//===- llvm/ADT/SmallBitVector.h - 'Normally small' bit vectors -*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements the SmallBitVector class. // //===----------------------------------------------------------------------===// #ifndef LLVM_ADT_SMALLBITVECTOR_H #define LLVM_ADT_SMALLBITVECTOR_H #include "llvm/ADT/BitVector.h" #include "llvm/ADT/PointerIntPair.h" #include "llvm/Support/MathExtras.h" #include namespace llvm { /// SmallBitVector - This is a 'bitvector' (really, a variable-sized bit array), /// optimized for the case when the array is small. It contains one /// pointer-sized field, which is directly used as a plain collection of bits /// when possible, or as a pointer to a larger heap-allocated array when /// necessary. This allows normal "small" cases to be fast without losing /// generality for large inputs. /// class SmallBitVector { // TODO: In "large" mode, a pointer to a BitVector is used, leading to an // unnecessary level of indirection. It would be more efficient to use a // pointer to memory containing size, allocation size, and the array of bits. PointerIntPair X; // The number of bits in this class. static const size_t NumBaseBits = sizeof(uintptr_t) * CHAR_BIT; // One bit is used to discriminate between small and large mode. The // remaining bits are used for the small-mode representation. static const size_t SmallNumRawBits = NumBaseBits - 1; // A few more bits are used to store the size of the bit set in small mode. // Theoretically this is a ceil-log2. These bits are encoded in the most // significant bits of the raw bits. static const size_t SmallNumSizeBits = (NumBaseBits == 32 ? 5 : NumBaseBits == 64 ? 6 : SmallNumRawBits); // The remaining bits are used to store the actual set in small mode. static const size_t SmallNumDataBits = SmallNumRawBits - SmallNumSizeBits; bool isSmall() const { return X.getInt(); } void switchToSmall(uintptr_t NewSmallBits, size_t NewSize) { X.setInt(true); setSmallSize(NewSize); setSmallBits(NewSmallBits); } void switchToLarge(BitVector *BV) { X.setInt(false); X.setPointer(BV); } // Return all the bits used for the "small" representation; this includes // bits for the size as well as the element bits. uintptr_t getSmallRawBits() const { return reinterpret_cast(X.getPointer()) >> 1; } void setSmallRawBits(uintptr_t NewRawBits) { return X.setPointer(reinterpret_cast(NewRawBits << 1)); } // Return the size. size_t getSmallSize() const { return getSmallRawBits() >> SmallNumDataBits; } void setSmallSize(size_t Size) { setSmallRawBits(getSmallBits() | (Size << SmallNumDataBits)); } // Return the element bits. uintptr_t getSmallBits() const { return getSmallRawBits() & ~(~uintptr_t(0) << SmallNumDataBits); } void setSmallBits(uintptr_t NewBits) { setSmallRawBits((getSmallRawBits() & (~uintptr_t(0) << SmallNumDataBits)) | (NewBits & ~(~uintptr_t(0) << getSmallSize()))); } public: /// SmallBitVector default ctor - Creates an empty bitvector. SmallBitVector() : X(0, 1) {} /// SmallBitVector ctor - Creates a bitvector of specified number of bits. All /// bits are initialized to the specified value. explicit SmallBitVector(unsigned s, bool t = false) : X(0, 1) { if (s <= SmallNumRawBits) switchToSmall(t ? ~uintptr_t(0) : 0, s); else switchToLarge(new BitVector(s, t)); } /// SmallBitVector copy ctor. SmallBitVector(const SmallBitVector &RHS) { if (RHS.isSmall()) X = RHS.X; else switchToLarge(new BitVector(*RHS.X.getPointer())); } ~SmallBitVector() { if (!isSmall()) delete X.getPointer(); } /// empty - Tests whether there are no bits in this bitvector. bool empty() const { return isSmall() ? getSmallSize() == 0 : X.getPointer()->empty(); } /// size - Returns the number of bits in this bitvector. size_t size() const { return isSmall() ? getSmallSize() : X.getPointer()->size(); } /// count - Returns the number of bits which are set. unsigned count() const { if (isSmall()) { uintptr_t Bits = getSmallBits(); if (sizeof(uintptr_t) * CHAR_BIT == 32) return CountPopulation_32(Bits); if (sizeof(uintptr_t) * CHAR_BIT == 64) return CountPopulation_64(Bits); assert(0 && "Unsupported!"); } return X.getPointer()->count(); } /// any - Returns true if any bit is set. bool any() const { if (isSmall()) return getSmallBits() != 0; return X.getPointer()->any(); } /// none - Returns true if none of the bits are set. bool none() const { if (isSmall()) return getSmallBits() == 0; return X.getPointer()->none(); } /// find_first - Returns the index of the first set bit, -1 if none /// of the bits are set. int find_first() const { if (isSmall()) { uintptr_t Bits = getSmallBits(); if (sizeof(uintptr_t) * CHAR_BIT == 32) return CountTrailingZeros_32(Bits); if (sizeof(uintptr_t) * CHAR_BIT == 64) return CountTrailingZeros_64(Bits); assert(0 && "Unsupported!"); } return X.getPointer()->find_first(); } /// find_next - Returns the index of the next set bit following the /// "Prev" bit. Returns -1 if the