//=== llvm/Analysis/DominatorInternals.h - Dominator Calculation -*- C++ -*-==// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// #ifndef LLVM_ANALYSIS_DOMINATOR_INTERNALS_H #define LLVM_ANALYSIS_DOMINATOR_INTERNALS_H #include "llvm/Analysis/Dominators.h" #include "llvm/ADT/SmallPtrSet.h" //===----------------------------------------------------------------------===// // // DominatorTree construction - This pass constructs immediate dominator // information for a flow-graph based on the algorithm described in this // document: // // A Fast Algorithm for Finding Dominators in a Flowgraph // T. Lengauer & R. Tarjan, ACM TOPLAS July 1979, pgs 121-141. // // This implements both the O(n*ack(n)) and the O(n*log(n)) versions of EVAL and // LINK, but it turns out that the theoretically slower O(n*log(n)) // implementation is actually faster than the "efficient" algorithm (even for // large CFGs) because the constant overheads are substantially smaller. The // lower-complexity version can be enabled with the following #define: // #define BALANCE_IDOM_TREE 0 // //===----------------------------------------------------------------------===// namespace llvm { template unsigned DFSPass(DominatorTreeBase& DT, typename GraphT::NodeType* V, unsigned N) { // This is more understandable as a recursive algorithm, but we can't use the // recursive algorithm due to stack depth issues. Keep it here for // documentation purposes. #if 0 InfoRec &VInfo = DT.Info[DT.Roots[i]]; VInfo.DFSNum = VInfo.Semi = ++N; VInfo.Label = V; Vertex.push_back(V); // Vertex[n] = V; //Info[V].Ancestor = 0; // Ancestor[n] = 0 //Info[V].Child = 0; // Child[v] = 0 VInfo.Size = 1; // Size[v] = 1 for (succ_iterator SI = succ_begin(V), E = succ_end(V); SI != E; ++SI) { InfoRec &SuccVInfo = DT.Info[*SI]; if (SuccVInfo.Semi == 0) { SuccVInfo.Parent = V; N = DTDFSPass(DT, *SI, N); } } #else bool IsChilOfArtificialExit = (N != 0); std::vector > Worklist; Worklist.push_back(std::make_pair(V, GraphT::child_begin(V))); while (!Worklist.empty()) { typename GraphT::NodeType* BB = Worklist.back().first; typename GraphT::ChildIteratorType NextSucc = Worklist.back().second; typename DominatorTreeBase::InfoRec &BBInfo = DT.Info[BB]; // First time we visited this BB? if (NextSucc == GraphT::child_begin(BB)) { BBInfo.DFSNum = BBInfo.Semi = ++N; BBInfo.Label = BB; DT.Vertex.push_back(BB); // Vertex[n] = V; //BBInfo[V].Ancestor = 0; // Ancestor[n] = 0 //BBInfo[V].Child = 0; // Child[v] = 0 BBInfo.Size = 1; // Size[v] = 1 if (IsChilOfArtificialExit) BBInfo.Parent = 1; IsChilOfArtificialExit = false; } // store the DFS number of the current BB - the reference to BBInfo might // get invalidated when processing the successors. unsigned BBDFSNum = BBInfo.DFSNum; // If we are done with this block, remove it from the worklist. if (NextSucc == GraphT::child_end(BB)) { Worklist.pop_back(); continue; } // Increment the successor number for the next time we get to it. ++Worklist.back().second; // Visit the successor next, if it isn't already visited. typename GraphT::NodeType* Succ = *NextSucc; typename DominatorTreeBase::InfoRec &SuccVInfo = DT.Info[Succ]; if (SuccVInfo.Semi == 0) { SuccVInfo.Parent = BBDFSNum; Worklist.push_back(std::make_pair(Succ, GraphT::child_begin(Succ))); } } #endif