCisVT<1, f64>]>, []>; def PPChi : SDNode<"PPCISD::Hi", SDTIntBinOp, []>; def PPClo : SDNode<"PPCISD::Lo", SDTIntBinOp, []>; def PPCtoc_entry: SDNode<"PPCISD::TOC_ENTRY", SDTIntBinOp, [SDNPMayLoad]>; def PPCvmaddfp : SDNode<"PPCISD::VMADDFP", SDTFPTernaryOp, []>; def PPCvnmsubfp : SDNode<"PPCISD::VNMSUBFP", SDTFPTernaryOp, []>; def PPCaddisGotTprelHA : SDNode<"PPCISD::ADDIS_GOT_TPREL_HA", SDTIntBinOp>; def PPCldGotTprelL : SDNode<"PPCISD::LD_GOT_TPREL_L", SDTIntBinOp, [SDNPMayLoad]>; def PPCaddTls : SDNode<"PPCISD::ADD_TLS", SDTIntBinOp, []>; def PPCaddisTlsgdHA : SDNode<"PPCISD::ADDIS_TLSGD_HA", SDTIntBinOp>; def PPCaddiTlsgdL : SDNode<"PPCISD::ADDI_TLSGD_L", SDTIntBinOp>; def PPCgetTlsAddr : SDNode<"PPCISD::GET_TLS_ADDR", SDTIntBinOp>; def PPCaddisTlsldHA : SDNode<"PPCISD::ADDIS_TLSLD_HA", SDTIntBinOp>; def PPCaddiTlsldL : SDNode<"PPCISD::ADDI_TLSLD_L", SDTIntBinOp>; def PPCgetTlsldAddr : SDNode<"PPCISD::GET_TLSLD_ADDR", SDTIntBinOp>; def PPCaddisDtprelHA : SDNode<"PPCISD::ADDIS_DTPREL_HA", SDTIntBinOp, [SDNPHasChain]>; def PPCaddiDtprelL : SDNode<"PPCISD::ADDI_DTPREL_L", SDTIntBinOp>; def PPCvperm : SDNode<"PPCISD::VPERM", SDT_PPCvperm, []>; // These nodes represent the 32-bit PPC shifts that operate on 6-bit shift // amounts. These nodes are generated by the multi-precision shift code. def PPCsrl : SDNode<"PPCISD::SRL" , SDTIntShiftOp>; def PPCsra : SDNode<"PPCISD::SRA" , SDTIntShiftOp>; def PPCshl : SDNode<"PPCISD::SHL" , SDTIntShiftOp>; // These are target-independent nodes, but have target-specific formats. def callseq_start : SDNode<"ISD::CALLSEQ_START", SDT_PPCCallSeqStart, [SDNPHasChain, SDNPOutGlue]>; def callseq_end : SDNode<"ISD::CALLSEQ_END", SDT_PPCCallSeqEnd, [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue]>; def SDT_PPCCall : SDTypeProfile<0, -1, [SDTCisInt<0>]>; def PPCcall : SDNode<"PPCISD::CALL", SDT_PPCCall, [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue, SDNPVariadic]>; def PPCcall_nop : SDNode<"PPCISD::CALL_NOP", SDT_PPCCall, [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue, SDNPVariadic]>; def PPCload : SDNode<"PPCISD::LOAD", SDTypeProfile<1, 1, []>, [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue]>; def PPCload_toc : SDNode<"PPCISD::LOAD_TOC", SDTypeProfile<0, 1, []>, [SDNPHasChain, SDNPSideEffect, SDNPInGlue, SDNPOutGlue]>; def PPCtoc_restore : SDNode<"PPCISD::TOC_RESTORE", SDTypeProfile<0, 0, []>, [SDNPHasChain, SDNPSideEffect, SDNPInGlue, SDNPOutGlue]>; def PPCmtctr : SDNode<"PPCISD::MTCTR", SDT_PPCCall, [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue]>; def PPCbctrl : SDNode<"PPCISD::BCTRL", SDTNone, [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue, SDNPVariadic]>; def retflag : SDNode<"PPCISD::RET_FLAG", SDTNone, [SDNPHasChain, SDNPOptInGlue, SDNPVariadic]>; def PPCtc_return : SDNode<"PPCISD::TC_RETURN", SDT_PPCTC_ret, [SDNPHasChain, SDNPOptInGlue, SDNPVariadic]>; def PPCeh_sjlj_setjmp : SDNode<"PPCISD::EH_SJLJ_SETJMP", SDTypeProfile<1, 1, [SDTCisInt<0>, SDTCisPtrTy<1>]>, [SDNPHasChain, SDNPSideEffect]>; def PPCeh_sjlj_longjmp : SDNode<"PPCISD::EH_SJLJ_LONGJMP", SDTypeProfile<0, 1, [SDTCisPtrTy<0>]>, [SDNPHasChain, SDNPSideEffect]>; def SDT_PPCsc : SDTypeProfile<0, 1, [SDTCisInt<0>]>; def PPCsc : SDNode<"PPCISD::SC", SDT_PPCsc, [SDNPHasChain, SDNPSideEffect]>; def PPCvcmp : SDNode<"PPCISD::VCMP" , SDT_PPCvcmp, []>; def PPCvcmp_o : SDNode<"PPCISD::VCMPo", SDT_PPCvcmp, [SDNPOutGlue]>; def PPCcondbranch : SDNode<"PPCISD::COND_BRANCH", SDT_PPCcondbr, [SDNPHasChain, SDNPOptInGlue]>; def PPClbrx : SDNode<"PPCISD::LBRX", SDT_PPClbrx, [SDNPHasChain, SDNPMayLoad]>; def PPCstbrx : SDNode<"PPCISD::STBRX", SDT_PPCstbrx, [SDNPHasChain, SDNPMayStore]>; // Instructions to set/unset CR bit 6 for SVR4 vararg calls def PPCcr6set : SDNode<"PPCISD::CR6SET", SDTNone, [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue]>; def PPCcr6unset : SDNode<"PPCISD::CR6UNSET", SDTNone, [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue]>; // Instructions to support atomic operations def PPClarx : SDNode<"PPCISD::LARX", SDT_PPClarx, [SDNPHasChain, SDNPMayLoad]>; def PPCstcx : SDNode<"PPCISD::STCX", SDT_PPCstcx, [SDNPHasChain, SDNPMayStore]>; // Instructions to support medium and large code model def PPCaddisTocHA : SDNode<"PPCISD::ADDIS_TOC_HA", SDTIntBinOp, []>; def PPCldTocL : SDNode<"PPCISD::LD_TOC_L", SDTIntBinOp, [SDNPMayLoad]>; def PPCaddiTocL : SDNode<"PPCISD::ADDI_TOC_L", SDTIntBinOp, []>; // Instructions to support dynamic alloca. def SDTDynOp : SDTypeProfile<1, 2, []>; def PPCdynalloc : SDNode<"PPCISD::DYNALLOC", SDTDynOp, [SDNPHasChain]>; //===----------------------------------------------------------------------===// // PowerPC specific transformation functions and pattern fragments. // def SHL32 : SDNodeXFormgetZExtValue()); }]>; def SRL32 : SDNodeXFormgetZExtValue() ? getI32Imm(32 - N->getZExtValue()) : getI32Imm(0); }]>; def LO16 : SDNodeXFormgetZExtValue()); }]>; def HI16 : SDNodeXFormgetZExtValue() >> 16); }]>; def HA16 : SDNodeXFormgetZExtValue(); return getI32Imm((Val - (signed short)Val) >> 16); }]>; def MB : SDNodeXFormgetZExtValue(), mb, me); return getI32Imm(mb); }]>; def ME : SDNodeXFormgetZExtValue(), mb, me); return getI32Imm(me); }]>; def maskimm32 : PatLeaf<(imm), [{ // maskImm predicate - True if immediate is a run of ones. unsigned mb, me; if (N->getValueType(0) == MVT::i32) return isRunOfOnes((unsigned)N->getZExtValue(), mb, me); else return false; }]>; def immSExt16 : PatLeaf<(imm), [{ // immSExt16 predicate - True if the immediate fits in a 16-bit sign extended // field. Used by instructions like 'addi'. if (N->getValueType(0) == MVT::i32) return (int32_t)N->getZExtValue() == (short)N->getZExtValue(); else return (int64_t)N->getZExtValue() == (short)N->getZExtValue(); }]>; def immZExt16 : PatLeaf<(imm), [{ // immZExt16 predicate - True if the immediate fits in a 16-bit zero extended // field. Used by instructions like 'ori'. return (uint64_t)N->getZExtValue() == (unsigned short)N->getZExtValue(); }], LO16>; // imm16Shifted* - These match immediates where the low 16-bits are zero. There // are two forms: imm16ShiftedSExt and imm16ShiftedZExt. These two forms are // identical in 32-bit mode, but in 64-bit mode, they return true if the // immediate fits into a sign/zero extended 32-bit immediate (with the low bits // clear). def imm16ShiftedZExt : PatLeaf<(imm), [{ // imm16ShiftedZExt predicate - True if only bits in the top 16-bits of the // immediate are set. Used by instructions like 'xoris'. return (N->getZExtValue() & ~uint64_t(0xFFFF0000)) == 0; }], HI16>; def imm16ShiftedSExt : PatLeaf<(imm), [{ // imm16ShiftedSExt predicate - True if only bits in the top 16-bits of the // immediate are set. Used by instructions like 'addis'. Identical to // imm16ShiftedZExt in 32-bit mode. if (N->getZExtValue() & 0xFFFF) return false; if (N->getValueType(0) == MVT::i32) return true; // For 64-bit, make sure it is sext right. return N->getZExtValue() == (uint64_t)(int)N->getZExtValue(); }], HI16>; // Some r+i load/store instructions (such as LD, STD, LDU, etc.) that require // restricted memrix (4-aligned) constants are alignment sensitive. If these // offsets are hidden behind TOC entries than the values of the lower-order // bits cannot be checked directly. As a result, we need to also incorporate // an alignment check into the relevant patterns. def aligned4load : PatFrag<(ops node:$ptr), (load node:$ptr), [{ return cast(N)->getAlignment() >= 4; }]>; def aligned4store : PatFrag<(ops node:$val, node:$ptr), (store node:$val, node:$ptr), [{ return cast(N)->getAlignment() >= 4; }]>; def aligned4sextloadi32 : PatFrag<(ops node:$ptr), (sextloadi32 node:$ptr), [{ return cast(N)->getAlignment() >= 4; }]>; def aligned4pre_store : PatFrag< (ops node:$val, node:$base, node:$offset), (pre_store node:$val, node:$base, node:$offset), [{ return cast(N)->getAlignment() >= 4; }]>; def unaligned4load : PatFrag<(ops node:$ptr), (load node:$ptr), [{ return cast(N)->getAlignment() < 4; }]>; def unaligned4store : PatFrag<(ops node:$val, node:$ptr), (store node:$val, node:$ptr), [{ return cast(N)->getAlignment() < 4; }]>; def unaligned4sextloadi32 : PatFrag<(ops node:$ptr), (sextloadi32 node:$ptr), [{ return cast(N)->getAlignment() < 4; }]>; //===----------------------------------------------------------------------===// // PowerPC Flag Definitions. class isPPC64 { bit PPC64 = 1; } class isDOT { bit RC = 1; } class RegConstraint { string Constraints = C; } class NoEncode { string DisableEncoding = E; } //===----------------------------------------------------------------------===// // PowerPC Operand Definitions. // In the default PowerPC assembler syntax, registers are specified simply // by number, so they cannot be distinguished from immediate values (without // looking at the opcode). This means that the default operand matching logic // for the asm parser does not work, and we need to specify custom matchers. // Since those can only be specified with RegisterOperand classes and not // directly on the RegisterClass, all instructions patterns used by the asm // parser need to use a RegisterOperand (instead of a RegisterClass) for // all their register operands. // For this purpose, we define one RegisterOperand for each RegisterClass, // using the same name as the class, just in lower case. def