//===- Reader.cpp - Code to read bytecode files ---------------------------===// // // This library implements the functionality defined in llvm/Bytecode/Reader.h // // Note that this library should be as fast as possible, reentrant, and // threadsafe!! // // TODO: Return error messages to caller instead of printing them out directly. // TODO: Allow passing in an option to ignore the symbol table // //===----------------------------------------------------------------------===// #include "ReaderInternals.h" #include "llvm/Bytecode/Reader.h" #include "llvm/Bytecode/Format.h" #include "llvm/Module.h" #include "llvm/Constants.h" #include "llvm/iPHINode.h" #include "llvm/iOther.h" #include #include #include #include #include #include bool BytecodeParser::getTypeSlot(const Type *Ty, unsigned &Slot) { if (Ty->isPrimitiveType()) { Slot = Ty->getPrimitiveID(); } else { // Check the function level types first... TypeValuesListTy::iterator I = find(FunctionTypeValues.begin(), FunctionTypeValues.end(), Ty); if (I != FunctionTypeValues.end()) { Slot = FirstDerivedTyID+ModuleTypeValues.size()+ (&*I - &FunctionTypeValues[0]); } else { I = find(ModuleTypeValues.begin(), ModuleTypeValues.end(), Ty); if (I == ModuleTypeValues.end()) return true; // Didn't find type! Slot = FirstDerivedTyID + (&*I - &ModuleTypeValues[0]); } } //cerr << "getTypeSlot '" << Ty->getName() << "' = " << Slot << "\n"; return false; } const Type *BytecodeParser::getType(unsigned ID) { if (ID < Type::NumPrimitiveIDs) { const Type *T = Type::getPrimitiveType((Type::PrimitiveID)ID); if (T) return T; } //cerr << "Looking up Type ID: " << ID << "\n"; const Value *V = getValue(Type::TypeTy, ID, false); return cast_or_null(V); } int BytecodeParser::insertValue(Value *Val, ValueTable &ValueTab) { assert((!HasImplicitZeroInitializer || !isa(Val) || Val->getType()->isPrimitiveType() || !cast(Val)->isNullValue()) && "Cannot read null values from bytecode!"); unsigned type; if (getTypeSlot(Val->getType(), type)) return -1; assert(type != Type::TypeTyID && "Types should never be insertValue'd!"); if (ValueTab.size() <= type) { unsigned OldSize = ValueTab.size(); ValueTab.resize(type+1); while (OldSize != type+1) ValueTab[OldSize++] = new ValueList(); } //cerr << "insertValue Values[" << type << "][" << ValueTab[type].size() // << "] = " << Val << "\n"; ValueTab[type]->push_back(Val); bool HasOffset = HasImplicitZeroInitializer && !Val->getType()->isPrimitiveType(); return ValueTab[type]->size()-1 + HasOffset; } void BytecodeParser::setValueTo(ValueTable &ValueTab, unsigned Slot, Value *Val) { assert(&ValueTab == &ModuleValues && "Can only setValueTo on Module values!"); unsigned type; if (getTypeSlot(Val->getType(), type)) assert(0 && "getTypeSlot failed!"); assert((!HasImplicitZeroInitializer || Slot != 0) && "Cannot change zero init"); assert(type < ValueTab.size() && Slot <= ValueTab[type]->size()); ValueTab[type]->setOperand(Slot-HasImplicitZeroInitializer, Val); } Value *BytecodeParser::getValue(const Type *Ty, unsigned oNum, bool Create) { unsigned Num = oNum; unsigned type; // The type plane it lives in... if (getTypeSlot(Ty, type)) return 0; if (type == Type::TypeTyID) { // The 'type' plane has implicit values assert(Create == false); if (Num < Type::NumPrimitiveIDs) { const Type *T = Type::getPrimitiveType((Type::PrimitiveID)Num); if (T) return (Value*)T; // Asked for a primitive type... } // Otherwise, derived types need offset... Num -= FirstDerivedTyID; // Is it a module level type? if (Num < ModuleTypeValues.size()) return (Value*)ModuleTypeValues[Num].get(); // Nope, is it a function level type? Num -= ModuleTypeValues.size(); if (Num < FunctionTypeValues.size()) return (Value*)FunctionTypeValues[Num].get(); return 0; } if (HasImplicitZeroInitializer && type >= FirstDerivedTyID) { if (Num == 0) return Constant::getNullValue(Ty); --Num; } if (type < ModuleValues.size()) { if (Num < ModuleValues[type]->size()) return ModuleValues[type]->getOperand(Num); Num -= ModuleValues[type]->size(); } if (Values.size() > type && Values[type]->size() > Num) return Values[type]->getOperand(Num); if (!Create) return 0; // Do not create a placeholder? Value *d = 0; switch (Ty->getPrimitiveID()) { case Type::LabelTyID: d = new BBPHolder(Ty, oNum); break; default: d = new ValPHolder(Ty, oNum); break; } assert(d != 0 && "How did we not make something?"); if (insertValue(d, LateResolveValues) == -1) return 0; return d; } /// getConstantValue - Just like getValue, except that it returns a null pointer /// only on error. It always returns a constant (meaning that if the value is /// defined, but is not a constant, that is an error). If the specified /// constant hasn't been parsed yet, a placeholder is defined and used. Later, /// after the real value is parsed, the placeholder is eliminated. /// Constant *BytecodeParser::getConstantValue(const Type *Ty, unsigned Slot) { if (Value *V = getValue(Ty, Slot, false)) return dyn_cast(V); // If we already have the value parsed... std::pair Key(Ty, Slot); GlobalRefsType::iterator I = GlobalRefs.lower_bound(Key); if (I != GlobalRefs.end() && I->first == Key) { BCR_TRACE(5, "Previous forward ref found!\n"); return cast(I->second); } else { // Create a placeholder for the constant reference and // keep track of the fact that we have a forward ref to recycle it BCR_TRACE(5, "Creating new forward ref to a constant!\n"); Constant *C = new ConstPHolder(Ty, Slot); // Keep track of the fact that we have a forward ref to recycle it GlobalRefs.insert(I, std::make_pair(Key, C)); return C; } } bool BytecodeParser::postResolveValues(ValueTable &ValTab) { bool Error = false; while (!ValTab.empty()) { ValueList &DL = *ValTab.back(); ValTab.pop_back(); while (!DL.empty()) { Value *D = DL.back(); unsigned IDNumber = getValueIDNumberFromPlaceHolder(D); DL.pop_back(); Value *NewDef = getValue(D->getType(), IDNumber, false); if (NewDef == 0) { Error = true; // Unresolved thinger std::cerr << "Unresolvable reference found: <" << *D->getType() << ">:" << IDNumber <<"!\n"; } else { // Fixup all of the uses of this placeholder def... D->replaceAllUsesWith(NewDef); // Now that all the uses are gone, delete the placeholder... // If we couldn't find a def (error case), then leak a little delete D; // memory, 'cause otherwise we can't remove all uses! } } delete &DL; } return Error; } bool BytecodeParser::ParseBasicBlock(const uchar *&Buf, const uchar *EndBuf, BasicBlock *&BB) { BB = new BasicBlock(); while (Buf < EndBuf) { Instruction *Inst; if (ParseInstruction(Buf, EndBuf, Inst, /*HACK*/BB)) { delete BB; return true; } if (Inst == 0) { delete BB; return true; } if (insertValue(Inst, Values) == -1) { delete BB; return true; } BB->getInstList().push_back(Inst); BCR_TRACE(4, Inst); } return false; } bool BytecodeParser::ParseSymbolTable(const uchar *&Buf, const uchar *EndBuf, SymbolTable *ST) { while (Buf < EndBuf) { // Symtab block header: [num entries][type id number] unsigned NumEntries, Typ; if (read_vbr(Buf, EndBuf, NumEntries) || read_vbr(Buf, EndBuf, Typ)) return true; const Type *Ty = getType(Typ); if (Ty == 0) return true; BCR_TRACE(3, "Plane Type: '" << Ty << "' with " << NumEntries << " entries\n"); for (unsigned i = 0; i < NumEntries; ++i) { // Symtab entry: [def slot #][name] unsigned slot; if (read_vbr(Buf, EndBuf, slot)) return true; std::string Name; if (read(Buf, EndBuf, Name, false)) // Not aligned... return true; Value *V = getValue(Ty, slot, false); // Find mapping... if (V == 0) { BCR_TRACE(3, "FAILED LOOKUP: Slot #" << slot << "\n"); return true; } BCR_TRACE(4, "Map: '" << Name << "' to #" << slot << ":" << *V; if (!isa(V)) std::cerr << "\n"); V->setName(Name, ST); } } if (Buf > EndBuf) return true; return false; } void BytecodeParser::ResolveReferencesToValue(Value *NewV, unsigned Slot) { GlobalRefsType::iterator I = GlobalRefs.find(std::make_pair(NewV->getType(), Slot)); if (I == GlobalRefs.end()) return; // Never forward referenced? BCR_TRACE(3, "Mutating forward refs!