return N; } template void Compress(DominatorTreeBase& DT, typename GraphT::NodeType *VIn) { SmallVector Work; SmallPtrSet Visited; typename DominatorTreeBase::InfoRec &VInVAInfo = DT.Info[DT.Vertex[DT.Info[VIn].Ancestor]]; if (VInVAInfo.Ancestor != 0) Work.push_back(VIn); while (!Work.empty()) { typename GraphT::NodeType* V = Work.back(); typename DominatorTreeBase::InfoRec &VInfo = DT.Info[V]; typename GraphT::NodeType* VAncestor = DT.Vertex[VInfo.Ancestor]; typename DominatorTreeBase::InfoRec &VAInfo = DT.Info[VAncestor]; // Process Ancestor first if (Visited.insert(VAncestor) && VAInfo.Ancestor != 0) { Work.push_back(VAncestor); continue; } Work.pop_back(); // Update VInfo based on Ancestor info if (VAInfo.Ancestor == 0) continue; typename GraphT::NodeType* VAncestorLabel = VAInfo.Label; typename GraphT::NodeType* VLabel = VInfo.Label; if (DT.Info[VAncestorLabel].Semi < DT.Info[VLabel].Semi) VInfo.Label = VAncestorLabel; VInfo.Ancestor = VAInfo.Ancestor; } } template typename GraphT::NodeType* Eval(DominatorTreeBase& DT, typename GraphT::NodeType *V) { typename DominatorTreeBase::InfoRec &VInfo = DT.Info[V]; #if !BALANCE_IDOM_TREE // Higher-complexity but faster implementation if (VInfo.Ancestor == 0) return V; Compress(DT, V); return VInfo.Label; #else // Lower-complexity but slower implementation if (VInfo.Ancestor == 0) return VInfo.Label; Compress(DT, V); GraphT::NodeType* VLabel = VInfo.Label; GraphT::NodeType* VAncestorLabel = DT.Info[VInfo.Ancestor].Label; if (DT.Info[VAncestorLabel].Semi >= DT.Info[VLabel].Semi) return VLabel; else return VAncestorLabel; #endif } template void Link(DominatorTreeBase& DT, unsigned DFSNumV, typename GraphT::NodeType* W, typename DominatorTreeBase::InfoRec &WInfo) { #if !BALANCE_IDOM_TREE // Higher-complexity but faster implementation WInfo.Ancestor = DFSNumV; #else // Lower-complexity but slower implementation GraphT::NodeType* WLabel = WInfo.Label; unsigned WLabelSemi = DT.Info[WLabel].Semi; GraphT::NodeType* S = W; InfoRec *SInfo = &DT.Info[S]; GraphT::NodeType* SChild = SInfo->Child; InfoRec *SChildInfo = &DT.Info[SChild]; while (WLabelSemi < DT.Info[SChildInfo->Label].Semi) { GraphT::NodeType* SChildChild = SChildInfo->Child; if (SInfo->Size+DT.Info[SChildChild].Size >= 2*SChildInfo->Size) { SChildInfo->Ancestor = S; SInfo->Child = SChild = SChildChild; SChildInfo = &DT.Info[SChild]; } else { SChildInfo->Size = SInfo->Size; S = SInfo->Ancestor = SChild; SInfo = SChildInfo; SChild = SChildChild; SChildInfo = &DT.Info[SChild]; } } DominatorTreeBase::InfoRec &VInfo = DT.Info[V]; SInfo->Label = WLabel; assert(V != W && "The optimization here will not work in this case!"); unsigned WSize = WInfo.Size; unsigned VSize = (VInfo.Size += WSize); if (VSize < 2*WSize) std::swap(S, VInfo.Child); while (S) { SInfo = &DT.Info[S]; SInfo->Ancestor = V; S = SInfo->Child; } #endif } template void Calculate(DominatorTreeBase::NodeType>& DT, FuncT& F) { typedef GraphTraits GraphT; unsigned N = 0; bool MultipleRoots = (DT.Roots.size() > 1); if (MultipleRoots) { typename DominatorTreeBase::InfoRec &BBInfo = DT.Info[NULL]; BBInfo.DFSNum = BBInfo.Semi = ++N; BBInfo.Label = NULL; DT.Vertex.push_back(NULL); // Vertex[n] = V; //BBInfo[V].Ancestor = 0; // Ancestor[n] = 0 //BBInfo[V].Child = 0; // Child[v] = 