PPCRegGPRCAsmOperand : AsmOperandClass { let Name = "RegGPRC"; let PredicateMethod = "isRegNumber"; } def gprc : RegisterOperand { let ParserMatchClass = PPCRegGPRCAsmOperand; } def PPCRegG8RCAsmOperand : AsmOperandClass { let Name = "RegG8RC"; let PredicateMethod = "isRegNumber"; } def g8rc : RegisterOperand { let ParserMatchClass = PPCRegG8RCAsmOperand; } def PPCRegGPRCNoR0AsmOperand : AsmOperandClass { let Name = "RegGPRCNoR0"; let PredicateMethod = "isRegNumber"; } def gprc_nor0 : RegisterOperand { let ParserMatchClass = PPCRegGPRCNoR0AsmOperand; } def PPCRegG8RCNoX0AsmOperand : AsmOperandClass { let Name = "RegG8RCNoX0"; let PredicateMethod = "isRegNumber"; } def g8rc_nox0 : RegisterOperand { let ParserMatchClass = PPCRegG8RCNoX0AsmOperand; } def PPCRegF8RCAsmOperand : AsmOperandClass { let Name = "RegF8RC"; let PredicateMethod = "isRegNumber"; } def f8rc : RegisterOperand { let ParserMatchClass = PPCRegF8RCAsmOperand; } def PPCRegF4RCAsmOperand : AsmOperandClass { let Name = "RegF4RC"; let PredicateMethod = "isRegNumber"; } def f4rc : RegisterOperand { let ParserMatchClass = PPCRegF4RCAsmOperand; } def PPCRegVRRCAsmOperand : AsmOperandClass { let Name = "RegVRRC"; let PredicateMethod = "isRegNumber"; } def vrrc : RegisterOperand { let ParserMatchClass = PPCRegVRRCAsmOperand; } def PPCRegCRBITRCAsmOperand : AsmOperandClass { let Name = "RegCRBITRC"; let PredicateMethod = "isRegNumber"; } def crbitrc : RegisterOperand { let ParserMatchClass = PPCRegCRBITRCAsmOperand; } def PPCRegCRRCAsmOperand : AsmOperandClass { let Name = "RegCRRC"; let PredicateMethod = "isCCRegNumber"; } def crrc : RegisterOperand { let ParserMatchClass = PPCRegCRRCAsmOperand; } def PPCS5ImmAsmOperand : AsmOperandClass { let Name = "S5Imm"; let PredicateMethod = "isS5Imm"; let RenderMethod = "addImmOperands"; } def s5imm : Operand { let PrintMethod = "printS5ImmOperand"; let ParserMatchClass = PPCS5ImmAsmOperand; } def PPCU5ImmAsmOperand : AsmOperandClass { let Name = "U5Imm"; let PredicateMethod = "isU5Imm"; let RenderMethod = "addImmOperands"; } def u5imm : Operand { let PrintMethod = "printU5ImmOperand"; let ParserMatchClass = PPCU5ImmAsmOperand; } def PPCU6ImmAsmOperand : AsmOperandClass { let Name = "U6Imm"; let PredicateMethod = "isU6Imm"; let RenderMethod = "addImmOperands"; } def u6imm : Operand { let PrintMethod = "printU6ImmOperand"; let ParserMatchClass = PPCU6ImmAsmOperand; } def PPCS16ImmAsmOperand : AsmOperandClass { let Name = "S16Imm"; let PredicateMethod = "isS16Imm"; let RenderMethod = "addImmOperands"; } def s16imm : Operand { let PrintMethod = "printS16ImmOperand"; let ParserMatchClass = PPCS16ImmAsmOperand; } def PPCU16ImmAsmOperand : AsmOperandClass { let Name = "U16Imm"; let PredicateMethod = "isU16Imm"; let RenderMethod = "addImmOperands"; } def u16imm : Operand { let PrintMethod = "printU16ImmOperand"; let ParserMatchClass = PPCU16ImmAsmOperand; } def directbrtarget : Operand { let PrintMethod = "printBranchOperand"; let EncoderMethod = "getDirectBrEncoding"; } def condbrtarget : Operand { let PrintMethod = "printBranchOperand"; let EncoderMethod = "getCondBrEncoding"; } def calltarget : Operand { let EncoderMethod = "getDirectBrEncoding"; } def aaddr : Operand { let PrintMethod = "printAbsAddrOperand"; } def symbolHi: Operand { let PrintMethod = "printSymbolHi"; let EncoderMethod = "getHA16Encoding"; let ParserMatchClass = PPCS16ImmAsmOperand; } def symbolLo: Operand { let PrintMethod = "printSymbolLo"; let EncoderMethod = "getLO16Encoding"; let ParserMatchClass = PPCS16ImmAsmOperand; } def PPCCRBitMaskOperand : AsmOperandClass { let Name = "CRBitMask"; let PredicateMethod = "isCRBitMask"; } def crbitm: Operand { let PrintMethod = "printcrbitm"; let EncoderMethod = "get_crbitm_encoding"; let ParserMatchClass = PPCCRBitMaskOperand; } // Address operands // A version of ptr_rc which excludes R0 (or X0 in 64-bit mode). def PPCRegGxRCNoR0Operand : AsmOperandClass { let Name = "RegGxRCNoR0"; let PredicateMethod = "isRegNumber"; } def ptr_rc_nor0 : Operand, PointerLikeRegClass<1> { let ParserMatchClass = PPCRegGxRCNoR0Operand; } // A version of ptr_rc usable with the asm parser. def PPCRegGxRCOperand : AsmOperandClass { let Name = "RegGxRC"; let PredicateMethod = "isRegNumber"; } def ptr_rc_idx : Operand, PointerLikeRegClass<0> { let ParserMatchClass = PPCRegGxRCOperand; } def PPCDispRIOperand : AsmOperandClass { let Name = "DispRI"; let PredicateMethod = "isS16Imm"; let RenderMethod = "addImmOperands"; } def dispRI : Operand { let ParserMatchClass = PPCDispRIOperand; } def PPCDispRIXOperand : AsmOperandClass { let Name = "DispRIX"; let PredicateMethod = "isS16ImmX4"; let RenderMethod = "addImmOperands"; } def dispRIX : Operand { let ParserMatchClass = PPCDispRIXOperand; } def memri : Operand { let PrintMethod = "printMemRegImm"; let MIOperandInfo = (ops dispRI:$imm, ptr_rc_nor0:$reg); let EncoderMethod = "getMemRIEncoding"; } def memrr : Operand { let PrintMethod = "printMemRegReg"; let MIOperandInfo = (ops ptr_rc_nor0:$ptrreg, ptr_rc_idx:$offreg); } def memrix : Operand { // memri where the imm is 4-aligned. let PrintMethod = "printMemRegImm"; let MIOperandInfo = (ops dispRIX:$imm, ptr_rc_nor0:$reg); let EncoderMethod = "getMemRIXEncoding"; } // A single-register address. This is used with the SjLj // pseudo-instructions. def memr : Operand { let MIOperandInfo = (ops ptr_rc:$ptrreg); } // PowerPC Predicate operand. def pred : Operand { let PrintMethod = "printPredicateOperand"; let MIOperandInfo = (ops i32imm:$bibo, crrc:$reg); } // Define PowerPC specific addressing mode. def iaddr : ComplexPattern; def xaddr : ComplexPattern; def xoaddr : ComplexPattern; def ixaddr : ComplexPattern; // "std" // The address in a single register. This is used with the SjLj // pseudo-instructions. def addr : ComplexPattern; /// This is just the offset part of iaddr, used for preinc. def iaddroff : ComplexPattern; //===----------------------------------------------------------------------===// // PowerPC Instruction Predicate Definitions. def In32BitMode : Predicate<"!PPCSubTarget.isPPC64()">; def In64BitMode : Predicate<"PPCSubTarget.isPPC64()">; def IsBookE : Predicate<"PPCSubTarget.isBookE()">; //===----------------------------------------------------------------------===// // PowerPC Multiclass Definitions. multiclass XForm_6r opcode, bits<10> xo, dag OOL, dag IOL, string asmbase, string asmstr, InstrItinClass itin, list pattern> { let BaseName = asmbase in { def NAME : XForm_6, RecFormRel; let Defs = [CR0] in def o : XForm_6, isDOT, RecFormRel; } } multiclass XForm_6rc opcode, bits<10> xo, dag OOL, dag IOL, string asmbase, string asmstr, InstrItinClass itin, list pattern> { let BaseName = asmbase in { let Defs = [CARRY] in def NAME : XForm_6, RecFormRel; let Defs = [CARRY, CR0] in def o : XForm_6, isDOT, RecFormRel; } } multiclass XForm_10r opcode, bits<10> xo, dag OOL, dag IOL, string asmbase, string asmstr, InstrItinClass itin, list pattern> { let BaseName = asmbase in { def NAME : XForm_10, RecFormRel; let Defs = [CR0] in def o : XForm_10, isDOT, RecFormRel; } } multiclass XForm_10rc opcode, bits<10> xo, dag OOL, dag IOL, string asmbase, string asmstr, InstrItinClass itin, list pattern> { let BaseName = asmbase in { let Defs = [CARRY] in def NAME : XForm_10, RecFormRel; let Defs = [CARRY, CR0] in def o : XForm_10, isDOT, RecFormRel; } } multiclass XForm_11r opcode, bits<10> xo, dag OOL, dag IOL, string asmbase, string asmstr, InstrItinClass itin, list pattern> { let BaseName = asmbase in { def NAME : XForm_11, RecFormRel; let Defs = [CR0] in def o : XForm_11, isDOT, RecFormRel; } } multiclass XOForm_1r opcode, bits<9> xo, bit oe, dag OOL, dag IOL, string asmbase, string asmstr, InstrItinClass itin, list pattern> { let BaseName = asmbase in { def NAME : XOForm_1, RecFormRel; let Defs = [CR0] in def o : XOForm_1, isDOT, RecFormRel; } } multiclass XOForm_1rc opcode, bits<9> xo, bit oe, dag OOL, dag IOL, string asmbase, string asmstr, InstrItinClass itin, list pattern> { let BaseName = asmbase in { let Defs = [CARRY] in def NAME : XOForm_1, RecFormRel; let Defs = [CARRY, CR0] in def o : XOForm_1, isDOT, RecFormRel; } } multiclass XOForm_3r opcode, bits<9> xo, bit oe, dag OOL, dag IOL, string asmbase, string asmstr, InstrItinClass itin, list pattern> { let BaseName = asmbase in { def NAME : XOForm_3, RecFormRel; let Defs = [CR0] in def o : XOForm_3, isDOT, RecFormRel; } } multiclass XOForm_3rc opcode, bits<9> xo, bit oe, dag OOL, dag IOL, string asmbase, string asmstr, InstrItinClass itin, list pattern> { let BaseName = asmbase in { let Defs = [CARRY] in def NAME : XOForm_3, RecFormRel; let Defs = [CARRY, CR0] in def o : XOForm_3, isDOT, RecFormRel; } } multiclass MForm_2r opcode, dag OOL, dag IOL, string asmbase, string asmstr, InstrItinClass itin, list pattern> { let BaseName = asmbase in { def NAME : MForm_2, RecFormRel; let Defs = [CR0] in def o : MForm_2, isDOT, RecFormRel; } } multiclass MDForm_1r opcode, bits<3> xo, dag OOL, dag IOL, string asmbase, string asmstr, InstrItinClass itin, list pattern> { let BaseName = asmbase in { def NAME : MDForm_1, RecFormRel; let Defs = [CR0] in def o : MDForm_1, isDOT, RecFormRel; } } multiclass MDSForm_1r opcode, bits<4> xo, dag OOL, dag IOL, string asmbase, string asmstr, InstrItinClass itin, list pattern> { let BaseName = asmbase in { def