\n"); Value *VPH = I->second; // Get the placeholder... VPH->replaceAllUsesWith(NewV); // If this is a global variable being resolved, remove the placeholder from // the module... if (GlobalValue* GVal = dyn_cast(NewV)) GVal->getParent()->getGlobalList().remove(cast(VPH)); delete VPH; // Delete the old placeholder GlobalRefs.erase(I); // Remove the map entry for it } bool BytecodeParser::ParseFunction(const uchar *&Buf, const uchar *EndBuf) { // Clear out the local values table... if (FunctionSignatureList.empty()) { Error = "Function found, but FunctionSignatureList empty!"; return true; // Unexpected function! } unsigned isInternal; if (read_vbr(Buf, EndBuf, isInternal)) return true; Function *F = FunctionSignatureList.back().first; unsigned FunctionSlot = FunctionSignatureList.back().second; FunctionSignatureList.pop_back(); F->setInternalLinkage(isInternal != 0); const FunctionType::ParamTypes &Params =F->getFunctionType()->getParamTypes(); Function::aiterator AI = F->abegin(); for (FunctionType::ParamTypes::const_iterator It = Params.begin(); It != Params.end(); ++It, ++AI) { if (insertValue(AI, Values) == -1) { Error = "Error reading function arguments!\n"; return true; } } while (Buf < EndBuf) { unsigned Type, Size; const unsigned char *OldBuf = Buf; if (readBlock(Buf, EndBuf, Type, Size)) { Error = "Error reading Function level block!"; return true; } switch (Type) { case BytecodeFormat::ConstantPool: BCR_TRACE(2, "BLOCK BytecodeFormat::ConstantPool: {\n"); if (ParseConstantPool(Buf, Buf+Size, Values, FunctionTypeValues)) return true; break; case BytecodeFormat::BasicBlock: { BCR_TRACE(2, "BLOCK BytecodeFormat::BasicBlock: {\n"); BasicBlock *BB; if (ParseBasicBlock(Buf, Buf+Size, BB) || insertValue(BB, Values) == -1) return true; // Parse error... :( F->getBasicBlockList().push_back(BB); break; } case BytecodeFormat::SymbolTable: BCR_TRACE(2, "BLOCK BytecodeFormat::SymbolTable: {\n"); if (ParseSymbolTable(Buf, Buf+Size, &F->getSymbolTable())) return true; break; default: BCR_TRACE(2, "BLOCK :ignored! {\n"); Buf += Size; if (OldBuf > Buf) return true; // Wrap around! break; } BCR_TRACE(2, "} end block\n"); if (align32(Buf, EndBuf)) { Error = "Error aligning Function level block!"; return true; // Malformed bc file, read past end of block. } } if (postResolveValues(LateResolveValues)) { Error = "Error resolving function values!"; return true; // Unresolvable references! } ResolveReferencesToValue(F, FunctionSlot); // Clear out function level types... FunctionTypeValues.clear(); freeTable(Values); return false; } bool BytecodeParser::ParseModuleGlobalInfo(const uchar *&Buf, const uchar *End){ if (!FunctionSignatureList.empty()) { Error = "Two ModuleGlobalInfo packets found!"; return true; // Two ModuleGlobal blocks? } // Read global variables... unsigned VarType; if (read_vbr(Buf, End, VarType)) return true; while (VarType != Type::VoidTyID) { // List is terminated by Void // VarType Fields: bit0 = isConstant, bit1 = hasInitializer, // bit2 = isInternal, bit3+ = slot# const Type *Ty = getType(VarType >> 3); if (!Ty || !isa(Ty)) { Error = "Global not pointer type! Ty = " + Ty->getDescription(); return true; } const Type *ElTy = cast(Ty)->getElementType(); // Create the global variable... GlobalVariable *GV = new GlobalVariable(ElTy, VarType & 1, VarType & 4, 0, "", TheModule); int DestSlot = insertValue(GV, ModuleValues); if (DestSlot == -1) return true; BCR_TRACE(2, "Global Variable of type: " << *Ty << "\n"); ResolveReferencesToValue(GV, (unsigned)DestSlot); if (VarType & 2) { // Does it have an initalizer? unsigned InitSlot; if (read_vbr(Buf, End, InitSlot)) return true; GlobalInits.push_back(std::make_pair(GV, InitSlot)); } if (read_vbr(Buf, End, VarType)) return true; } // Read