//===- lib/MC/ARMELFStreamer.cpp - ELF Object Output for ARM --------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file assembles .s files and emits ARM ELF .o object files. Different // from generic ELF streamer in emitting mapping symbols ($a, $t and $d) to // delimit regions of data and code. // //===----------------------------------------------------------------------===// #include "ARMRegisterInfo.h" #include "ARMUnwindOp.h" #include "ARMUnwindOpAsm.h" #include "llvm/ADT/SmallPtrSet.h" #include "llvm/ADT/Twine.h" #include "llvm/MC/MCAsmBackend.h" #include "llvm/MC/MCAssembler.h" #include "llvm/MC/MCCodeEmitter.h" #include "llvm/MC/MCContext.h" #include "llvm/MC/MCELF.h" #include "llvm/MC/MCELFStreamer.h" #include "llvm/MC/MCELFSymbolFlags.h" #include "llvm/MC/MCExpr.h" #include "llvm/MC/MCInst.h" #include "llvm/MC/MCObjectStreamer.h" #include "llvm/MC/MCRegisterInfo.h" #include "llvm/MC/MCSection.h" #include "llvm/MC/MCSectionELF.h" #include "llvm/MC/MCStreamer.h" #include "llvm/MC/MCSymbol.h" #include "llvm/MC/MCValue.h" #include "llvm/Support/Debug.h" #include "llvm/Support/ELF.h" #include "llvm/Support/raw_ostream.h" using namespace llvm; static std::string GetAEABIUnwindPersonalityName(unsigned Index) { assert(Index < NUM_PERSONALITY_INDEX && "Invalid personality index"); return (Twine("__aeabi_unwind_cpp_pr") + Twine(Index)).str(); } namespace { /// Extend the generic ELFStreamer class so that it can emit mapping symbols at /// the appropriate points in the object files. These symbols are defined in the /// ARM ELF ABI: infocenter.arm.com/help/topic/com.arm.../IHI0044D_aaelf.pdf. /// /// In brief: $a, $t or $d should be emitted at the start of each contiguous /// region of ARM code, Thumb code or data in a section. In practice, this /// emission does not rely on explicit assembler directives but on inherent /// properties of the directives doing the emission (e.g. ".byte" is data, "add /// r0, r0, r0" an instruction). /// /// As a result this system is orthogonal to the DataRegion infrastructure used /// by MachO. Beware! class ARMELFStreamer : public MCELFStreamer { public: ARMELFStreamer(MCContext &Context, MCAsmBackend &TAB, raw_ostream &OS, MCCodeEmitter *Emitter, bool IsThumb) : MCELFStreamer(SK_ARMELFStreamer, Context, TAB, OS, Emitter), IsThumb(IsThumb), MappingSymbolCounter(0), LastEMS(EMS_None) { Reset(); } ~ARMELFStreamer() {} // ARM exception handling directives virtual void EmitFnStart(); virtual void EmitFnEnd(); virtual void EmitCantUnwind(); virtual void EmitPersonality(const MCSymbol *Per); virtual void EmitHandlerData(); virtual void EmitSetFP(unsigned NewFpReg, unsigned NewSpReg, int64_t Offset = 0); virtual void EmitPad(int64_t Offset); virtual void EmitRegSave(const SmallVectorImpl &RegList, bool isVector); virtual void ChangeSection(const MCSection *Section, const MCExpr *Subsection) { // We have to keep track of the mapping symbol state of any sections we // use. Each one should start off as EMS_None, which is provided as the // default constructor by DenseMap::lookup. LastMappingSymbols[getPreviousSection().first] = LastEMS; LastEMS = LastMappingSymbols.lookup(Section); MCELFStreamer::ChangeSection(Section, Subsection); } /// This function is the one used to emit instruction data into the ELF /// streamer. We override it to add the appropriate mapping symbol if /// necessary. virtual void EmitInstruction(const MCInst& Inst) { if (IsThumb) EmitThumbMappingSymbol(); else EmitARMMappingSymbol(); MCELFStreamer::EmitInstruction(Inst); } /// This