NAME : MDSForm_1, RecFormRel; let Defs = [CR0] in def o : MDSForm_1, isDOT, RecFormRel; } } multiclass XSForm_1rc opcode, bits<9> xo, dag OOL, dag IOL, string asmbase, string asmstr, InstrItinClass itin, list pattern> { let BaseName = asmbase in { let Defs = [CARRY] in def NAME : XSForm_1, RecFormRel; let Defs = [CARRY, CR0] in def o : XSForm_1, isDOT, RecFormRel; } } multiclass XForm_26r opcode, bits<10> xo, dag OOL, dag IOL, string asmbase, string asmstr, InstrItinClass itin, list pattern> { let BaseName = asmbase in { def NAME : XForm_26, RecFormRel; let Defs = [CR1] in def o : XForm_26, isDOT, RecFormRel; } } multiclass AForm_1r opcode, bits<5> xo, dag OOL, dag IOL, string asmbase, string asmstr, InstrItinClass itin, list pattern> { let BaseName = asmbase in { def NAME : AForm_1, RecFormRel; let Defs = [CR1] in def o : AForm_1, isDOT, RecFormRel; } } multiclass AForm_2r opcode, bits<5> xo, dag OOL, dag IOL, string asmbase, string asmstr, InstrItinClass itin, list pattern> { let BaseName = asmbase in { def NAME : AForm_2, RecFormRel; let Defs = [CR1] in def o : AForm_2, isDOT, RecFormRel; } } multiclass AForm_3r opcode, bits<5> xo, dag OOL, dag IOL, string asmbase, string asmstr, InstrItinClass itin, list pattern> { let BaseName = asmbase in { def NAME : AForm_3, RecFormRel; let Defs = [CR1] in def o : AForm_3, isDOT, RecFormRel; } } //===----------------------------------------------------------------------===// // PowerPC Instruction Definitions. // Pseudo-instructions: let hasCtrlDep = 1 in { let Defs = [R1], Uses = [R1] in { def ADJCALLSTACKDOWN : Pseudo<(outs), (ins u16imm:$amt), "#ADJCALLSTACKDOWN $amt", [(callseq_start timm:$amt)]>; def ADJCALLSTACKUP : Pseudo<(outs), (ins u16imm:$amt1, u16imm:$amt2), "#ADJCALLSTACKUP $amt1 $amt2", [(callseq_end timm:$amt1, timm:$amt2)]>; } def UPDATE_VRSAVE : Pseudo<(outs gprc:$rD), (ins gprc:$rS), "UPDATE_VRSAVE $rD, $rS", []>; } let Defs = [R1], Uses = [R1] in def DYNALLOC : Pseudo<(outs gprc:$result), (ins gprc:$negsize, memri:$fpsi), "#DYNALLOC", [(set i32:$result, (PPCdynalloc i32:$negsize, iaddr:$fpsi))]>; // SELECT_CC_* - Used to implement the SELECT_CC DAG operation. Expanded after // instruction selection into a branch sequence. let usesCustomInserter = 1, // Expanded after instruction selection. PPC970_Single = 1 in { // Note that SELECT_CC_I4 and SELECT_CC_I8 use the no-r0 register classes // because either operand might become the first operand in an isel, and // that operand cannot be r0. def SELECT_CC_I4 : Pseudo<(outs gprc:$dst), (ins crrc:$cond, gprc_nor0:$T, gprc_nor0:$F, i32imm:$BROPC), "#SELECT_CC_I4", []>; def SELECT_CC_I8 : Pseudo<(outs g8rc:$dst), (ins crrc:$cond, g8rc_nox0:$T, g8rc_nox0:$F, i32imm:$BROPC), "#SELECT_CC_I8", []>; def SELECT_CC_F4 : Pseudo<(outs f4rc:$dst), (ins crrc:$cond, f4rc:$T, f4rc:$F, i32imm:$BROPC), "#SELECT_CC_F4", []>; def SELECT_CC_F8 : Pseudo<(outs f8rc:$dst), (ins crrc:$cond, f8rc:$T, f8rc:$F, i32imm:$BROPC), "#SELECT_CC_F8", []>; def SELECT_CC_VRRC: Pseudo<(outs vrrc:$dst), (ins crrc:$cond, vrrc:$T, vrrc:$F, i32imm:$BROPC), "#SELECT_CC_VRRC", []>; } // SPILL_CR - Indicate that we're dumping the CR register, so we'll need to // scavenge a register for it. let mayStore = 1 in def SPILL_CR : Pseudo<(outs), (ins crrc:$cond, memri:$F), "#SPILL_CR", []>; // RESTORE_CR - Indicate that we're restoring the CR register (previously // spilled), so we'll need to scavenge a register for it. let mayLoad = 1 in def RESTORE_CR : Pseudo<(outs crrc:$cond), (ins memri:$F), "#RESTORE_CR", []>; let isTerminator = 1, isBarrier = 1, PPC970_Unit = 7 in { let isReturn = 1, Uses = [LR, RM] in def BLR : XLForm_2_ext<19, 16, 20, 0, 0, (outs), (ins), "blr", BrB, [(retflag)]>; let isBranch = 1, isIndirectBranch = 1, Uses = [CTR] in { def BCTR : XLForm_2_ext<19, 528, 20, 0, 0, (outs), (ins), "bctr", BrB, []>; let isCodeGenOnly = 1 in def BCCTR : XLForm_2_br<19, 528, 0, (outs), (ins pred:$cond), "b${cond:cc}ctr ${cond:reg}", BrB, []>; } } let Defs = [LR] in def MovePCtoLR : Pseudo<(outs), (ins), "#MovePCtoLR", []>, PPC970_Unit_BRU; let isBranch = 1, isTerminator = 1, hasCtrlDep = 1, PPC970_Unit = 7 in { let isBarrier = 1 in { def B : IForm<18, 0, 0, (outs), (ins directbrtarget:$dst), "b $dst", BrB, [(br bb:$dst)]>; } // BCC represents an arbitrary conditional branch on a predicate. // FIXME: should be able to write a pattern for PPCcondbranch, but can't use // a two-value operand where a dag node expects two operands. :( let isCodeGenOnly = 1 in { def BCC : BForm<16, 0, 0, (outs), (ins pred:$cond, condbrtarget:$dst), "b${cond:cc} ${cond:reg}, $dst" /*[(PPCcondbranch crrc:$crS, imm:$opc, bb:$dst)]*/>; let isReturn = 1, Uses = [LR, RM] in def BCLR : XLForm_2_br<19, 16, 0, (outs), (ins pred:$cond), "b${cond:cc}lr ${cond:reg}", BrB, []>; let isReturn = 1, Defs = [CTR], Uses = [CTR, LR, RM] in { def BDZLR : XLForm_2_ext<19, 16, 18, 0, 0, (outs), (ins), "bdzlr", BrB, []>; def BDNZLR : XLForm_2_ext<19, 16, 16, 0, 0, (outs), (ins), "bdnzlr", BrB, []>; } } let Defs = [CTR], Uses = [CTR] in { def BDZ : BForm_1<16, 18, 0, 0, (outs), (ins condbrtarget:$dst), "bdz $dst">; def BDNZ : BForm_1<16, 16, 0, 0, (outs), (ins condbrtarget:$dst), "bdnz $dst">; } } // The unconditional BCL used by the SjLj setjmp code. let isCall = 1, hasCtrlDep = 1, isCodeGenOnly = 1, PPC970_Unit = 7 in { let Defs = [LR], Uses = [RM] in { def BCLalways : BForm_2<16, 20, 31, 0, 1, (outs), (ins condbrtarget:$dst), "bcl 20, 31, $dst">; } } let isCall = 1, PPC970_Unit = 7, Defs = [LR] in { // Convenient aliases for call instructions let Uses = [RM] in { def BL : IForm<18, 0, 1, (outs), (ins calltarget:$func), "bl $func", BrB, []>; // See Pat patterns below. def BLA : IForm<18, 1, 1, (outs), (ins aaddr:$func), "bla $func", BrB, [(PPCcall (i32 imm:$func))]>; } let Uses = [CTR, RM] in { def BCTRL : XLForm_2_ext<19, 528, 20, 0, 1, (outs), (ins), "bctrl", BrB, [(PPCbctrl)]>, Requires<[In32BitMode]>; let isCodeGenOnly = 1 in def BCCTRL : XLForm_2_br<19, 528, 1, (outs), (ins pred:$cond), "b${cond:cc}ctrl ${cond:reg}", BrB, []>; } } let isCall = 1, isTerminator = 1, isReturn = 1, isBarrier = 1, Uses = [RM] in def TCRETURNdi :Pseudo< (outs), (ins calltarget:$dst, i32imm:$offset), "#TC_RETURNd $dst $offset", []>; let isCall = 1, isTerminator = 1, isReturn = 1, isBarrier = 1, Uses = [RM] in def TCRETURNai :Pseudo<(outs), (ins aaddr:$func, i32imm:$offset), "#TC_RETURNa $func $offset", [(PPCtc_return (i32 imm:$func), imm:$offset)]>; let isCall = 1, isTerminator = 1, isReturn = 1, isBarrier = 1, Uses = [RM] in def TCRETURNri : Pseudo<(outs), (ins CTRRC:$dst, i32imm:$offset), "#TC_RETURNr $dst $offset", []>; let isCodeGenOnly = 1 in { let isTerminator = 1, isBarrier = 1, PPC970_Unit = 7, isBranch = 1, isIndirectBranch = 1, isCall = 1, isReturn = 1, Uses = [CTR, RM] in def TAILBCTR : XLForm_2_ext<19, 528, 20, 0, 0, (outs), (ins), "bctr", BrB, []>, Requires<[In32BitMode]>; let isBranch = 1, isTerminator = 1, hasCtrlDep = 1, PPC970_Unit = 7, isBarrier = 1, isCall = 1, isReturn = 1, Uses = [RM] in def TAILB : IForm<18, 0, 0, (outs), (ins calltarget:$dst), "b $dst", BrB, []>; } let isBranch = 1, isTerminator = 1, hasCtrlDep = 1, PPC970_Unit = 7, isBarrier = 1, isCall = 1, isReturn = 1, Uses = [RM] in def TAILBA : IForm<18, 0, 0, (outs), (ins aaddr:$dst), "ba $dst", BrB, []>; let hasSideEffects = 1, isBarrier = 1, usesCustomInserter = 1 in { def EH_SjLj_SetJmp32 : Pseudo<(outs gprc:$dst), (ins memr:$buf), "#EH_SJLJ_SETJMP32", [(set i32:$dst, (PPCeh_sjlj_setjmp addr:$buf))]>, Requires<[In32BitMode]>; let isTerminator = 1 in def EH_SjLj_LongJmp32 : Pseudo<(outs), (ins memr:$buf), "#EH_SJLJ_LONGJMP32", [(PPCeh_sjlj_longjmp addr:$buf)]>, Requires<[In32BitMode]>; } let isBranch = 1, isTerminator = 1 in { def EH_SjLj_Setup : Pseudo<(outs), (ins directbrtarget:$dst), "#EH_SjLj_Setup\t$dst", []>; } // System call. let PPC970_Unit = 7 in { def SC : SCForm<17, 1, (outs), (ins i32imm:$lev), "sc $lev", BrB, [(PPCsc (i32 imm:$lev))]>; } // DCB* instructions. def DCBA : DCB_Form<758, 0, (outs), (ins memrr:$dst), "dcba $dst", LdStDCBF, [(int_ppc_dcba xoaddr:$dst)]>, PPC970_DGroup_Single; def DCBF : DCB_Form<86, 0, (outs), (ins memrr:$dst), "dcbf $dst", LdStDCBF, [(int_ppc_dcbf xoaddr:$dst)]>, PPC970_DGroup_Single; def DCBI : DCB_Form<470, 0, (outs), (ins memrr:$dst), "dcbi $dst", LdStDCBF, [(int_ppc_dcbi xoaddr:$dst)]>, PPC970_DGroup_Single; def DCBST : DCB_Form<54, 0, (outs), (ins memrr:$dst), "dcbst $dst", LdStDCBF, [(int_ppc_dcbst xoaddr:$dst)]>, PPC970_DGroup_Single; def DCBT : DCB_Form<278, 0, (outs), (ins memrr:$dst), "dcbt $dst", LdStDCBF, [(int_ppc_dcbt xoaddr:$dst)]>, PPC970_DGroup_Single; def DCBTST : DCB_Form<246, 0, (outs), (ins memrr:$dst), "dcbtst $dst", LdStDCBF, [(int_ppc_dcbtst xoaddr:$dst)]>, PPC970_DGroup_Single; def DCBZ : DCB_Form<1014, 0, (outs), (ins memrr:$dst), "dcbz $dst", LdStDCBF, [(int_ppc_dcbz xoaddr:$dst)]>, PPC970_DGroup_Single; def DCBZL : DCB_Form<1014, 1, (outs), (ins memrr:$dst), "dcbzl $dst", LdStDCBF, [(int_ppc_dcbzl xoaddr:$dst)]>, PPC970_DGroup_Single; def : Pat<(prefetch xoaddr:$dst, (i32 0), imm, (i32 1)), (DCBT xoaddr:$dst)>; // Atomic operations let usesCustomInserter = 1 in { let Defs = [CR0] in { def ATOMIC_LOAD_ADD_I8 : Pseudo< (outs gprc:$dst), (ins memrr:$ptr, gprc:$incr), "#ATOMIC_LOAD_ADD_I8", [(set i32:$dst, (atomic_load_add_8 