the function objects for all of the functions that are coming unsigned FnSignature; if (read_vbr(Buf, End, FnSignature)) return true; while (FnSignature != Type::VoidTyID) { // List is terminated by Void const Type *Ty = getType(FnSignature); if (!Ty || !isa(Ty) || !isa(cast(Ty)->getElementType())) { Error = "Function not ptr to func type! Ty = " + Ty->getDescription(); return true; } // We create functions by passing the underlying FunctionType to create... Ty = cast(Ty)->getElementType(); // When the ModuleGlobalInfo section is read, we load the type of each // function and the 'ModuleValues' slot that it lands in. We then load a // placeholder into its slot to reserve it. When the function is loaded, // this placeholder is replaced. // Insert the placeholder... Function *Func = new Function(cast(Ty), false, "", TheModule); int DestSlot = insertValue(Func, ModuleValues); if (DestSlot == -1) return true; ResolveReferencesToValue(Func, (unsigned)DestSlot); // Keep track of this information in a list that is emptied as functions are // loaded... // FunctionSignatureList.push_back(std::make_pair(Func, DestSlot)); if (read_vbr(Buf, End, FnSignature)) return true; BCR_TRACE(2, "Function of type: " << Ty << "\n"); } if (align32(Buf, End)) return true; // Now that the function signature list is set up, reverse it so that we can // remove elements efficiently from the back of the vector. std::reverse(FunctionSignatureList.begin(), FunctionSignatureList.end()); // This is for future proofing... in the future extra fields may be added that // we don't understand, so we transparently ignore them. // Buf = End; return false; } bool BytecodeParser::ParseVersionInfo(const uchar *&Buf, const uchar *EndBuf) { unsigned Version; if (read_vbr(Buf, EndBuf, Version)) return true; // Unpack version number: low four bits are for flags, top bits = version isBigEndian = Version & 1; hasLongPointers = Version & 2; RevisionNum = Version >> 4; HasImplicitZeroInitializer = true; switch (RevisionNum) { case 0: // Initial revision // Version #0 didn't have any of the flags stored correctly, and in fact as // only valid with a 14 in the flags values. Also, it does not support // encoding zero initializers for arrays compactly. // if (Version != 14) return true; // Unknown revision 0 flags? FirstDerivedTyID = 14; HasImplicitZeroInitializer = false; isBigEndian = hasLongPointers = true; break; case 1: // Version #1 has two bit fields: isBigEndian and hasLongPointers FirstDerivedTyID = 14; break; default: Error = "Unknown bytecode version number!"; return true; } BCR_TRACE(1, "Bytecode Rev = " << (unsigned)RevisionNum << "\n"); BCR_TRACE(1, "BigEndian/LongPointers = " << isBigEndian << "," << hasLongPointers << "\n"); BCR_TRACE(1, "HasImplicitZeroInit = " << HasImplicitZeroInitializer << "\n"); return false; } bool BytecodeParser::ParseModule(const uchar *Buf, const uchar *EndBuf) { unsigned Type, Size; if (readBlock(Buf, EndBuf, Type, Size)) return true; if (Type != BytecodeFormat::Module || Buf+Size != EndBuf) { Error = "Expected Module packet!"; return true; // Hrm, not a class? } BCR_TRACE(0, "BLOCK BytecodeFormat::Module: {\n"); FunctionSignatureList.clear(); // Just in case... // Read into instance variables... if (ParseVersionInfo(Buf, EndBuf)) return true; if (align32(Buf, EndBuf)) return true; while (Buf < EndBuf) { const unsigned char *OldBuf = Buf; if (readBlock(Buf, EndBuf, Type, Size)) return true; switch (Type) { case BytecodeFormat::GlobalTypePlane: BCR_TRACE(1, "BLOCK BytecodeFormat::GlobalTypePlane: {\n"); if (ParseGlobalTypes(Buf, Buf+Size)) return true; break; case BytecodeFormat::ModuleGlobalInfo: BCR_TRACE(1, "BLOCK BytecodeFormat::ModuleGlobalInfo: {\n"); if (ParseModuleGlobalInfo(Buf, Buf+Size)) return true; break; case BytecodeFormat::ConstantPool: BCR_TRACE(1, "BLOCK BytecodeFormat::ConstantPool: {\n"); if (ParseConstantPool(Buf, Buf+Size, ModuleValues, ModuleTypeValues)) return