is one of the functions used to emit data into an ELF section, so the /// ARM streamer overrides it to add the appropriate mapping symbol ($d) if /// necessary. virtual void EmitBytes(StringRef Data) { EmitDataMappingSymbol(); MCELFStreamer::EmitBytes(Data); } /// This is one of the functions used to emit data into an ELF section, so the /// ARM streamer overrides it to add the appropriate mapping symbol ($d) if /// necessary. virtual void EmitValueImpl(const MCExpr *Value, unsigned Size) { EmitDataMappingSymbol(); MCELFStreamer::EmitValueImpl(Value, Size); } virtual void EmitAssemblerFlag(MCAssemblerFlag Flag) { MCELFStreamer::EmitAssemblerFlag(Flag); switch (Flag) { case MCAF_SyntaxUnified: return; // no-op here. case MCAF_Code16: IsThumb = true; return; // Change to Thumb mode case MCAF_Code32: IsThumb = false; return; // Change to ARM mode case MCAF_Code64: return; case MCAF_SubsectionsViaSymbols: return; } } static bool classof(const MCStreamer *S) { return S->getKind() == SK_ARMELFStreamer; } private: enum ElfMappingSymbol { EMS_None, EMS_ARM, EMS_Thumb, EMS_Data }; void EmitDataMappingSymbol() { if (LastEMS == EMS_Data) return; EmitMappingSymbol("$d"); LastEMS = EMS_Data; } void EmitThumbMappingSymbol() { if (LastEMS == EMS_Thumb) return; EmitMappingSymbol("$t"); LastEMS = EMS_Thumb; } void EmitARMMappingSymbol() { if (LastEMS == EMS_ARM) return; EmitMappingSymbol("$a"); LastEMS = EMS_ARM; } void EmitMappingSymbol(StringRef Name) { MCSymbol *Start = getContext().CreateTempSymbol(); EmitLabel(Start); MCSymbol *Symbol = getContext().GetOrCreateSymbol(Name + "." + Twine(MappingSymbolCounter++)); MCSymbolData &SD = getAssembler().getOrCreateSymbolData(*Symbol); MCELF::SetType(SD, ELF::STT_NOTYPE); MCELF::SetBinding(SD, ELF::STB_LOCAL); SD.setExternal(false); Symbol->setSection(*getCurrentSection().first); const MCExpr *Value = MCSymbolRefExpr::Create(Start, getContext()); Symbol->setVariableValue(Value); } void EmitThumbFunc(MCSymbol *Func) { // FIXME: Anything needed here to flag the function as thumb? getAssembler().setIsThumbFunc(Func); MCSymbolData &SD = getAssembler().getOrCreateSymbolData(*Func); SD.setFlags(SD.getFlags() | ELF_Other_ThumbFunc); } // Helper functions for ARM exception handling directives void Reset(); void EmitPersonalityFixup(StringRef Name); void FlushPendingOffset(); void FlushUnwindOpcodes(bool NoHandlerData); void SwitchToEHSection(const char *Prefix, unsigned Type, unsigned Flags, SectionKind Kind, const MCSymbol &Fn); void SwitchToExTabSection(const MCSymbol &FnStart); void SwitchToExIdxSection(const MCSymbol &FnStart); bool IsThumb; int64_t MappingSymbolCounter; DenseMap LastMappingSymbols; ElfMappingSymbol LastEMS; // ARM Exception Handling Frame Information MCSymbol *ExTab; MCSymbol *FnStart; const MCSymbol *Personality; unsigned PersonalityIndex; unsigned FPReg; // Frame pointer register int64_t FPOffset; // Offset: (final frame pointer) - (initial $sp) int64_t SPOffset; // Offset: (final $sp) - (initial $sp) int64_t PendingOffset; // Offset: (final $sp) - (emitted $sp) bool UsedFP; bool CantUnwind; SmallVector Opcodes; UnwindOpcodeAssembler UnwindOpAsm; }; } // end anonymous namespace inline void ARMELFStreamer::SwitchToEHSection(const char *Prefix, unsigned Type, unsigned Flags, SectionKind Kind, const MCSymbol &Fn) { const MCSectionELF &FnSection = static_cast(Fn.getSection()); // Create the name for new section StringRef FnSecName(FnSection.getSectionName()); SmallString<128> EHSecName(Prefix); if (FnSecName != ".text") { EHSecName += FnSecName; } // Get .ARM.extab or .ARM.exidx section const MCSectionELF *EHSection = NULL; if (const MCSymbol *Group = FnSection.getGroup()) { EHSection = getContext().getELFSection( EHSecName, Type, Flags | ELF::SHF_GROUP, Kind, FnSection.getEntrySize(), Group->getName()); } else { EHSection = getContext().getELFSection(EHSecName, Type, Flags, Kind); } assert(EHSection && "Failed to get the required EH section"); // Switch to .ARM.extab or .ARM.exidx section SwitchSection(EHSection); EmitCodeAlignment(4, 0); } inline void ARMELFStreamer::SwitchToExTabSection(const MCSymbol &FnStart) { SwitchToEHSection(".ARM.extab", ELF::SHT_PROGBITS, ELF::SHF_ALLOC, SectionKind::getDataRel(), FnStart); } inline void ARMELFStreamer::SwitchToExIdxSection(const MCSymbol &FnStart) { SwitchToEHSection(".ARM.exidx", ELF::SHT_ARM_EXIDX, ELF::SHF_ALLOC | ELF::SHF_LINK_ORDER, SectionKind::getDataRel(), FnStart); } void ARMELFStreamer::Reset() { ExTab = NULL; FnStart = NULL; Personality = NULL; PersonalityIndex = NUM_PERSONALITY_INDEX; FPReg = ARM::SP; FPOffset = 0; SPOffset = 0; PendingOffset = 0; UsedFP = false; CantUnwind = false; Opcodes.clear(); UnwindOpAsm.Reset(); } // Add the R_ARM_NONE fixup at the same position void ARMELFStreamer::EmitPersonalityFixup(StringRef Name) { const MCSymbol *PersonalitySym = getContext().GetOrCreateSymbol(Name); const MCSymbolRefExpr *PersonalityRef = MCSymbolRefExpr::Create(PersonalitySym, MCSymbolRefExpr::VK_ARM_NONE, getContext()); AddValueSymbols(PersonalityRef); MCDataFragment *DF = getOrCreateDataFragment(); DF->getFixups().push_back( MCFixup::Create(DF->getContents().size(), PersonalityRef, MCFixup::getKindForSize(4, false))); } void ARMELFStreamer::EmitFnStart() { assert(FnStart == 0); FnStart = getContext().CreateTempSymbol(); EmitLabel(FnStart); } void ARMELFStreamer::EmitFnEnd() { assert(FnStart && ".fnstart must preceeds .fnend"); // Emit unwind opcodes if there is no .handlerdata directive if (!ExTab && !CantUnwind) FlushUnwindOpcodes(true); // Emit the exception index table entry SwitchToExIdxSection(*FnStart); if (PersonalityIndex < NUM_PERSONALITY_INDEX) EmitPersonalityFixup(GetAEABIUnwindPersonalityName(PersonalityIndex)); const MCSymbolRefExpr *FnStartRef = MCSymbolRefExpr::Create(FnStart, MCSymbolRefExpr::VK_ARM_PREL31, getContext()); EmitValue(FnStartRef, 4); if (CantUnwind) { EmitIntValue(EXIDX_CANTUNWIND, 4); } else if (ExTab) { // Emit a reference to the unwind opcodes in the ".ARM.extab" section. const MCSymbolRefExpr *ExTabEntryRef = MCSymbolRefExpr::Create(ExTab, MCSymbolRefExpr::VK_ARM_PREL31, getContext()); EmitValue(ExTabEntryRef, 4); } else { // For the __aeabi_unwind_cpp_pr0, we have to emit the unwind opcodes in // the second word of exception index table entry. The size of the unwind // opcodes should always be 4 bytes. assert(PersonalityIndex == AEABI_UNWIND_CPP_PR0 && "Compact model must use __aeabi_cpp_unwind_pr0 as personality"); assert(Opcodes.size() == 4u && "Unwind opcode size for __aeabi_cpp_unwind_pr0 must be equal to 4"); EmitBytes(StringRef(reinterpret_cast(Opcodes.data()), Opcodes.size())); } // Switch to the section containing FnStart SwitchSection(&FnStart->getSection()); // Clean exception handling frame information Reset(); } void ARMELFStreamer::EmitCantUnwind() { CantUnwind = true; } void ARMELFStreamer::FlushPendingOffset() { if (PendingOffset != 0) { UnwindOpAsm.EmitSPOffset(-PendingOffset); PendingOffset = 0; } } void ARMELFStreamer::FlushUnwindOpcodes(bool NoHandlerData) { // Emit the unwind opcode to restore $sp. if (UsedFP) { const MCRegisterInfo *MRI = getContext().getRegisterInfo(); int64_t LastRegSaveSPOffset = SPOffset - PendingOffset; UnwindOpAsm.EmitSPOffset(LastRegSaveSPOffset - FPOffset); UnwindOpAsm.EmitSetSP(MRI->getEncodingValue(FPReg)); } else { FlushPendingOffset(); } // Finalize the unwind opcode sequence UnwindOpAsm.Finalize(PersonalityIndex, Opcodes); // For compact model 0, we have to emit the unwind opcodes in the .ARM.exidx // section. Thus, we don't have to create an entry in the .ARM.extab // section. if (NoHandlerData && PersonalityIndex == AEABI_UNWIND_CPP_PR0) return; // Switch to .ARM.extab section. SwitchToExTabSection(*FnStart); // Create .ARM.extab label for offset in .ARM.exidx assert(!ExTab); ExTab = getContext().CreateTempSymbol(); EmitLabel(ExTab); // Emit personality if (Personality) { const MCSymbolRefExpr *PersonalityRef = MCSymbolRefExpr::Create(Personality, MCSymbolRefExpr::VK_ARM_PREL31, getContext()); EmitValue(PersonalityRef, 4); } // Emit unwind opcodes EmitBytes(StringRef(reinterpret_cast(Opcodes.data()), Opcodes.size())); // According to ARM EHABI section 9.2, if the __aeabi_unwind_cpp_pr1() or // __aeabi_unwind_cpp_pr2() is used, then the handler data must be emitted // after the unwind opcodes. The handler data consists of several 32-bit // words, and should be terminated by zero. // // In case that the .handlerdata directive is not specified by the // programmer, we should emit zero to terminate the handler data. if (NoHandlerData && !Personality) EmitIntValue(0, 4); } void ARMELFStreamer::EmitHandlerData() { FlushUnwindOpcodes(false); } void ARMELFStreamer::EmitPersonality(const MCSymbol *Per) { Personality = Per; UnwindOpAsm.setPersonality(Per); } void ARMELFStreamer::EmitSetFP(unsigned NewFPReg, unsigned NewSPReg, int64_t Offset) { assert((NewSPReg == ARM::SP || NewSPReg == FPReg) && "the operand of .setfp directive should be either $sp or $fp"); UsedFP = true; FPReg = NewFPReg; if (NewSPReg == ARM::SP) FPOffset = SPOffset + Offset; else FPOffset += Offset; } void ARMELFStreamer::EmitPad(int64_t Offset) { // Track the change of the $sp offset SPOffset -= Offset; // To squash multiple .pad directives, we should delay the unwind opcode // until the .save, .vsave, .handlerdata, or .fnend directives. PendingOffset -= Offset; } void ARMELFStreamer::EmitRegSave(const SmallVectorImpl &RegList, bool IsVector) { // Collect the registers in the register list unsigned Count = 0; uint32_t Mask = 0; const MCRegisterInfo *MRI = getContext().getRegisterInfo(); for (size_t i = 0; i < RegList.size(); ++i) { unsigned Reg = MRI->getEncodingValue(RegList[i]); assert(Reg < (IsVector ? 32U : 16U) && "Register out of range"); unsigned Bit = (1u << Reg); if ((Mask & Bit) == 0) { Mask |= Bit; ++Count; } } // Track the change the $sp offset: For the .save directive, the // corresponding push instruction will decrease the $sp by (4 * Count). // For the .vsave directive, the corresponding vpush instruction will // decrease $sp by (8 * Count). SPOffset -= Count * (IsVector ? 8 : 4); // Emit the opcode FlushPendingOffset(); if (IsVector) UnwindOpAsm.EmitVFPRegSave(Mask); else UnwindOpAsm.EmitRegSave(Mask); } namespace llvm { MCELFStreamer* createARMELFStreamer(MCContext &Context, MCAsmBackend &TAB, raw_ostream &OS, MCCodeEmitter *Emitter, bool RelaxAll, bool NoExecStack, bool IsThumb) { ARMELFStreamer *S = new ARMELFStreamer(Context, TAB, OS, Emitter, IsThumb); if (RelaxAll) S->getAssembler().setRelaxAll(true); if (NoExecStack) S->getAssembler().setNoExecStack(true); return S; } }