xoaddr:$ptr, i32:$incr))]>; def ATOMIC_LOAD_SUB_I8 : Pseudo< (outs gprc:$dst), (ins memrr:$ptr, gprc:$incr), "#ATOMIC_LOAD_SUB_I8", [(set i32:$dst, (atomic_load_sub_8 xoaddr:$ptr, i32:$incr))]>; def ATOMIC_LOAD_AND_I8 : Pseudo< (outs gprc:$dst), (ins memrr:$ptr, gprc:$incr), "#ATOMIC_LOAD_AND_I8", [(set i32:$dst, (atomic_load_and_8 xoaddr:$ptr, i32:$incr))]>; def ATOMIC_LOAD_OR_I8 : Pseudo< (outs gprc:$dst), (ins memrr:$ptr, gprc:$incr), "#ATOMIC_LOAD_OR_I8", [(set i32:$dst, (atomic_load_or_8 xoaddr:$ptr, i32:$incr))]>; def ATOMIC_LOAD_XOR_I8 : Pseudo< (outs gprc:$dst), (ins memrr:$ptr, gprc:$incr), "ATOMIC_LOAD_XOR_I8", [(set i32:$dst, (atomic_load_xor_8 xoaddr:$ptr, i32:$incr))]>; def ATOMIC_LOAD_NAND_I8 : Pseudo< (outs gprc:$dst), (ins memrr:$ptr, gprc:$incr), "#ATOMIC_LOAD_NAND_I8", [(set i32:$dst, (atomic_load_nand_8 xoaddr:$ptr, i32:$incr))]>; def ATOMIC_LOAD_ADD_I16 : Pseudo< (outs gprc:$dst), (ins memrr:$ptr, gprc:$incr), "#ATOMIC_LOAD_ADD_I16", [(set i32:$dst, (atomic_load_add_16 xoaddr:$ptr, i32:$incr))]>; def ATOMIC_LOAD_SUB_I16 : Pseudo< (outs gprc:$dst), (ins memrr:$ptr, gprc:$incr), "#ATOMIC_LOAD_SUB_I16", [(set i32:$dst, (atomic_load_sub_16 xoaddr:$ptr, i32:$incr))]>; def ATOMIC_LOAD_AND_I16 : Pseudo< (outs gprc:$dst), (ins memrr:$ptr, gprc:$incr), "#ATOMIC_LOAD_AND_I16", [(set i32:$dst, (atomic_load_and_16 xoaddr:$ptr, i32:$incr))]>; def ATOMIC_LOAD_OR_I16 : Pseudo< (outs gprc:$dst), (ins memrr:$ptr, gprc:$incr), "#ATOMIC_LOAD_OR_I16", [(set i32:$dst, (atomic_load_or_16 xoaddr:$ptr, i32:$incr))]>; def ATOMIC_LOAD_XOR_I16 : Pseudo< (outs gprc:$dst), (ins memrr:$ptr, gprc:$incr), "#ATOMIC_LOAD_XOR_I16", [(set i32:$dst, (atomic_load_xor_16 xoaddr:$ptr, i32:$incr))]>; def ATOMIC_LOAD_NAND_I16 : Pseudo< (outs gprc:$dst), (ins memrr:$ptr, gprc:$incr), "#ATOMIC_LOAD_NAND_I16", [(set i32:$dst, (atomic_load_nand_16 xoaddr:$ptr, i32:$incr))]>; def ATOMIC_LOAD_ADD_I32 : Pseudo< (outs gprc:$dst), (ins memrr:$ptr, gprc:$incr), "#ATOMIC_LOAD_ADD_I32", [(set i32:$dst, (atomic_load_add_32 xoaddr:$ptr, i32:$incr))]>; def ATOMIC_LOAD_SUB_I32 : Pseudo< (outs gprc:$dst), (ins memrr:$ptr, gprc:$incr), "#ATOMIC_LOAD_SUB_I32", [(set i32:$dst, (atomic_load_sub_32 xoaddr:$ptr, i32:$incr))]>; def ATOMIC_LOAD_AND_I32 : Pseudo< (outs gprc:$dst), (ins memrr:$ptr, gprc:$incr), "#ATOMIC_LOAD_AND_I32", [(set i32:$dst, (atomic_load_and_32 xoaddr:$ptr, i32:$incr))]>; def ATOMIC_LOAD_OR_I32 : Pseudo< (outs gprc:$dst), (ins memrr:$ptr, gprc:$incr), "#ATOMIC_LOAD_OR_I32", [(set i32:$dst, (atomic_load_or_32 xoaddr:$ptr, i32:$incr))]>; def ATOMIC_LOAD_XOR_I32 : Pseudo< (outs gprc:$dst), (ins memrr:$ptr, gprc:$incr), "#ATOMIC_LOAD_XOR_I32", [(set i32:$dst, (atomic_load_xor_32 xoaddr:$ptr, i32:$incr))]>; def ATOMIC_LOAD_NAND_I32 : Pseudo< (outs gprc:$dst), (ins memrr:$ptr, gprc:$incr), "#ATOMIC_LOAD_NAND_I32", [(set i32:$dst, (atomic_load_nand_32 xoaddr:$ptr, i32:$incr))]>; def ATOMIC_CMP_SWAP_I8 : Pseudo< (outs gprc:$dst), (ins memrr:$ptr, gprc:$old, gprc:$new), "#ATOMIC_CMP_SWAP_I8", [(set i32:$dst, (atomic_cmp_swap_8 xoaddr:$ptr, i32:$old, i32:$new))]>; def ATOMIC_CMP_SWAP_I16 : Pseudo< (outs gprc:$dst), (ins memrr:$ptr, gprc:$old, gprc:$new), "#ATOMIC_CMP_SWAP_I16 $dst $ptr $old $new", [(set i32:$dst, (atomic_cmp_swap_16 xoaddr:$ptr, i32:$old, i32:$new))]>; def ATOMIC_CMP_SWAP_I32 : Pseudo< (outs gprc:$dst), (ins memrr:$ptr, gprc:$old, gprc:$new), "#ATOMIC_CMP_SWAP_I32 $dst $ptr $old $new", [(set i32:$dst, (atomic_cmp_swap_32 xoaddr:$ptr, i32:$old, i32:$new))]>; def ATOMIC_SWAP_I8 : Pseudo< (outs gprc:$dst), (ins memrr:$ptr, gprc:$new), "#ATOMIC_SWAP_i8", [(set i32:$dst, (atomic_swap_8 xoaddr:$ptr, i32:$new))]>; def ATOMIC_SWAP_I16 : Pseudo< (outs gprc:$dst), (ins memrr:$ptr, gprc:$new), "#ATOMIC_SWAP_I16", [(set i32:$dst, (atomic_swap_16 xoaddr:$ptr, i32:$new))]>; def ATOMIC_SWAP_I32 : Pseudo< (outs gprc:$dst), (ins memrr:$ptr, gprc:$new), "#ATOMIC_SWAP_I32", [(set i32:$dst, (atomic_swap_32 xoaddr:$ptr, i32:$new))]>; } } // Instructions to support atomic operations def LWARX : XForm_1<31, 20, (outs gprc:$rD), (ins memrr:$src), "lwarx $rD, $src", LdStLWARX, [(set i32:$rD, (PPClarx xoaddr:$src))]>; let Defs = [CR0] in def STWCX : XForm_1<31, 150, (outs), (ins gprc:$rS, memrr:$dst), "stwcx. $rS, $dst", LdStSTWCX, [(PPCstcx i32:$rS, xoaddr:$dst)]>, isDOT; let isTerminator = 1, isBarrier = 1, hasCtrlDep = 1 in def TRAP : XForm_24<31, 4, (outs), (ins), "trap", LdStLoad, [(trap)]>; //===----------------------------------------------------------------------===// // PPC32 Load Instructions. // // Unindexed (r+i) Loads. let canFoldAsLoad = 1, PPC970_Unit = 2 in { def LBZ : DForm_1<34, (outs gprc:$rD), (ins memri:$src), "lbz $rD, $src", LdStLoad, [(set i32:$rD, (zextloadi8 iaddr:$src))]>; def LHA : DForm_1<42, (outs gprc:$rD), (ins memri:$src), "lha $rD, $src", LdStLHA, [(set i32:$rD, (sextloadi16 iaddr:$src))]>, PPC970_DGroup_Cracked; def LHZ : DForm_1<40, (outs gprc:$rD), (ins memri:$src), "lhz $rD, $src", LdStLoad, [(set i32:$rD, (zextloadi16 iaddr:$src))]>; def LWZ : DForm_1<32, (outs gprc:$rD), (ins memri:$src), "lwz $rD, $src", LdStLoad, [(set i32:$rD, (load iaddr:$src))]>; def LFS : DForm_1<48, (outs f4rc:$rD), (ins memri:$src), "lfs $rD, $src", LdStLFD, [(set f32:$rD, (load iaddr:$src))]>; def LFD : DForm_1<50, (outs f8rc:$rD), (ins memri:$src), "lfd $rD, $src", LdStLFD, [(set f64:$rD, (load iaddr:$src))]>; // Unindexed (r+i) Loads with Update (preinc). let mayLoad = 1, neverHasSideEffects = 1 in { def LBZU : DForm_1<35, (outs gprc:$rD, ptr_rc_nor0:$ea_result), (ins memri:$addr), "lbzu $rD, $addr", LdStLoadUpd, []>, RegConstraint<"$addr.reg = $ea_result">, NoEncode<"$ea_result">; def LHAU : DForm_1<43, (outs gprc:$rD, ptr_rc_nor0:$ea_result), (ins memri:$addr), "lhau $rD, $addr", LdStLHAU, []>, RegConstraint<"$addr.reg = $ea_result">, NoEncode<"$ea_result">; def LHZU : DForm_1<41, (outs gprc:$rD, ptr_rc_nor0:$ea_result), (ins memri:$addr), "lhzu $rD, $addr", LdStLoadUpd, []>, RegConstraint<"$addr.reg = $ea_result">, NoEncode<"$ea_result">; def LWZU : DForm_1<33, (outs gprc:$rD, ptr_rc_nor0:$ea_result), (ins memri:$addr), "lwzu $rD, $addr", LdStLoadUpd, []>, RegConstraint<"$addr.reg = $ea_result">, NoEncode<"$ea_result">; def LFSU : DForm_1<49, (outs f4rc:$rD, ptr_rc_nor0:$ea_result), (ins memri:$addr), "lfsu $rD, $addr", LdStLFDU, []>, RegConstraint<"$addr.reg = $ea_result">, NoEncode<"$ea_result">; def LFDU : DForm_1<51, (outs f8rc:$rD, ptr_rc_nor0:$ea_result), (ins memri:$addr), "lfdu $rD, $addr", LdStLFDU, []>, RegConstraint<"$addr.reg = $ea_result">, NoEncode<"$ea_result">; // Indexed (r+r) Loads with Update (preinc). def LBZUX : XForm_1<31, 119, (outs gprc:$rD, ptr_rc_nor0:$ea_result), (ins memrr:$addr), "lbzux $rD, $addr", LdStLoadUpd, []>, RegConstraint<"$addr.ptrreg = $ea_result">, NoEncode<"$ea_result">; def LHAUX : XForm_1<31, 375, (outs gprc:$rD, ptr_rc_nor0:$ea_result), (ins memrr:$addr), "lhaux $rD, $addr", LdStLHAU, []>, RegConstraint<"$addr.ptrreg = $ea_result">, NoEncode<"$ea_result">; def LHZUX : XForm_1<31, 311, (outs gprc:$rD, ptr_rc_nor0:$ea_result), (ins memrr:$addr), "lhzux $rD, $addr", LdStLoadUpd, []>, RegConstraint<"$addr.ptrreg = $ea_result">, NoEncode<"$ea_result">; def LWZUX : XForm_1<31, 55, (outs gprc:$rD, ptr_rc_nor0:$ea_result), (ins memrr:$addr), "lwzux $rD, $addr", LdStLoadUpd, []>, RegConstraint<"$addr.ptrreg = $ea_result">, NoEncode<"$ea_result">; def LFSUX : XForm_1<31, 567, (outs f4rc:$rD, ptr_rc_nor0:$ea_result), (ins memrr:$addr), "lfsux $rD, $addr", LdStLFDU, []>, RegConstraint<"$addr.ptrreg = $ea_result">, NoEncode<"$ea_result">; def LFDUX : XForm_1<31, 631, (outs f8rc:$rD, ptr_rc_nor0:$ea_result), (ins memrr:$addr), "lfdux $rD, $addr", LdStLFDU, []>, RegConstraint<"$addr.ptrreg = $ea_result">, NoEncode<"$ea_result">; } } // Indexed (r+r) Loads. // let canFoldAsLoad = 1, PPC970_Unit = 2 in { def LBZX : XForm_1<31, 87, (outs gprc:$rD), (ins memrr:$src), "lbzx $rD, $src", LdStLoad, [(set i32:$rD, (zextloadi8 xaddr:$src))]>; def LHAX : XForm_1<31, 343, (outs gprc:$rD), (ins memrr:$src), "lhax $rD, $src", LdStLHA, [(set i32:$rD, (sextloadi16 xaddr:$src))]>, PPC970_DGroup_Cracked; def LHZX : XForm_1<31, 279, (outs gprc:$rD), (ins memrr:$src), "lhzx $rD, $src", LdStLoad, [(set i32:$rD, (zextloadi16 xaddr:$src))]>; def LWZX : XForm_1<31, 23, (outs gprc:$rD), (ins memrr:$src), "lwzx $rD, $src", LdStLoad, [(set i32:$rD, (load xaddr:$src))]>; def LHBRX : XForm_1<31, 790, (outs gprc:$rD), (ins memrr:$src), "lhbrx $rD, $src", LdStLoad, [(set i32:$rD, (PPClbrx xoaddr:$src, i16))]>; def LWBRX : XForm_1<31, 534, (outs gprc:$rD), (ins memrr:$src), "lwbrx $rD, $src", LdStLoad, [(set i32:$rD, (PPClbrx xoaddr:$src, i32))]>; def LFSX : XForm_25<31, 535, (outs f4rc:$frD), (ins memrr:$src), "lfsx $frD, $src", LdStLFD, [(set f32:$frD, (load xaddr:$src))]>; def LFDX : XForm_25<31, 599, (outs f8rc:$frD), (ins memrr:$src), "lfdx $frD, $src", LdStLFD, [(set f64:$frD, (load xaddr:$src))]>; def LFIWAX : XForm_25<31, 855, (outs f8rc:$frD), (ins memrr:$src), "lfiwax $frD, $src", LdStLFD, [(set f64:$frD, (PPClfiwax xoaddr:$src))]>; def LFIWZX : XForm_25<31, 887, (outs f8rc:$frD), (ins memrr:$src), "lfiwzx $frD, $src", LdStLFD, [(set f64:$frD, (PPClfiwzx xoaddr:$src))]>; } //===----------------------------------------------------------------------===// // PPC32 Store