true; break; case BytecodeFormat::Function: { BCR_TRACE(1, "BLOCK BytecodeFormat::Function: {\n"); if (ParseFunction(Buf, Buf+Size)) return true; // Error parsing function break; } case BytecodeFormat::SymbolTable: BCR_TRACE(1, "BLOCK BytecodeFormat::SymbolTable: {\n"); if (ParseSymbolTable(Buf, Buf+Size, &TheModule->getSymbolTable())) return true; break; default: Error = "Expected Module Block!"; Buf += Size; if (OldBuf > Buf) return true; // Wrap around! break; } BCR_TRACE(1, "} end block\n"); if (align32(Buf, EndBuf)) return true; } // After the module constant pool has been read, we can safely initialize // global variables... while (!GlobalInits.empty()) { GlobalVariable *GV = GlobalInits.back().first; unsigned Slot = GlobalInits.back().second; GlobalInits.pop_back(); // Look up the initializer value... if (Value *V = getValue(GV->getType()->getElementType(), Slot, false)) { if (GV->hasInitializer()) return true; GV->setInitializer(cast(V)); } else return true; } if (!FunctionSignatureList.empty()) { // Expected more functions! Error = "Function expected, but bytecode stream at end!"; return true; } BCR_TRACE(0, "} end block\n\n"); return false; } static inline Module *Error(std::string *ErrorStr, const char *Message) { if (ErrorStr) *ErrorStr = Message; return 0; } Module *BytecodeParser::ParseBytecode(const uchar *Buf, const uchar *EndBuf) { unsigned Sig; // Read and check signature... if (read(Buf, EndBuf, Sig) || Sig != ('l' | ('l' << 8) | ('v' << 16) | 'm' << 24)) return ::Error(&Error, "Invalid bytecode signature!"); TheModule = new Module(); if (ParseModule(Buf, EndBuf)) { delete TheModule; TheModule = 0; } return TheModule; } Module *ParseBytecodeBuffer(const unsigned char *Buffer, unsigned Length, std::string *ErrorStr) { BytecodeParser Parser; Module *R = Parser.ParseBytecode(Buffer, Buffer+Length); if (ErrorStr) *ErrorStr = Parser.getError(); return R; } /// FDHandle - Simple handle class to make sure a file descriptor gets closed /// when the object is destroyed. class FDHandle { int FD; public: FDHandle(int fd) : FD(fd) {} operator int() const { return FD; } ~FDHandle() { if (FD != -1) close(FD); } }; // Parse and return a class file... // Module *ParseBytecodeFile(const std::string &Filename, std::string *ErrorStr) { Module *Result = 0; if (Filename != std::string("-")) { // Read from a file... FDHandle FD = open(Filename.c_str(), O_RDONLY); if (FD == -1) return Error(ErrorStr, "Error opening file!"); // Stat the file to get its length... struct stat StatBuf; if (fstat(FD, &StatBuf) == -1 || StatBuf.st_size == 0) return Error(ErrorStr, "Error stat'ing file!"); // mmap in the file all at once... int Length = StatBuf.st_size; unsigned char *Buffer = (unsigned char*)mmap(0, Length, PROT_READ, MAP_PRIVATE, FD, 0); if (Buffer == (unsigned char*)MAP_FAILED) return Error(ErrorStr, "Error mmapping file!"); // Parse the bytecode we mmapped in Result = ParseBytecodeBuffer(Buffer, Length, ErrorStr); // Unmmap the bytecode... munmap((char*)Buffer, Length); } else { // Read from stdin int BlockSize; uchar Buffer[4096*4]; std::vector FileData; // Read in all of the data from stdin, we cannot mmap stdin... while ((BlockSize = read(0 /*stdin*/, Buffer, 4096*4))) { if (BlockSize == -1) return Error(ErrorStr, "Error reading from stdin!"); FileData.insert(FileData.end(), Buffer, Buffer+BlockSize); } if (FileData.empty()) return Error(ErrorStr, "Standard Input empty!"); #define ALIGN_PTRS 0 #if ALIGN_PTRS uchar *Buf = (uchar*)mmap(0, FileData.size(), PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0); assert((Buf != (uchar*)-1) && "mmap returned error!"); memcpy(Buf, &FileData[0], FileData.size()); #else unsigned char *Buf = &FileData[0]; #endif Result = ParseBytecodeBuffer(Buf, FileData.size(), ErrorStr); #if ALIGN_PTRS munmap((char*)Buf, FileData.size()); // Free mmap'd data area #endif } return Result; }