//===-- Instructions.cpp - Implement the LLVM instructions ----------------===// // // The LLVM Compiler Infrastructure // // This file was developed by the LLVM research group and is distributed under // the University of Illinois Open Source License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements the LLVM instructions... // //===----------------------------------------------------------------------===// #include "llvm/BasicBlock.h" #include "llvm/Constants.h" #include "llvm/DerivedTypes.h" #include "llvm/Function.h" #include "llvm/Instructions.h" #include "llvm/Support/CallSite.h" using namespace llvm; //===----------------------------------------------------------------------===// // CallInst Implementation //===----------------------------------------------------------------------===// void CallInst::init(Value *Func, const std::vector &Params) { Operands.reserve(1+Params.size()); Operands.push_back(Use(Func, this)); const FunctionType *FTy = cast(cast(Func->getType())->getElementType()); assert((Params.size() == FTy->getNumParams() || (FTy->isVarArg() && Params.size() > FTy->getNumParams())) && "Calling a function with bad signature"); for (unsigned i = 0; i != Params.size(); i++) Operands.push_back(Use(Params[i], this)); } void CallInst::init(Value *Func, Value *Actual1, Value *Actual2) { Operands.reserve(3); Operands.push_back(Use(Func, this)); const FunctionType *MTy = cast(cast(Func->getType())->getElementType()); assert((MTy->getNumParams() == 2 || (MTy->isVarArg() && MTy->getNumParams() == 0)) && "Calling a function with bad signature"); Operands.push_back(Use(Actual1, this)); Operands.push_back(Use(Actual2, this)); } void CallInst::init(Value *Func, Value *Actual) { Operands.reserve(2); Operands.push_back(Use(Func, this)); const FunctionType *MTy = cast(cast(Func->getType())->getElementType()); assert((MTy->getNumParams() == 1 || (MTy->isVarArg() && MTy->getNumParams() == 0)) && "Calling a function with bad signature"); Operands.push_back(Use(Actual, this)); } void CallInst::init(Value *Func) { Operands.reserve(1); Operands.push_back(Use(Func, this)); const FunctionType *MTy = cast(cast(Func->getType())->getElementType()); assert(MTy->getNumParams() == 0 && "Calling a function with bad signature"); } CallInst::CallInst(Value *Func, const std::vector &Params, const std::string &Name, Instruction *InsertBefore) : Instruction(cast(cast(Func->getType()) ->getElementType())->getReturnType(), Instruction::Call, Name, InsertBefore) { init(Func, Params); } CallInst::CallInst(Value *Func, const std::vector &Params, const std::string &Name, BasicBlock *InsertAtEnd) : Instruction(cast(cast(Func->getType()) ->getElementType())->getReturnType(), Instruction::Call, Name, InsertAtEnd) { init(Func, Params); } CallInst::CallInst(Value *Func, Value *Actual1, Value *Actual2, const std::string &Name, Instruction *InsertBefore) : Instruction(cast(cast(Func->getType()) ->getElementType())->getReturnType(), Instruction::Call, Name, InsertBefore) { init(Func, Actual1, Actual2); } CallInst::CallInst(Value *Func, Value *Actual1, Value *Actual2, const std::string &Name, BasicBlock *InsertAtEnd) : Instruction(cast(cast(Func->getType()) ->getElementType())->getReturnType(), Instruction::Call, Name, InsertAtEnd) { init(Func, Actual1, Actual2); } CallInst::CallInst(Value *Func, Value* Actual, const std::string &Name, Instruction *InsertBefore) : Instruction(cast(cast(Func->getType()) ->getElementType())->getReturnType(), Instruction::Call, Name, InsertBefore) { init(Func, Actual); } CallInst::CallInst(Value *Func, Value* Actual, const std::string &Name, BasicBlock *InsertAtEnd) : Instruction(cast(cast(Func->getType()) ->getElementType())->getReturnType(), Instruction::Call, Name, InsertAtEnd) { init(Func, Actual); } CallInst::CallInst(Value *Func, const std::string &Name, Instruction *InsertBefore) : Instruction(cast(cast(Func->getType()) ->getElementType())->getReturnType(), Instruction::Call, Name, InsertBefore) { init(Func); } CallInst::CallInst(Value *Func, const std::string &Name, BasicBlock *InsertAtEnd) : Instruction(cast(cast(Func->getType()) ->getElementType())->getReturnType(), Instruction::Call, Name, InsertAtEnd) { init(Func); } CallInst::CallInst(const CallInst &CI) : Instruction(CI.getType(), Instruction::Call) { Operands.reserve(CI.Operands.size()); for (unsigned i = 0; i < CI.Operands.size(); ++i) Operands.push_back(Use(CI.Operands[i], this)); } //===----------------------------------------------------------------------===// // InvokeInst Implementation //===----------------------------------------------------------------------===// void InvokeInst::init(Value *Fn, BasicBlock *IfNormal, BasicBlock *IfException, const std::vector &Params) { Operands.reserve(3+Params.size()); Operands.push_back(Use(Fn, this)); Operands.push_back(Use((Value*)IfNormal, this)); Operands.push_back(Use((Value*)IfException, this)); const FunctionType *MTy = cast(cast(Fn->getType())->getElementType()); assert((Params.size() == MTy->getNumParams()) || (MTy->isVarArg() && Params.size() > MTy->getNumParams()) && "Calling a function with bad signature"); for (unsigned i = 0; i < Params.size(); i++) Operands.push_back(Use(Params[i], this)); } InvokeInst::InvokeInst(Value *Fn, BasicBlock *IfNormal, BasicBlock *IfException, const std::vector &Params, const std::string &Name, Instruction *InsertBefore) : TerminatorInst(cast(cast(Fn->getType()) ->getElementType())->getReturnType(), Instruction::Invoke, Name, InsertBefore) { init(Fn, IfNormal, IfException, Params); } InvokeInst::InvokeInst(Value *Fn, BasicBlock *IfNormal, BasicBlock *IfException, const std::vector &Params, const std::string &Name, BasicBlock *InsertAtEnd) : TerminatorInst(cast(cast(Fn->getType()) ->getElementType())->getReturnType(), Instruction::Invoke, Name, InsertAtEnd) { init(Fn, IfNormal, IfException, Params); } InvokeInst::InvokeInst(const InvokeInst &CI) : TerminatorInst(CI.getType(), Instruction::Invoke) { Operands.reserve(CI.Operands.size()); for (unsigned i = 0; i < CI.Operands.size(); ++i) Operands.push_back(Use(CI.Operands[i], this)); } //===----------------------------------------------------------------------===// // ReturnInst Implementation //===----------------------------------------------------------------------===// void ReturnInst::init(Value* RetVal) { if (RetVal && RetVal->getType() != Type::VoidTy) { assert(!isa(RetVal) && "Cannot return basic block. Probably using the incorrect ctor"); Operands.reserve(1); Operands.push_back(Use(RetVal, this)); } } // Out-of-line ReturnInst method, put here so the C++ compiler can choose to // emit the vtable for the class in this translation unit. void ReturnInst::setSuccessor(unsigned idx, BasicBlock *NewSucc) { assert(0 && "ReturnInst has no successors!"); } //===----------------------------------------------------------------------===// // UnwindInst Implementation //===----------------------------------------------------------------------===// // Likewise for UnwindInst void UnwindInst::setSuccessor(unsigned idx, BasicBlock *NewSucc) { assert(0 && "UnwindInst has no successors!"); } //===----------------------------------------------------------------------===// // UnreachableInst Implementation //===----------------------------------------------------------------------===// void UnreachableInst::setSuccessor(unsigned idx, BasicBlock *NewSucc) { assert(0 && "UnreachableInst has no successors!"); } //===----------------------------------------------------------------------===// // BranchInst Implementation //===----------------------------------------------------------------------===// void BranchInst::init(BasicBlock *IfTrue) { assert(IfTrue != 0 && "Branch destination may not be null!"); Operands.reserve(1); Operands.push_back(Use(IfTrue, this)); } void BranchInst::init(BasicBlock *IfTrue, BasicBlock *IfFalse, Value *Cond) { assert(IfTrue && IfFalse && Cond && "Branch destinations and condition may not be null!"); assert(Cond && Cond->getType() == Type::BoolTy && "May only branch on boolean predicates!"); Operands.reserve(3); Operands.push_back(Use(IfTrue, this)); Operands.push_back(Use(IfFalse, this)); Operands.push_back(Use(Cond, this)); } BranchInst::BranchInst(const BranchInst &BI) : TerminatorInst(Instruction::Br) { Operands.reserve(BI.Operands.size()); Operands.push_back(Use(BI.Operands[0], this)); if (BI.Operands.size() != 1) { assert(BI.Operands.size() == 3 && "BR can have 1 or 3 operands!"); Operands.push_back(Use(BI.Operands[1], this)); Operands.push_back(Use(BI.Operands[2], this)); } } //===----------------------------------------------------------------------===// // AllocationInst Implementation //===----------------------------------------------------------------------===// void AllocationInst::init(const Type *Ty, Value *ArraySize, unsigned iTy) { assert(Ty != Type::VoidTy && "Cannot allocate void elements!"); // ArraySize defaults to 1. if (!ArraySize) ArraySize = ConstantUInt::get(Type::UIntTy, 1); Operands.reserve(1); assert(ArraySize->getType() == Type::UIntTy && "Malloc/Allocation array size != UIntTy!"); Operands.push_back(Use(ArraySize, this)); } AllocationInst::AllocationInst(const