next set bit is not found. int find_next(unsigned Prev) const { if (isSmall()) { uintptr_t Bits = getSmallBits(); // Mask off previous bits. Bits &= ~uintptr_t(0) << Prev; if (sizeof(uintptr_t) * CHAR_BIT == 32) return CountTrailingZeros_32(Bits); if (sizeof(uintptr_t) * CHAR_BIT == 64) return CountTrailingZeros_64(Bits); assert(0 && "Unsupported!"); } return X.getPointer()->find_next(Prev); } /// clear - Clear all bits. void clear() { if (!isSmall()) delete X.getPointer(); switchToSmall(0, 0); } /// resize - Grow or shrink the bitvector. void resize(unsigned N, bool t = false) { if (!isSmall()) { X.getPointer()->resize(N, t); } else if (getSmallSize() >= N) { setSmallSize(N); setSmallBits(getSmallBits()); } else { BitVector *BV = new BitVector(N, t); uintptr_t OldBits = getSmallBits(); for (size_t i = 0, e = getSmallSize(); i != e; ++i) (*BV)[i] = (OldBits >> i) & 1; switchToLarge(BV); } } void reserve(unsigned N) { if (isSmall()) { if (N > SmallNumDataBits) { uintptr_t OldBits = getSmallRawBits(); size_t SmallSize = getSmallSize(); BitVector *BV = new BitVector(SmallSize); for (size_t i = 0; i < SmallSize; ++i) if ((OldBits >> i) & 1) BV->set(i); BV->reserve(N); switchToLarge(BV); } } else { X.getPointer()->reserve(N); } } // Set, reset, flip SmallBitVector &set() { if (isSmall()) setSmallBits(~uintptr_t(0)); else X.getPointer()->set(); return *this; } SmallBitVector &set(unsigned Idx) { if (isSmall()) setSmallBits(getSmallBits() | (uintptr_t(1) << Idx)); else X.getPointer()->set(Idx); return *this; } SmallBitVector &reset() { if (isSmall()) setSmallBits(0); else X.getPointer()->reset(); return *this; } SmallBitVector &reset(unsigned Idx) { if (isSmall()) setSmallBits(getSmallBits() & ~(uintptr_t(1) << Idx)); else X.getPointer()->reset(Idx); return *this; } SmallBitVector &flip() { if (isSmall()) setSmallBits(~getSmallBits()); else X.getPointer()->flip(); return *this; } SmallBitVector &flip(unsigned Idx) { if (isSmall()) setSmallBits(getSmallBits() ^ (uintptr_t(1) << Idx)); else X.getPointer()->flip(Idx); return *this; } // No argument flip. SmallBitVector operator~() const { return SmallBitVector(*this).flip(); } // Indexing. // TODO: Add an index operator which returns a "reference" (proxy class). bool operator[](unsigned Idx) const { assert(Idx < size() && "Out-of-bounds Bit access."); if (isSmall()) return ((getSmallBits() >> Idx) & 1) != 0; return X.getPointer()->operator[](Idx); } bool test(unsigned Idx) const { return (*this)[Idx]; } // Comparison operators. bool operator==(const SmallBitVector &RHS) const { if (size() != RHS.size()) return false; if (isSmall()) return getSmallBits() == RHS.getSmallBits(); else return *X.getPointer() == *RHS.X.getPointer(); } bool operator!=(const SmallBitVector &RHS) const { return !(*this == RHS); } // Intersection, union, disjoint union. SmallBitVector &operator&=(const SmallBitVector &RHS) { resize(std::max(size(), RHS.size())); if (isSmall()) setSmallBits(getSmallBits() & RHS.getSmallBits()); else if (!RHS.isSmall()) X.getPointer()->operator&=(*RHS.X.getPointer()); else { SmallBitVector Copy = RHS; Copy.resize(size()); X.getPointer()->operator&=(*Copy.X.getPointer()); } return *this; } SmallBitVector &operator|=(const SmallBitVector &RHS) { resize(std::max(size(), RHS.size())); if (isSmall()) setSmallBits(getSmallBits() | RHS.getSmallBits()); else if (!RHS.isSmall()) X.getPointer()->operator|=(*RHS.X.getPointer()); else { SmallBitVector Copy = RHS; Copy.resize(size()); X.getPointer()->operator|=(*Copy.X.getPointer()); } return *this; } SmallBitVector &operator^=(const SmallBitVector &RHS) { resize(std::max(size(), RHS.size())); if (isSmall()) setSmallBits(getSmallBits() ^ RHS.getSmallBits()); else if (!RHS.isSmall()) X.getPointer()->operator^=(*RHS.X.getPointer()); else { SmallBitVector Copy = RHS; Copy.resize(size()); X.getPointer()->operator^=(*Copy.X.getPointer()); } return *this; } // Assignment operator. const SmallBitVector &operator=(const SmallBitVector &RHS) { if (isSmall()) { if (RHS.isSmall()) X = RHS.X; else switchToLarge(new BitVector(*RHS.X.getPointer())); } else { if (!RHS.isSmall()) *X.getPointer() = *RHS.X.getPointer(); else { delete X.getPointer(); X = RHS.X; } } return *this; } void swap(SmallBitVector &RHS) { std::swap(X, RHS.X); } }; inline SmallBitVector operator&(const SmallBitVector &LHS, const SmallBitVector &RHS) { SmallBitVector Result(LHS); Result &= RHS; return Result; } inline SmallBitVector operator|(const SmallBitVector &LHS, const SmallBitVector &RHS) { SmallBitVector Result(LHS); Result |= RHS; return Result; } inline SmallBitVector operator^(const SmallBitVector &LHS, const SmallBitVector &RHS) { SmallBitVector Result(LHS); Result ^= RHS; return Result; } } // End llvm namespace namespace std { /// Implement std::swap in terms of BitVector swap. inline void swap(llvm::SmallBitVector &LHS, llvm::SmallBitVector &RHS) { LHS.swap(RHS); } } #endif