Instructions. // // Unindexed (r+i) Stores. let PPC970_Unit = 2 in { def STB : DForm_1<38, (outs), (ins gprc:$rS, memri:$src), "stb $rS, $src", LdStStore, [(truncstorei8 i32:$rS, iaddr:$src)]>; def STH : DForm_1<44, (outs), (ins gprc:$rS, memri:$src), "sth $rS, $src", LdStStore, [(truncstorei16 i32:$rS, iaddr:$src)]>; def STW : DForm_1<36, (outs), (ins gprc:$rS, memri:$src), "stw $rS, $src", LdStStore, [(store i32:$rS, iaddr:$src)]>; def STFS : DForm_1<52, (outs), (ins f4rc:$rS, memri:$dst), "stfs $rS, $dst", LdStSTFD, [(store f32:$rS, iaddr:$dst)]>; def STFD : DForm_1<54, (outs), (ins f8rc:$rS, memri:$dst), "stfd $rS, $dst", LdStSTFD, [(store f64:$rS, iaddr:$dst)]>; } // Unindexed (r+i) Stores with Update (preinc). let PPC970_Unit = 2, mayStore = 1 in { def STBU : DForm_1<39, (outs ptr_rc_nor0:$ea_res), (ins gprc:$rS, memri:$dst), "stbu $rS, $dst", LdStStoreUpd, []>, RegConstraint<"$dst.reg = $ea_res">, NoEncode<"$ea_res">; def STHU : DForm_1<45, (outs ptr_rc_nor0:$ea_res), (ins gprc:$rS, memri:$dst), "sthu $rS, $dst", LdStStoreUpd, []>, RegConstraint<"$dst.reg = $ea_res">, NoEncode<"$ea_res">; def STWU : DForm_1<37, (outs ptr_rc_nor0:$ea_res), (ins gprc:$rS, memri:$dst), "stwu $rS, $dst", LdStStoreUpd, []>, RegConstraint<"$dst.reg = $ea_res">, NoEncode<"$ea_res">; def STFSU : DForm_1<53, (outs ptr_rc_nor0:$ea_res), (ins f4rc:$rS, memri:$dst), "stfsu $rS, $dst", LdStSTFDU, []>, RegConstraint<"$dst.reg = $ea_res">, NoEncode<"$ea_res">; def STFDU : DForm_1<55, (outs ptr_rc_nor0:$ea_res), (ins f8rc:$rS, memri:$dst), "stfdu $rS, $dst", LdStSTFDU, []>, RegConstraint<"$dst.reg = $ea_res">, NoEncode<"$ea_res">; } // Patterns to match the pre-inc stores. We can't put the patterns on // the instruction definitions directly as ISel wants the address base // and offset to be separate operands, not a single complex operand. def : Pat<(pre_truncsti8 i32:$rS, iPTR:$ptrreg, iaddroff:$ptroff), (STBU $rS, iaddroff:$ptroff, $ptrreg)>; def : Pat<(pre_truncsti16 i32:$rS, iPTR:$ptrreg, iaddroff:$ptroff), (STHU $rS, iaddroff:$ptroff, $ptrreg)>; def : Pat<(pre_store i32:$rS, iPTR:$ptrreg, iaddroff:$ptroff), (STWU $rS, iaddroff:$ptroff, $ptrreg)>; def : Pat<(pre_store f32:$rS, iPTR:$ptrreg, iaddroff:$ptroff), (STFSU $rS, iaddroff:$ptroff, $ptrreg)>; def : Pat<(pre_store f64:$rS, iPTR:$ptrreg, iaddroff:$ptroff), (STFDU $rS, iaddroff:$ptroff, $ptrreg)>; // Indexed (r+r) Stores. let PPC970_Unit = 2 in { def STBX : XForm_8<31, 215, (outs), (ins gprc:$rS, memrr:$dst), "stbx $rS, $dst", LdStStore, [(truncstorei8 i32:$rS, xaddr:$dst)]>, PPC970_DGroup_Cracked; def STHX : XForm_8<31, 407, (outs), (ins gprc:$rS, memrr:$dst), "sthx $rS, $dst", LdStStore, [(truncstorei16 i32:$rS, xaddr:$dst)]>, PPC970_DGroup_Cracked; def STWX : XForm_8<31, 151, (outs), (ins gprc:$rS, memrr:$dst), "stwx $rS, $dst", LdStStore, [(store i32:$rS, xaddr:$dst)]>, PPC970_DGroup_Cracked; def STHBRX: XForm_8<31, 918, (outs), (ins gprc:$rS, memrr:$dst), "sthbrx $rS, $dst", LdStStore, [(PPCstbrx i32:$rS, xoaddr:$dst, i16)]>, PPC970_DGroup_Cracked; def STWBRX: XForm_8<31, 662, (outs), (ins gprc:$rS, memrr:$dst), "stwbrx $rS, $dst", LdStStore, [(PPCstbrx i32:$rS, xoaddr:$dst, i32)]>, PPC970_DGroup_Cracked; def STFIWX: XForm_28<31, 983, (outs), (ins f8rc:$frS, memrr:$dst), "stfiwx $frS, $dst", LdStSTFD, [(PPCstfiwx f64:$frS, xoaddr:$dst)]>; def STFSX : XForm_28<31, 663, (outs), (ins f4rc:$frS, memrr:$dst), "stfsx $frS, $dst", LdStSTFD, [(store f32:$frS, xaddr:$dst)]>; def STFDX : XForm_28<31, 727, (outs), (ins f8rc:$frS, memrr:$dst), "stfdx $frS, $dst", LdStSTFD, [(store f64:$frS, xaddr:$dst)]>; } // Indexed (r+r) Stores with Update (preinc). let PPC970_Unit = 2, mayStore = 1 in { def STBUX : XForm_8<31, 247, (outs ptr_rc_nor0:$ea_res), (ins gprc:$rS, memrr:$dst), "stbux $rS, $dst", LdStStoreUpd, []>, RegConstraint<"$dst.ptrreg = $ea_res">, NoEncode<"$ea_res">, PPC970_DGroup_Cracked; def STHUX : XForm_8<31, 439, (outs ptr_rc_nor0:$ea_res), (ins gprc:$rS, memrr:$dst), "sthux $rS, $dst", LdStStoreUpd, []>, RegConstraint<"$dst.ptrreg = $ea_res">, NoEncode<"$ea_res">, PPC970_DGroup_Cracked; def STWUX : XForm_8<31, 183, (outs ptr_rc_nor0:$ea_res), (ins gprc:$rS, memrr:$dst), "stwux $rS, $dst", LdStStoreUpd, []>, RegConstraint<"$dst.ptrreg = $ea_res">, NoEncode<"$ea_res">, PPC970_DGroup_Cracked; def STFSUX: XForm_8<31, 695, (outs ptr_rc_nor0:$ea_res), (ins f4rc:$rS, memrr:$dst), "stfsux $rS, $dst", LdStSTFDU, []>, RegConstraint<"$dst.ptrreg = $ea_res">, NoEncode<"$ea_res">, PPC970_DGroup_Cracked; def STFDUX: XForm_8<31, 759, (outs ptr_rc_nor0:$ea_res), (ins f8rc:$rS, memrr:$dst), "stfdux $rS, $dst", LdStSTFDU, []>, RegConstraint<"$dst.ptrreg = $ea_res">, NoEncode<"$ea_res">, PPC970_DGroup_Cracked; } // Patterns to match the pre-inc stores. We can't put the patterns on // the instruction definitions directly as ISel wants the address base // and offset to be separate operands, not a single complex operand. def : Pat<(pre_truncsti8 i32:$rS, iPTR:$ptrreg, iPTR:$ptroff), (STBUX $rS, $ptrreg, $ptroff)>; def : Pat<(pre_truncsti16 i32:$rS, iPTR:$ptrreg, iPTR:$ptroff), (STHUX $rS, $ptrreg, $ptroff)>; def : Pat<(pre_store i32:$rS, iPTR:$ptrreg, iPTR:$ptroff), (STWUX $rS, $ptrreg, $ptroff)>; def : Pat<(pre_store f32:$rS, iPTR:$ptrreg, iPTR:$ptroff), (STFSUX $rS, $ptrreg, $ptroff)>; def : Pat<(pre_store f64:$rS, iPTR:$ptrreg, iPTR:$ptroff), (STFDUX $rS, $ptrreg, $ptroff)>; def SYNC : XForm_24_sync<31, 598, (outs), (ins), "sync", LdStSync, [(int_ppc_sync)]>; //===----------------------------------------------------------------------===// // PPC32 Arithmetic Instructions. // let PPC970_Unit = 1 in { // FXU Operations. def ADDI : DForm_2<14, (outs gprc:$rD), (ins gprc_nor0:$rA, symbolLo:$imm), "addi $rD, $rA, $imm", IntSimple, [(set i32:$rD, (add i32:$rA, immSExt16:$imm))]>; let BaseName = "addic" in { let Defs = [CARRY] in def ADDIC : DForm_2<12, (outs gprc:$rD), (ins gprc:$rA, s16imm:$imm), "addic $rD, $rA, $imm", IntGeneral, [(set i32:$rD, (addc i32:$rA, immSExt16:$imm))]>, RecFormRel, PPC970_DGroup_Cracked; let Defs = [CARRY, CR0] in def ADDICo : DForm_2<13, (outs gprc:$rD), (ins gprc:$rA, s16imm:$imm), "addic. $rD, $rA, $imm", IntGeneral, []>, isDOT, RecFormRel; } def ADDIS : DForm_2<15, (outs gprc:$rD), (ins gprc_nor0:$rA, symbolHi:$imm), "addis $rD, $rA, $imm", IntSimple, [(set i32:$rD, (add i32:$rA, imm16ShiftedSExt:$imm))]>; let isCodeGenOnly = 1 in def LA : DForm_2<14, (outs gprc:$rD), (ins gprc_nor0:$rA, symbolLo:$sym), "la $rD, $sym($rA)", IntGeneral, [(set i32:$rD, (add i32:$rA, (PPClo tglobaladdr:$sym, 0)))]>; def MULLI : DForm_2< 7, (outs gprc:$rD), (ins gprc:$rA, s16imm:$imm), "mulli $rD, $rA, $imm", IntMulLI, [(set i32:$rD, (mul i32:$rA, immSExt16:$imm))]>; let Defs = [CARRY] in def SUBFIC : DForm_2< 8, (outs gprc:$rD), (ins gprc:$rA, s16imm:$imm), "subfic $rD, $rA, $imm", IntGeneral, [(set i32:$rD, (subc immSExt16:$imm, i32:$rA))]>; let isReMaterializable = 1, isAsCheapAsAMove = 1, isMoveImm = 1 in { def LI : DForm_2_r0<14, (outs gprc:$rD), (ins symbolLo:$imm), "li $rD, $imm", IntSimple, [(set i32:$rD, immSExt16:$imm)]>; def LIS : DForm_2_r0<15, (outs gprc:$rD), (ins symbolHi:$imm), "lis $rD, $imm", IntSimple, [(set i32:$rD, imm16ShiftedSExt:$imm)]>; } } let PPC970_Unit = 1 in { // FXU Operations. let Defs = [CR0] in { def ANDIo : DForm_4<28, (outs gprc:$dst), (ins gprc:$src1, u16imm:$src2), "andi. $dst, $src1, $src2", IntGeneral, [(set i32:$dst, (and i32:$src1, immZExt16:$src2))]>, isDOT; def ANDISo : DForm_4<29, (outs gprc:$dst), (ins gprc:$src1, u16imm:$src2), "andis. $dst, $src1, $src2", IntGeneral, [(set i32:$dst, (and i32:$src1, imm16ShiftedZExt:$src2))]>, isDOT; } def ORI : DForm_4<24, (outs gprc:$dst), (ins gprc:$src1, u16imm:$src2), "ori $dst, $src1, $src2", IntSimple, [(set i32:$dst, (or i32:$src1, immZExt16:$src2))]>; def ORIS : DForm_4<25, (outs gprc:$dst), (ins gprc:$src1, u16imm:$src2), "oris $dst, $src1, $src2", IntSimple, [(set i32:$dst, (or i32:$src1, imm16ShiftedZExt:$src2))]>; def XORI : DForm_4<26, (outs gprc:$dst), (ins gprc:$src1, u16imm:$src2), "xori $dst, $src1, $src2", IntSimple, [(set i32:$dst, (xor i32:$src1, immZExt16:$src2))]>; def XORIS : DForm_4<27, (outs gprc:$dst), (ins gprc:$src1, u16imm:$src2), "xoris $dst, $src1, $src2", IntSimple, [(set i32:$dst, (xor i32:$src1, imm16ShiftedZExt:$src2))]>; def NOP : DForm_4_zero<24, (outs), (ins), "nop", IntSimple, []>; let isCompare = 1, neverHasSideEffects = 1 in { def CMPWI : DForm_5_ext<11, (outs crrc:$crD), (ins gprc:$rA, s16imm:$imm), "cmpwi $crD, $rA, $imm", IntCompare>; def CMPLWI : DForm_6_ext<10, (outs crrc:$dst), (ins gprc:$src1, u16imm:$src2), "cmplwi $dst, $src1, $src2", IntCompare>; } } let PPC970_Unit = 1, neverHasSideEffects = 1 in { // FXU Operations. defm NAND : XForm_6r<31, 476, (outs gprc:$rA), (ins gprc:$rS, gprc:$rB), "nand", "$rA, $rS, $rB", IntSimple, [(set i32:$rA, (not (and i32:$rS, i32:$rB)))]>; defm AND : XForm_6r<31, 28, (outs gprc:$rA), (ins gprc:$rS, gprc:$rB), "and", "$rA, $rS, $rB", IntSimple, [(set i32:$rA, (and i32:$rS, i32:$rB))]>; defm ANDC : XForm_6r<31, 60, (outs gprc:$rA), (ins gprc:$rS, gprc:$rB), "andc", "$rA, $rS, $rB", IntSimple, [(set i32:$rA, (and i32:$rS, (not i32:$rB)))]>; defm OR : XForm_6r<31, 444, (outs gprc:$rA), (ins gprc:$rS, gprc:$rB), "or", "$rA, $rS, $rB", IntSimple, [(set i32:$rA, (or i32:$rS, i32:$rB))]>; defm