0 BBInfo.Size = 1; // Size[v] = 1 } // Step #1: Number blocks in depth-first order and initialize variables used // in later stages of the algorithm. for (unsigned i = 0, e = static_cast(DT.Roots.size()); i != e; ++i) N = DFSPass(DT, DT.Roots[i], N); // it might be that some blocks did not get a DFS number (e.g., blocks of // infinite loops). In these cases an artificial exit node is required. MultipleRoots |= (DT.isPostDominator() && N != F.size()); for (unsigned i = N; i >= 2; --i) { typename GraphT::NodeType* W = DT.Vertex[i]; typename DominatorTreeBase::InfoRec &WInfo = DT.Info[W]; // Step #2: Calculate the semidominators of all vertices // initialize the semi dominator to point to the parent node WInfo.Semi = WInfo.Parent; typedef GraphTraits > InvTraits; for (typename InvTraits::ChildIteratorType CI = InvTraits::child_begin(W), E = InvTraits::child_end(W); CI != E; ++CI) { typename InvTraits::NodeType *N = *CI; if (DT.Info.count(N)) { // Only if this predecessor is reachable! unsigned SemiU = DT.Info[Eval(DT, N)].Semi; if (SemiU < WInfo.Semi) WInfo.Semi = SemiU; } } typename GraphT::NodeType* WParent = DT.Vertex[WInfo.Parent]; // If V is a non-root vertex and sdom(V) = parent(V), then idom(V) is // necessarily parent(V). In this case, set idom(V) here and avoid placing // V into a bucket. if (WInfo.Semi == WInfo.Parent) DT.IDoms[W] = WParent; else DT.Info[DT.Vertex[WInfo.Semi]].Bucket.push_back(W); Link(DT, WInfo.Parent, W, WInfo); // Step #3: Implicitly define the immediate dominator of vertices std::vector &WParentBucket = DT.Info[WParent].Bucket; while (!WParentBucket.empty()) { typename GraphT::NodeType* V = WParentBucket.back(); WParentBucket.pop_back(); typename GraphT::NodeType* U = Eval(DT, V); DT.IDoms[V] = DT.Info[U].Semi < DT.Info[V].Semi ? U : WParent; } } // Step #4: Explicitly define the immediate dominator of each vertex for (unsigned i = 2; i <= N; ++i) { typename GraphT::NodeType* W = DT.Vertex[i]; typename GraphT::NodeType*& WIDom = DT.IDoms[W]; if (WIDom != DT.Vertex[DT.Info[W].Semi]) WIDom = DT.IDoms[WIDom]; } if (DT.Roots.empty()) return; // Add a node for the root. This node might be the actual root, if there is // one exit block, or it may be the virtual exit (denoted by (BasicBlock *)0) // which postdominates all real exits if there are multiple exit blocks, or // an infinite loop. typename GraphT::NodeType* Root = !MultipleRoots ? DT.Roots[0] : 0; DT.DomTreeNodes[Root] = DT.RootNode = new DomTreeNodeBase(Root, 0); // Loop over all of the reachable blocks in the function... for (unsigned i = 2; i <= N; ++i) { typename GraphT::NodeType* W = DT.Vertex[i]; DomTreeNodeBase *BBNode = DT.DomTreeNodes[W]; if (BBNode) continue; // Haven't calculated this node yet? typename GraphT::NodeType* ImmDom = DT.getIDom(W); assert(ImmDom || DT.DomTreeNodes[NULL]); // Get or calculate the node for the immediate dominator DomTreeNodeBase *IDomNode = DT.getNodeForBlock(ImmDom); // Add a new tree node for this BasicBlock, and link it as a child of // IDomNode DomTreeNodeBase *C = new DomTreeNodeBase(W, IDomNode); DT.DomTreeNodes[W] = IDomNode->addChild(C); } // Free temporary memory used to construct idom's DT.IDoms.clear(); DT.Info.clear(); std::vector().swap(DT.Vertex); DT.updateDFSNumbers(); } } #endif