NOR : XForm_6r<31, 124, (outs gprc:$rA), (ins gprc:$rS, gprc:$rB), "nor", "$rA, $rS, $rB", IntSimple, [(set i32:$rA, (not (or i32:$rS, i32:$rB)))]>; defm ORC : XForm_6r<31, 412, (outs gprc:$rA), (ins gprc:$rS, gprc:$rB), "orc", "$rA, $rS, $rB", IntSimple, [(set i32:$rA, (or i32:$rS, (not i32:$rB)))]>; defm EQV : XForm_6r<31, 284, (outs gprc:$rA), (ins gprc:$rS, gprc:$rB), "eqv", "$rA, $rS, $rB", IntSimple, [(set i32:$rA, (not (xor i32:$rS, i32:$rB)))]>; defm XOR : XForm_6r<31, 316, (outs gprc:$rA), (ins gprc:$rS, gprc:$rB), "xor", "$rA, $rS, $rB", IntSimple, [(set i32:$rA, (xor i32:$rS, i32:$rB))]>; defm SLW : XForm_6r<31, 24, (outs gprc:$rA), (ins gprc:$rS, gprc:$rB), "slw", "$rA, $rS, $rB", IntGeneral, [(set i32:$rA, (PPCshl i32:$rS, i32:$rB))]>; defm SRW : XForm_6r<31, 536, (outs gprc:$rA), (ins gprc:$rS, gprc:$rB), "srw", "$rA, $rS, $rB", IntGeneral, [(set i32:$rA, (PPCsrl i32:$rS, i32:$rB))]>; defm SRAW : XForm_6rc<31, 792, (outs gprc:$rA), (ins gprc:$rS, gprc:$rB), "sraw", "$rA, $rS, $rB", IntShift, [(set i32:$rA, (PPCsra i32:$rS, i32:$rB))]>; } let PPC970_Unit = 1 in { // FXU Operations. let neverHasSideEffects = 1 in { defm SRAWI : XForm_10rc<31, 824, (outs gprc:$rA), (ins gprc:$rS, u5imm:$SH), "srawi", "$rA, $rS, $SH", IntShift, [(set i32:$rA, (sra i32:$rS, (i32 imm:$SH)))]>; defm CNTLZW : XForm_11r<31, 26, (outs gprc:$rA), (ins gprc:$rS), "cntlzw", "$rA, $rS", IntGeneral, [(set i32:$rA, (ctlz i32:$rS))]>; defm EXTSB : XForm_11r<31, 954, (outs gprc:$rA), (ins gprc:$rS), "extsb", "$rA, $rS", IntSimple, [(set i32:$rA, (sext_inreg i32:$rS, i8))]>; defm EXTSH : XForm_11r<31, 922, (outs gprc:$rA), (ins gprc:$rS), "extsh", "$rA, $rS", IntSimple, [(set i32:$rA, (sext_inreg i32:$rS, i16))]>; } let isCompare = 1, neverHasSideEffects = 1 in { def CMPW : XForm_16_ext<31, 0, (outs crrc:$crD), (ins gprc:$rA, gprc:$rB), "cmpw $crD, $rA, $rB", IntCompare>; def CMPLW : XForm_16_ext<31, 32, (outs crrc:$crD), (ins gprc:$rA, gprc:$rB), "cmplw $crD, $rA, $rB", IntCompare>; } } let PPC970_Unit = 3 in { // FPU Operations. //def FCMPO : XForm_17<63, 32, (outs CRRC:$crD), (ins FPRC:$fA, FPRC:$fB), // "fcmpo $crD, $fA, $fB", FPCompare>; let isCompare = 1, neverHasSideEffects = 1 in { def FCMPUS : XForm_17<63, 0, (outs crrc:$crD), (ins f4rc:$fA, f4rc:$fB), "fcmpu $crD, $fA, $fB", FPCompare>; def FCMPUD : XForm_17<63, 0, (outs crrc:$crD), (ins f8rc:$fA, f8rc:$fB), "fcmpu $crD, $fA, $fB", FPCompare>; } let Uses = [RM] in { let neverHasSideEffects = 1 in { defm FCTIWZ : XForm_26r<63, 15, (outs f8rc:$frD), (ins f8rc:$frB), "fctiwz", "$frD, $frB", FPGeneral, [(set f64:$frD, (PPCfctiwz f64:$frB))]>; defm FRSP : XForm_26r<63, 12, (outs f4rc:$frD), (ins f8rc:$frB), "frsp", "$frD, $frB", FPGeneral, [(set f32:$frD, (fround f64:$frB))]>; // The frin -> nearbyint mapping is valid only in fast-math mode. let Interpretation64Bit = 1 in defm FRIND : XForm_26r<63, 392, (outs f8rc:$frD), (ins f8rc:$frB), "frin", "$frD, $frB", FPGeneral, [(set f64:$frD, (fnearbyint f64:$frB))]>; defm FRINS : XForm_26r<63, 392, (outs f4rc:$frD), (ins f4rc:$frB), "frin", "$frD, $frB", FPGeneral, [(set f32:$frD, (fnearbyint f32:$frB))]>; } // These pseudos expand to rint but also set FE_INEXACT when the result does // not equal the argument. let usesCustomInserter = 1, Defs = [RM] in { // FIXME: Model FPSCR! def FRINDrint : Pseudo<(outs f8rc:$frD), (ins f8rc:$frB), "#FRINDrint", [(set f64:$frD, (frint f64:$frB))]>; def FRINSrint : Pseudo<(outs f4rc:$frD), (ins f4rc:$frB), "#FRINSrint", [(set f32:$frD, (frint f32:$frB))]>; } let neverHasSideEffects = 1 in { let Interpretation64Bit = 1 in defm FRIPD : XForm_26r<63, 456, (outs f8rc:$frD), (ins f8rc:$frB), "frip", "$frD, $frB", FPGeneral, [(set f64:$frD, (fceil f64:$frB))]>; defm FRIPS : XForm_26r<63, 456, (outs f4rc:$frD), (ins f4rc:$frB), "frip", "$frD, $frB", FPGeneral, [(set f32:$frD, (fceil f32:$frB))]>; let Interpretation64Bit = 1 in defm FRIZD : XForm_26r<63, 424, (outs f8rc:$frD), (ins f8rc:$frB), "friz", "$frD, $frB", FPGeneral, [(set f64:$frD, (ftrunc f64:$frB))]>; defm FRIZS : XForm_26r<63, 424, (outs f4rc:$frD), (ins f4rc:$frB), "friz", "$frD, $frB", FPGeneral, [(set f32:$frD, (ftrunc f32:$frB))]>; let Interpretation64Bit = 1 in defm FRIMD : XForm_26r<63, 488, (outs f8rc:$frD), (ins f8rc:$frB), "frim", "$frD, $frB", FPGeneral, [(set f64:$frD, (ffloor f64:$frB))]>; defm FRIMS : XForm_26r<63, 488, (outs f4rc:$frD), (ins f4rc:$frB), "frim", "$frD, $frB", FPGeneral, [(set f32:$frD, (ffloor f32:$frB))]>; defm FSQRT : XForm_26r<63, 22, (outs f8rc:$frD), (ins f8rc:$frB), "fsqrt", "$frD, $frB", FPSqrt, [(set f64:$frD, (fsqrt f64:$frB))]>; defm FSQRTS : XForm_26r<59, 22, (outs f4rc:$frD), (ins f4rc:$frB), "fsqrts", "$frD, $frB", FPSqrt, [(set f32:$frD, (fsqrt f32:$frB))]>; } } } /// Note that FMR is defined as pseudo-ops on the PPC970 because they are /// often coalesced away and we don't want the dispatch group builder to think /// that they will fill slots (which could cause the load of a LSU reject to /// sneak into a d-group with a store). let neverHasSideEffects = 1 in defm FMR : XForm_26r<63, 72, (outs f4rc:$frD), (ins f4rc:$frB), "fmr", "$frD, $frB", FPGeneral, []>, // (set f32:$frD, f32:$frB) PPC970_Unit_Pseudo; let PPC970_Unit = 3, neverHasSideEffects = 1 in { // FPU Operations. // These are artificially split into two different forms, for 4/8 byte FP. defm FABSS : XForm_26r<63, 264, (outs f4rc:$frD), (ins f4rc:$frB), "fabs", "$frD, $frB", FPGeneral, [(set f32:$frD, (fabs f32:$frB))]>; let Interpretation64Bit = 1 in defm FABSD : XForm_26r<63, 264, (outs f8rc:$frD), (ins f8rc:$frB), "fabs", "$frD, $frB", FPGeneral, [(set f64:$frD, (fabs f64:$frB))]>; defm FNABSS : XForm_26r<63, 136, (outs f4rc:$frD), (ins f4rc:$frB), "fnabs", "$frD, $frB", FPGeneral, [(set f32:$frD, (fneg (fabs f32:$frB)))]>; let Interpretation64Bit = 1 in defm FNABSD : XForm_26r<63, 136, (outs f8rc:$frD), (ins f8rc:$frB), "fnabs", "$frD, $frB", FPGeneral, [(set f64:$frD, (fneg (fabs f64:$frB)))]>; defm FNEGS : XForm_26r<63, 40, (outs f4rc:$frD), (ins f4rc:$frB), "fneg", "$frD, $frB", FPGeneral, [(set f32:$frD, (fneg f32:$frB))]>; let Interpretation64Bit = 1 in defm FNEGD : XForm_26r<63, 40, (outs f8rc:$frD), (ins f8rc:$frB), "fneg", "$frD, $frB", FPGeneral, [(set f64:$frD, (fneg f64:$frB))]>; // Reciprocal estimates. defm FRE : XForm_26r<63, 24, (outs f8rc:$frD), (ins f8rc:$frB), "fre", "$frD, $frB", FPGeneral, [(set f64:$frD, (PPCfre f64:$frB))]>; defm FRES : XForm_26r<59, 24, (outs f4rc:$frD), (ins f4rc:$frB), "fres", "$frD, $frB", FPGeneral, [(set f32:$frD, (PPCfre f32:$frB))]>; defm FRSQRTE : XForm_26r<63, 26, (outs f8rc:$frD), (ins f8rc:$frB), "frsqrte", "$frD, $frB", FPGeneral, [(set f64:$frD, (PPCfrsqrte f64:$frB))]>; defm FRSQRTES : XForm_26r<59, 26, (outs f4rc:$frD), (ins f4rc:$frB), "frsqrtes", "$frD, $frB", FPGeneral, [(set f32:$frD, (PPCfrsqrte f32:$frB))]>; } // XL-Form instructions. condition register logical ops. // let neverHasSideEffects = 1 in def MCRF : XLForm_3<19, 0, (outs crrc:$BF), (ins crrc:$BFA), "mcrf $BF, $BFA", BrMCR>, PPC970_DGroup_First, PPC970_Unit_CRU; def CREQV : XLForm_1<19, 289, (outs crbitrc:$CRD), (ins crbitrc:$CRA, crbitrc:$CRB), "creqv $CRD, $CRA, $CRB", BrCR, []>; def CROR : XLForm_1<19, 449, (outs crbitrc:$CRD), (ins crbitrc:$CRA, crbitrc:$CRB), "cror $CRD, $CRA, $CRB", BrCR, []>; let isCodeGenOnly = 1 in { def CRSET : XLForm_1_ext<19, 289, (outs crbitrc:$dst), (ins), "creqv $dst, $dst, $dst", BrCR, []>; def CRUNSET: XLForm_1_ext<19, 193, (outs crbitrc:$dst), (ins), "crxor $dst, $dst, $dst", BrCR, []>; let Defs = [CR1EQ], CRD = 6 in { def CR6SET : XLForm_1_ext<19, 289, (outs), (ins), "creqv 6, 6, 6", BrCR, [(PPCcr6set)]>; def CR6UNSET: XLForm_1_ext<19, 193, (outs), (ins), "crxor 6, 6, 6", BrCR, [(PPCcr6unset)]>; } } // XFX-Form instructions. Instructions that deal with SPRs. // let Uses = [CTR] in { def MFCTR : XFXForm_1_ext<31, 339, 9, (outs gprc:$rT), (ins), "mfctr $rT", SprMFSPR>, PPC970_DGroup_First, PPC970_Unit_FXU; } let Defs = [CTR], Pattern = [(PPCmtctr i32:$rS)] in { def MTCTR : XFXForm_7_ext<31, 467, 9, (outs), (ins gprc:$rS), "mtctr $rS", SprMTSPR>, PPC970_DGroup_First, PPC970_Unit_FXU; } let hasSideEffects = 1, isCodeGenOnly = 1, Defs = [CTR] in { let Pattern = [(int_ppc_mtctr i32:$rS)] in def MTCTRse : XFXForm_7_ext<31, 467, 9, (outs), (ins gprc:$rS), "mtctr $rS", SprMTSPR>, PPC970_DGroup_First, PPC970_Unit_FXU; } let Defs = [LR] in { def MTLR : XFXForm_7_ext<31, 467, 8, (outs), (ins gprc:$rS), "mtlr $rS", SprMTSPR>, PPC970_DGroup_First, PPC970_Unit_FXU; } let Uses = [LR] in { def MFLR : XFXForm_1_ext<31, 339, 8, (outs gprc:$rT), (ins), "mflr $rT", SprMFSPR>, PPC970_DGroup_First, PPC970_Unit_FXU; } // Move to/from VRSAVE: despite being a SPR, the VRSAVE register is renamed like // a GPR on the PPC970. As such, copies in and out have the same performance // characteristics as an OR instruction. def MTVRSAVE : XFXForm_7_ext<31, 467, 256, (outs), (ins gprc:$rS), "mtspr 256, $rS", IntGeneral>, PPC970_DGroup_Single, PPC970_Unit_FXU; def MFVRSAVE : XFXForm_1_ext<31, 339, 256, (outs gprc:$rT), (ins), "mfspr $rT, 256", IntGeneral>, PPC970_DGroup_First, PPC970_Unit_FXU; let isCodeGenOnly = 1 in { def MTVRSAVEv : XFXForm_7_ext<31, 467, 256, (outs VRSAVERC:$reg), (ins gprc:$rS), "mtspr 256, $rS", IntGeneral>, PPC970_DGroup_Single, PPC970_Unit_FXU; def MFVRSAVEv : XFXForm_1_ext<31, 339, 256, (outs gprc:$rT), (ins VRSAVERC:$reg), "mfspr $rT, 256", IntGeneral>, PPC970_DGroup_First, PPC970_Unit_FXU; } // SPILL_VRSAVE - Indicate that we're dumping the VRSAVE register, // so we'll need to scavenge a register for it. let mayStore = 1 in def SPILL_VRSAVE : Pseudo<(outs), (ins VRSAVERC:$vrsave, memri:$F), "#SPILL_VRSAVE", []>; // RESTORE_VRSAVE - Indicate that we're restoring the VRSAVE register (previously // spilled), so we'll need to scavenge a register for it. let mayLoad = 1 in def RESTORE_VRSAVE : Pseudo<(outs VRSAVERC:$vrsave), (ins memri:$F), "#RESTORE_VRSAVE", []>; let neverHasSideEffects = 1 in { def MTCRF : XFXForm_5<31, 144, (outs crbitm:$FXM), (ins gprc:$rS), "mtcrf $FXM, $rS", BrMCRX>, PPC970_MicroCode, PPC970_Unit_CRU; // This is a pseudo for MFCR, which implicitly uses all 8 of its subregisters; // declaring that here gives the local register allocator problems with this: // vreg = MCRF CR0 // MFCR // while not declaring it breaks DeadMachineInstructionElimination. // As it turns out, in all cases where we currently use this, // we're only interested in one subregister of it. Represent this in the // instruction to keep the register allocator from becoming confused. // // FIXME: Make this a real Pseudo instruction when the JIT switches to MC. let isCodeGenOnly = 1 in def MFCRpseud: XFXForm_3<31, 19, (outs gprc:$rT), (ins crbitm:$FXM), "#MFCRpseud", SprMFCR>, PPC970_MicroCode, PPC970_Unit_CRU; def MFOCRF: XFXForm_5a<31, 19, (outs gprc:$rT), (ins crbitm:$FXM), "mfocrf $rT, $FXM", SprMFCR>, PPC970_DGroup_First, PPC970_Unit_CRU; } // neverHasSideEffects = 1 let neverHasSideEffects = 1 in def MFCR : XFXForm_3<31, 19, (outs gprc:$rT), (ins), "mfcr $rT", SprMFCR>, PPC970_MicroCode, PPC970_Unit_CRU; // Pseudo instruction to perform FADD in round-to-zero mode. let usesCustomInserter = 1, Uses = [RM] in { def FADDrtz: Pseudo<(outs f8rc:$FRT), (ins f8rc:$FRA, f8rc:$FRB), "", [(set f64:$FRT, (PPCfaddrtz f64:$FRA, f64:$FRB))]>; } // The above pseudo gets expanded to make use of the following instructions // to manipulate FPSCR. Note that FPSCR is not modeled at the DAG level. let Uses = [RM], Defs = [RM] in { def MTFSB0 : XForm_43<63, 70, (outs), (ins u5imm:$FM), "mtfsb0 $FM", IntMTFSB0, []>, PPC970_DGroup_Single, PPC970_Unit_FPU; def MTFSB1 : XForm_43<63, 38, (outs), (ins u5imm:$FM), "mtfsb1 $FM", IntMTFSB0, []>, PPC970_DGroup_Single, PPC970_Unit_FPU; def MTFSF : XFLForm<63, 711, (outs), (ins i32imm:$FM, f8rc:$rT), "mtfsf $FM, $rT", IntMTFSB0, []>, PPC970_DGroup_Single, PPC970_Unit_FPU; } let Uses = [RM] in { def MFFS : XForm_42<63, 583, (outs f8rc:$rT), (ins), "mffs $rT", IntMFFS, [(set f64:$rT, (PPCmffs))]>, PPC970_DGroup_Single, PPC970_Unit_FPU; } let PPC970_Unit = 1, neverHasSideEffects = 1 in { // FXU Operations. // XO-Form instructions. Arithmetic instructions that can set overflow bit // defm ADD4 : XOForm_1r<31, 266, 0, (outs gprc:$rT), (ins gprc:$rA, gprc:$rB), "add", "$rT, $rA, $rB", IntSimple, [(set i32:$rT, (add i32:$rA, i32:$rB))]>; defm ADDC : XOForm_1rc<31, 10, 0, (outs gprc:$rT), (ins gprc:$rA, gprc:$rB), "addc", "$rT, $rA, $rB", IntGeneral, [(set i32:$rT, (addc i32:$rA, i32:$rB))]>, PPC970_DGroup_Cracked; defm DIVW : XOForm_1r<31, 491, 0, (outs gprc:$rT), (ins gprc:$rA, gprc:$rB), "divw", "$rT, $rA, $rB", IntDivW, [(set i32:$rT, (sdiv i32:$rA, i32:$rB))]>, PPC970_DGroup_First, PPC970_DGroup_Cracked; defm DIVWU : XOForm_1r<31, 459, 0, (outs gprc:$rT), (ins gprc:$rA, gprc:$rB), "divwu", "$rT, $rA, $rB", IntDivW, [(set i32:$rT, (udiv i32:$rA, i32:$rB))]>, PPC970_DGroup_First, PPC970_DGroup_Cracked; defm MULHW : XOForm_1r<31, 75, 0, (outs gprc:$rT), (ins gprc:$rA, gprc:$rB), "mulhw", "$rT, $rA, $rB", IntMulHW, [(set i32:$rT, (mulhs i32:$rA, i32:$rB))]>; defm MULHWU : XOForm_1r<31, 11, 0, (outs gprc:$rT), (ins gprc:$rA, gprc:$rB), "mulhwu", "$rT, $rA, $rB", IntMulHWU, [(set i32:$rT, (mulhu i32:$rA, i32:$rB))]>; defm MULLW : XOForm_1r<31, 235, 0, (outs gprc:$rT), (ins gprc:$rA, gprc:$rB), "mullw", "$rT, $rA, $rB", IntMulHW, [(set i32:$rT, (mul i32:$rA, i32:$rB))]>; defm SUBF : XOForm_1r<31, 40, 0, (outs gprc:$rT), (ins gprc:$rA, gprc:$rB), "subf", "$rT, $rA, $rB", IntGeneral, [(set i32:$rT, (sub i32:$rB, i32:$rA))]>; defm SUBFC : XOForm_1rc<31, 8, 0, (outs gprc:$rT), (ins gprc:$rA, gprc:$rB), "subfc", "$rT, $rA, $rB", IntGeneral, [(set i32:$rT, (subc i32:$rB, i32:$rA))]>, PPC970_DGroup_Cracked; defm NEG : XOForm_3r<31, 104, 0, (outs gprc:$rT), (ins gprc:$rA), "neg", "$rT, $rA", IntSimple, [(set i32:$rT, (ineg i32:$rA))]>; let Uses = [CARRY] in { defm ADDE : XOForm_1rc<31, 138, 0, (outs gprc:$rT), (ins gprc:$rA, gprc:$rB), "adde", "$rT, $rA, $rB", IntGeneral, [(set i32:$rT, (adde i32:$rA, i32:$rB))]>; defm ADDME : XOForm_3rc<31, 234, 0, (outs gprc:$rT), (ins gprc:$rA), "addme", "$rT, $rA", IntGeneral, [(set i32:$rT, (adde i32:$rA, -1))]>; defm ADDZE : XOForm_3rc<31, 202, 0, (outs gprc:$rT), (ins gprc:$rA), "addze", "$rT, $rA", IntGeneral, [(set i32:$rT, (adde i32:$rA, 0))]>; defm SUBFE : XOForm_1rc<31, 136, 0, (outs gprc:$rT), (ins gprc:$rA, gprc:$rB), "subfe", "$rT, $rA, $rB", IntGeneral, [(set i32:$rT, (sube i32:$rB, i32:$rA))]>; defm SUBFME : XOForm_3rc<31, 232, 0, (outs gprc:$rT), (ins gprc:$rA), "subfme", "$rT, $rA", IntGeneral, [(set i32:$rT, (sube -1, i32:$rA))]>; defm SUBFZE : XOForm_3rc<31, 200, 0, (outs gprc:$rT), (ins gprc:$rA), "subfze", "$rT, $rA", IntGeneral, [(set i32:$rT, (sube 0, i32:$rA))]>; } } // A-Form instructions. Most of the instructions executed in the FPU are of // this type. // let PPC970_Unit = 3, neverHasSideEffects = 1 in { // FPU Operations. let Uses = [RM] in { defm FMADD : AForm_1r<63, 29, (outs f8rc:$FRT), (ins f8rc:$FRA, f8rc:$FRC, f8rc:$FRB), "fmadd", "$FRT, $FRA, $FRC, $FRB", FPFused, [(set f64:$FRT, (fma f64:$FRA, f64:$FRC, f64:$FRB))]>; defm FMADDS : AForm_1r<59, 29, (outs f4rc:$FRT), (ins f4rc:$FRA, f4rc:$FRC, f4rc:$FRB), "fmadds", "$FRT, $FRA, $FRC, $FRB", FPGeneral, [(set f32:$FRT, (fma f32:$FRA, f32:$FRC, f32:$FRB))]>; defm FMSUB : AForm_1r<63, 28, (outs f8rc:$FRT), (ins f8rc:$FRA, f8rc:$FRC, f8rc:$FRB), "fmsub", "$FRT, $FRA, $FRC, $FRB", FPFused, [(set f64:$FRT, (fma f64:$FRA, f64:$FRC, (fneg f64:$FRB)))]>; defm FMSUBS : AForm_1r<59, 28, (outs f4rc:$FRT), (ins f4rc:$FRA, f4rc:$FRC, f4rc:$FRB), "fmsubs", "$FRT, $FRA, $FRC, $FRB", FPGeneral, [(set f32:$FRT, (fma f32:$FRA, f32:$FRC, (fneg f32:$FRB)))]>; defm FNMADD : AForm_1r<63, 31, (outs f8rc:$FRT), (ins f8rc:$FRA, f8rc:$FRC, f8rc:$FRB), "fnmadd", "$FRT, $FRA, $FRC, $FRB", FPFused, [(set f64:$FRT, (fneg (fma f64:$FRA, f64:$FRC, f64:$FRB)))]>; defm FNMADDS : AForm_1r<59, 31, (outs f4rc:$FRT), (ins f4rc:$FRA, f4rc:$FRC, f4rc:$FRB), "fnmadds", "$FRT, $FRA, $FRC, $FRB", FPGeneral, [(set f32:$FRT, (fneg (fma f32:$FRA, f32:$FRC, f32:$FRB)))]>; defm FNMSUB : AForm_1r<63, 30, (outs f8rc:$FRT), (ins f8rc:$FRA, f8rc:$FRC, f8rc:$FRB), "fnmsub", "$FRT, $FRA, $FRC, $FRB", FPFused, [(set f64:$FRT, (fneg (fma f64:$FRA, f64:$FRC, (fneg f64:$FRB))))]>; defm FNMSUBS : AForm_1r<59, 30, (outs f4rc:$FRT), (ins f4rc:$FRA, f4rc:$FRC, f4rc:$FRB), "fnmsubs", "$FRT, $FRA, $FRC, $FRB", FPGeneral, [(set f32:$FRT, (fneg (fma f32:$FRA, f32:$FRC, (fneg f32:$FRB))))]>; } // FSEL is artificially split into 4 and 8-byte forms for the result. To avoid // having 4 of these, force the comparison to always be an 8-byte double (code // should use an FMRSD if the input comparison value really wants to be a float) // and 4/8 byte forms for the result and operand type.. let Interpretation64Bit = 1 in defm FSELD : AForm_1r<63, 23, (outs f8rc:$FRT), (ins f8rc:$FRA, f8rc:$FRC, f8rc:$FRB), "fsel", "$FRT, $FRA, $FRC, $FRB", FPGeneral, [(set f64:$FRT, (PPCfsel f64:$FRA, f64:$FRC, f64:$FRB))]>; defm FSELS : AForm_1r<63, 23, (outs f4rc:$FRT), (ins f8rc:$FRA, f4rc:$FRC, f4rc:$FRB), "fsel", "$FRT, $FRA, $FRC, $FRB", FPGeneral, [(set f32:$FRT, (PPCfsel f64:$FRA, f32:$FRC, f32:$FRB))]>; let Uses = [RM] in { defm FADD : AForm_2r<63, 21, (outs f8rc:$FRT), (ins f8rc:$FRA, f8rc:$FRB), "fadd", "$FRT, $FRA, $FRB", FPAddSub, [(set f64:$FRT, (fadd f64:$FRA, f64:$FRB))]>; defm FADDS : AForm_2r<59, 21, (outs f4rc:$FRT), (ins f4rc:$FRA, f4rc:$FRB), "fadds", "$FRT, $FRA, $FRB", FPGeneral, [(set f32:$FRT, (fadd f32:$FRA, f32:$FRB))]>; defm FDIV : AForm_2r<63, 18, (outs f8rc:$FRT), (ins f8rc:$FRA, f8rc:$FRB), "fdiv", "$FRT, $FRA, $FRB", FPDivD, [(set f64:$FRT, (fdiv f64:$FRA, f64:$FRB))]>; defm FDIVS : AForm_2r<59, 18, (outs f4rc:$FRT), (ins f4rc:$FRA, f4rc:$FRB), "fdivs", "$FRT, $FRA, $FRB", FPDivS, [(set f32:$FRT, (fdiv f32:$FRA, f32:$FRB))]>; defm FMUL : AForm_3r<63, 25, (outs f8rc:$FRT), (ins f8rc:$FRA, f8rc:$FRC), "fmul", "$FRT, $FRA, $FRC", FPFused, [(set f64:$FRT, (fmul f64:$FRA, f64:$FRC))]>; defm FMULS : AForm_3r<59, 25, (outs f4rc:$FRT), (ins f4rc:$FRA, f4rc:$FRC), "fmuls", "$FRT, $FRA, $FRC", FPGeneral, [(set f32:$FRT, (fmul f32:$FRA, f32:$FRC))]>; defm FSUB : AForm_2r<63, 20, (outs f8rc:$FRT), (ins f8rc:$FRA, f8rc:$FRB), "fsub", "$FRT, $FRA, $FRB", FPAddSub, [(set f64:$FRT, (fsub f64:$FRA, f64:$FRB))]>; defm FSUBS : AForm_2r<59, 20, (outs f4rc:$FRT), (ins f4rc:$FRA, f4rc:$FRB), "fsubs", "$FRT, $FRA, $FRB", FPGeneral, [(set f32:$FRT, (fsub f32:$FRA, f32:$FRB))]>; } } let neverHasSideEffects = 1 in { let PPC970_Unit = 1 in { // FXU Operations. let isSelect = 1 in def ISEL : AForm_4<31, 15, (outs gprc:$rT), (ins gprc_nor0:$rA, gprc:$rB, crbitrc:$cond), "isel $rT, $rA, $rB, $cond", IntGeneral, []>; } let PPC970_Unit = 1 in { // FXU Operations. // M-Form instructions. rotate and mask instructions. // let isCommutable = 1 in { // RLWIMI can be commuted if the rotate amount is zero. defm RLWIMI : MForm_2r<20, (outs gprc:$rA), (ins gprc:$rSi, gprc:$rS, u5imm:$SH, u5imm:$MB, u5imm:$ME), "rlwimi", "$rA, $rS, $SH, $MB, $ME", IntRotate, []>, PPC970_DGroup_Cracked, RegConstraint<"$rSi = $rA">, NoEncode<"$rSi">; } let BaseName = "rlwinm" in { def RLWINM : MForm_2<21, (outs gprc:$rA), (ins gprc:$rS, u5imm:$SH, u5imm:$MB, u5imm:$ME), "rlwinm $rA, $rS, $SH, $MB, $ME", IntGeneral, []>, RecFormRel; let Defs = [CR0] in def RLWINMo : MForm_2<21, (outs gprc:$rA), (ins gprc:$rS, u5imm:$SH, u5imm:$MB, u5imm:$ME), "rlwinm. $rA, $rS, $SH, $MB, $ME", IntGeneral, []>, isDOT, RecFormRel, PPC970_DGroup_Cracked; } defm RLWNM : MForm_2r<23, (outs gprc:$rA), (ins gprc:$rS, gprc:$rB, u5imm:$MB, u5imm:$ME), "rlwnm", "$rA, $rS, $rB, $MB, $ME", IntGeneral, []>; } } // neverHasSideEffects = 1 //===----------------------------------------------------------------------===// // PowerPC Instruction Patterns // // Arbitrary immediate support. Implement in terms of LIS/ORI. def : Pat<(i32 imm:$imm), (ORI (LIS (HI16 imm:$imm)), (LO16 imm:$imm))>; // Implement the 'not' operation with the NOR instruction. def NOT : Pat<(not i32:$in), (NOR $in, $in)>; // ADD an arbitrary immediate. def : Pat<(add i32:$in, imm:$imm), (ADDIS (ADDI $in, (LO16 imm:$imm)), (HA16 imm:$imm))>; // OR an arbitrary immediate. def : Pat<(or i32:$in, imm:$imm), (ORIS (ORI $in, (LO16 imm:$imm)), (HI16 imm:$imm))>; // XOR an arbitrary immediate. def : Pat<(xor i32:$in, imm:$imm), (XORIS (XORI $in, (LO16 imm:$imm)), (HI16 imm:$imm))>; // SUBFIC def : Pat<(sub immSExt16:$imm, i32:$in), (SUBFIC $in, imm:$imm)>; // SHL/SRL def : Pat<(shl i32:$in, (i32 imm:$imm)), (RLWINM $in, imm:$imm, 0, (SHL32 imm:$imm))>; def : Pat<(srl i32:$in, (i32 imm:$imm)), (RLWINM $in, (SRL32 imm:$imm), imm:$imm, 31)>; // ROTL def : Pat<(rotl i32:$in, i32:$sh), (RLWNM $in, $sh, 0, 31)>; def : Pat<(rotl i32:$in, (i32 imm:$imm)), (RLWINM $in, imm:$imm, 0, 31)>; // RLWNM def : Pat<(and (rotl i32:$in, i32:$sh), maskimm32:$imm), (RLWNM $in, $sh, (MB maskimm32:$imm), (ME maskimm32:$imm))>; // Calls def : Pat<(PPCcall (i32 tglobaladdr:$dst)), (BL tglobaladdr:$dst)>; def : Pat<(PPCcall (i32 texternalsym:$dst)), (BL texternalsym:$dst)>; def : Pat<(PPCtc_return (i32 tglobaladdr:$dst), imm:$imm), (TCRETURNdi tglobaladdr:$dst, imm:$imm)>; def : Pat<(PPCtc_return (i32 texternalsym:$dst), imm:$imm), (TCRETURNdi texternalsym:$dst, imm:$imm)>; def : Pat<(PPCtc_return CTRRC:$dst, imm:$imm), (TCRETURNri CTRRC:$dst, imm:$imm)>; // Hi and Lo for Darwin Global Addresses. def : Pat<(PPChi tglobaladdr:$in, 0), (LIS tglobaladdr:$in)>; def : Pat<(PPClo tglobaladdr:$in, 0), (LI tglobaladdr:$in)>; def : Pat<(PPChi tconstpool:$in, 0), (LIS tconstpool:$in)>; def : Pat<(PPClo tconstpool:$in, 0), (LI tconstpool:$in)>; def : Pat<(PPChi tjumptable:$in, 0), (LIS tjumptable:$in)>; def : Pat<(PPClo tjumptable:$in, 0), (LI tjumptable:$in)>; def : Pat<(PPChi tblockaddress:$in, 0), (LIS tblockaddress:$in)>; def : Pat<(PPClo tblockaddress:$in, 0), (LI tblockaddress:$in)>; def : Pat<(PPChi tglobaltlsaddr:$g, i32:$in), (ADDIS $in, tglobaltlsaddr:$g)>; def : Pat<(PPClo tglobaltlsaddr:$g, i32:$in), (ADDI $in, tglobaltlsaddr:$g)>; def : Pat<(add i32:$in, (PPChi tglobaladdr:$g, 0)), (ADDIS $in, tglobaladdr:$g)>; def : Pat<(add i32:$in, (PPChi tconstpool:$g, 0)), (ADDIS $in, tconstpool:$g)>; def : Pat<(add i32:$in, (PPChi tjumptable:$g, 0)), (ADDIS $in, tjumptable:$g)>; def : Pat<(add i32:$in, (PPChi tblockaddress:$g, 0)), (ADDIS $in, tblockaddress:$g)>; // Standard shifts. These are represented separately from the real shifts above // so that we can distinguish between shifts that allow 5-bit and 6-bit shift // amounts. def : Pat<(sra i32:$rS, i32:$rB), (SRAW $rS, $rB)>; def : Pat<(srl i32:$rS, i32:$rB), (SRW $rS, $rB)>; def : Pat<(shl i32:$rS, i32:$rB), (SLW $rS, $rB)>; def : Pat<(zextloadi1 iaddr:$src), (LBZ iaddr:$src)>; def : Pat<(zextloadi1 xaddr:$src), (LBZX xaddr:$src)>; def : Pat<(extloadi1 iaddr:$src), (LBZ iaddr:$src)>; def : Pat<(extloadi1 xaddr:$src), (LBZX xaddr:$src)>; def : Pat<(extloadi8 iaddr:$src), (LBZ iaddr:$src)>; def : Pat<(extloadi8 xaddr:$src), (LBZX xaddr:$src)>; def : Pat<(extloadi16 iaddr:$src), (LHZ iaddr:$src)>; def : Pat<(extloadi16 xaddr:$src), (LHZX xaddr:$src)>; def : Pat<(f64 (extloadf32 iaddr:$src)), (COPY_TO_REGCLASS (LFS iaddr:$src), F8RC)>; def : Pat<(f64 (extloadf32 xaddr:$src)), (COPY_TO_REGCLASS (LFSX xaddr:$src), F8RC)>; def : Pat<(f64 (fextend f32:$src)), (COPY_TO_REGCLASS $src, F8RC)>; def : Pat<(atomic_fence (imm), (imm)), (SYNC)>; // Additional FNMSUB patterns: -a*c + b == -(a*c - b) def : Pat<(fma (fneg f64:$A), f64:$C, f64:$B), (FNMSUB $A, $C, $B)>; def : Pat<(fma f64:$A, (fneg f64:$C), f64:$B), (FNMSUB $A, $C, $B)>; def : Pat<(fma (fneg f32:$A), f32:$C, f32:$B), (FNMSUBS $A, $C, $B)>; def : Pat<(fma f32:$A, (fneg f32:$C), f32:$B), (FNMSUBS $A, $C, $B)>; include "PPCInstrAltivec.td" include "PPCInstr64Bit.td" //===----------------------------------------------------------------------===// // PowerPC Instructions used for assembler/disassembler only // def ISYNC : XLForm_2_ext<19, 150, 0, 0, 0, (outs), (ins), "isync", SprISYNC, []>; def ICBI : XForm_1a<31, 982, (outs), (ins memrr:$src), "icbi $src", LdStICBI, []>; //===----------------------------------------------------------------------===// // PowerPC Assembler Instruction Aliases // // Pseudo-instructions for alternate assembly syntax (never used by codegen). // These are aliases that require C++ handling to convert to the target // instruction, while InstAliases can be handled directly by tblgen. class PPCAsmPseudo : Instruction { let Namespace = "PPC"; bit PPC64 = 0; // Default value, override with isPPC64 let OutOperandList = (outs); let InOperandList = iops; let Pattern = []; let AsmString = asm; let isAsmParserOnly = 1; let isPseudo = 1; } def : InstAlias<"mr $rA, $rB", (OR8 g8rc:$rA, g8rc:$rB, g8rc:$rB)>; def SLWI : PPCAsmPseudo<"slwi $rA, $rS, $n", (ins gprc:$rA, gprc:$rS, u5imm:$n)>; def SRWI : PPCAsmPseudo<"srwi $rA, $rS, $n", (ins gprc:$rA, gprc:$rS, u5imm:$n)>; def SLDI : PPCAsmPseudo<"sldi $rA, $rS, $n", (ins g8rc:$rA, g8rc:$rS, u6imm:$n)>; def SRDI : PPCAsmPseudo<"srdi $rA, $rS, $n", (ins g8rc:$rA, g8rc:$rS, u6imm:$n)>; def : InstAlias<"blt $cc, $dst", (BCC 12, crrc:$cc, condbrtarget:$dst)>; def : InstAlias<"bgt $cc, $dst", (BCC 44, crrc:$cc, condbrtarget:$dst)>; def : InstAlias<"beq $cc, $dst", (BCC 76, crrc:$cc, condbrtarget:$dst)>; def : InstAlias<"bun $cc, $dst", (BCC 108, crrc:$cc, condbrtarget:$dst)>; def : InstAlias<"bso $cc, $dst", (BCC 108, crrc:$cc, condbrtarget:$dst)>; def : InstAlias<"bge $cc, $dst", (BCC 4, crrc:$cc, condbrtarget:$dst)>; def : InstAlias<"bnl $cc, $dst", (BCC 4, crrc:$cc, condbrtarget:$dst)>; def : InstAlias<"ble $cc, $dst", (BCC 36, crrc:$cc, condbrtarget:$dst)>; def : InstAlias<"bng $cc, $dst", (BCC 36, crrc:$cc, condbrtarget:$dst)>; def : InstAlias<"bne $cc, $dst", (BCC 68, crrc:$cc, condbrtarget:$dst)>; def : InstAlias<"bnu $cc, $dst", (BCC 100, crrc:$cc, condbrtarget:$dst)>; def : InstAlias<"bns $cc, $dst", (BCC 100, crrc:$cc, condbrtarget:$dst)>; def : InstAlias<"bltlr $cc", (BCLR 12, crrc:$cc)>; def : InstAlias<"bgtlr $cc", (BCLR 44, crrc:$cc)>; def : InstAlias<"beqlr $cc", (BCLR 76, crrc:$cc)>; def : InstAlias<"bunlr $cc", (BCLR 108, crrc:$cc)>; def : InstAlias<"bsolr $cc", (BCLR 108, crrc:$cc)>; def : InstAlias<"bgelr $cc", (BCLR 4, crrc:$cc)>; def : InstAlias<"bnllr $cc", (BCLR 4, crrc:$cc)>; def : InstAlias<"blelr $cc", (BCLR 36, crrc:$cc)>; def : InstAlias<"bnglr $cc", (BCLR 36, crrc:$cc)>; def : InstAlias<"bnelr $cc", (BCLR 68, crrc:$cc)>; def : InstAlias<"bnulr $cc", (BCLR 100, crrc:$cc)>; def : InstAlias<"bnslr $cc", (BCLR 100, crrc:$cc)>; def : InstAlias<"bltctr $cc", (BCCTR 12, crrc:$cc)>; def : InstAlias<"bgtctr $cc", (BCCTR 44, crrc:$cc)>; def : InstAlias<"beqctr $cc", (BCCTR 76, crrc:$cc)>; def : InstAlias<"bunctr $cc", (BCCTR 108, crrc:$cc)>; def : InstAlias<"bsoctr $cc", (BCCTR 108, crrc:$cc)>; def : InstAlias<"bgectr $cc", (BCCTR 4, crrc:$cc)>; def : InstAlias<"bnlctr $cc", (BCCTR 4, crrc:$cc)>; def : InstAlias<"blectr $cc", (BCCTR 36, crrc:$cc)>; def : InstAlias<"bngctr $cc", (BCCTR 36, crrc:$cc)>; def : InstAlias<"bnectr $cc", (BCCTR 68, crrc:$cc)>; def : InstAlias<"bnuctr $cc", (BCCTR 100, crrc:$cc)>; def : InstAlias<"bnsctr $cc", (BCCTR 100, crrc:$cc)>; def : InstAlias<"bltctrl $cc", (BCCTRL 12, crrc:$cc)>; def : InstAlias<"bgtctrl $cc", (BCCTRL 44, crrc:$cc)>; def : InstAlias<"beqctrl $cc", (BCCTRL 76, crrc:$cc)>; def : InstAlias<"bunctrl $cc", (BCCTRL 108, crrc:$cc)>; def : InstAlias<"bsoctrl $cc", (BCCTRL 108, crrc:$cc)>; def : InstAlias<"bgectrl $cc", (BCCTRL 4, crrc:$cc)>; def : InstAlias<"bnlctrl $cc", (BCCTRL 4, crrc:$cc)>; def : InstAlias<"blectrl $cc", (BCCTRL 36, crrc:$cc)>; def : InstAlias<"bngctrl $cc", (BCCTRL 36, crrc:$cc)>; def : InstAlias<"bnectrl $cc", (BCCTRL 68, crrc:$cc)>; def : InstAlias<"bnuctrl $cc", (BCCTRL 100, crrc:$cc)>; def : InstAlias<"bnsctrl $cc", (BCCTRL 100, crrc:$cc)>;