Type *Ty, Value *ArraySize, unsigned iTy, const std::string &Name, Instruction *InsertBefore) : Instruction(PointerType::get(Ty), iTy, Name, InsertBefore) { init(Ty, ArraySize, iTy); } AllocationInst::AllocationInst(const Type *Ty, Value *ArraySize, unsigned iTy, const std::string &Name, BasicBlock *InsertAtEnd) : Instruction(PointerType::get(Ty), iTy, Name, InsertAtEnd) { init(Ty, ArraySize, iTy); } bool AllocationInst::isArrayAllocation() const { return getOperand(0) != ConstantUInt::get(Type::UIntTy, 1); } const Type *AllocationInst::getAllocatedType() const { return getType()->getElementType(); } AllocaInst::AllocaInst(const AllocaInst &AI) : AllocationInst(AI.getType()->getElementType(), (Value*)AI.getOperand(0), Instruction::Alloca) { } MallocInst::MallocInst(const MallocInst &MI) : AllocationInst(MI.getType()->getElementType(), (Value*)MI.getOperand(0), Instruction::Malloc) { } //===----------------------------------------------------------------------===// // FreeInst Implementation //===----------------------------------------------------------------------===// void FreeInst::init(Value *Ptr) { assert(Ptr && isa(Ptr->getType()) && "Can't free nonpointer!"); Operands.reserve(1); Operands.push_back(Use(Ptr, this)); } FreeInst::FreeInst(Value *Ptr, Instruction *InsertBefore) : Instruction(Type::VoidTy, Free, "", InsertBefore) { init(Ptr); } FreeInst::FreeInst(Value *Ptr, BasicBlock *InsertAtEnd) : Instruction(Type::VoidTy, Free, "", InsertAtEnd) { init(Ptr); } //===----------------------------------------------------------------------===// // LoadInst Implementation //===----------------------------------------------------------------------===// void LoadInst::init(Value *Ptr) { assert(Ptr && isa(Ptr->getType()) && "Ptr must have pointer type."); Operands.reserve(1); Operands.push_back(Use(Ptr, this)); } LoadInst::LoadInst(Value *Ptr, const std::string &Name, Instruction *InsertBef) : Instruction(cast(Ptr->getType())->getElementType(), Load, Name, InsertBef), Volatile(false) { init(Ptr); } LoadInst::LoadInst(Value *Ptr, const std::string &Name, BasicBlock *InsertAE) : Instruction(cast(Ptr->getType())->getElementType(), Load, Name, InsertAE), Volatile(false) { init(Ptr); } LoadInst::LoadInst(Value *Ptr, const std::string &Name, bool isVolatile, Instruction *InsertBef) : Instruction(cast(Ptr->getType())->getElementType(), Load, Name, InsertBef), Volatile(isVolatile) { init(Ptr); } LoadInst::LoadInst(Value *Ptr, const std::string &Name, bool isVolatile, BasicBlock *InsertAE) : Instruction(cast(Ptr->getType())->getElementType(), Load, Name, InsertAE), Volatile(isVolatile) { init(Ptr); } //===----------------------------------------------------------------------===// // StoreInst Implementation //===----------------------------------------------------------------------===// StoreInst::StoreInst(Value *Val, Value *Ptr, Instruction *InsertBefore) : Instruction(Type::VoidTy, Store, "", InsertBefore), Volatile(false) { init(Val, Ptr); } StoreInst::StoreInst(Value *Val, Value *Ptr, BasicBlock *InsertAtEnd) : Instruction(Type::VoidTy, Store, "", InsertAtEnd), Volatile(false) { init(Val, Ptr); } StoreInst::StoreInst(Value *Val, Value *Ptr, bool isVolatile, Instruction *InsertBefore) : Instruction(Type::VoidTy, Store, "", InsertBefore), Volatile(isVolatile) { init(Val, Ptr); } StoreInst::StoreInst(Value *Val, Value *Ptr, bool isVolatile, BasicBlock *InsertAtEnd) : Instruction(Type::VoidTy, Store, "", InsertAtEnd), Volatile(isVolatile) { init(Val, Ptr); } void StoreInst::init(Value *Val, Value *Ptr) { assert(isa(Ptr->getType()) && "Ptr must have pointer type!"); assert(Val->getType() == cast(Ptr->getType())->getElementType() && "Ptr must be a pointer to Val type!"); Operands.reserve(2); Operands.push_back(Use(Val, this)); Operands.push_back(Use(Ptr, this)); } //===----------------------------------------------------------------------===// // GetElementPtrInst Implementation //===----------------------------------------------------------------------===// // checkType - Simple wrapper function to give a better assertion failure // message on bad indexes for a gep instruction. // static inline const Type *checkType(const Type *Ty) { assert(Ty && "Invalid indices for type!"); return Ty; } void GetElementPtrInst::init(Value *Ptr, const std::vector &Idx) { Operands.reserve(1+Idx.size()); Operands.push_back(Use(Ptr, this)); for (unsigned i = 0, E = Idx.size(); i != E; ++i) Operands.push_back(Use(Idx[i], this)); } void GetElementPtrInst::init(Value *Ptr, Value *Idx0, Value *Idx1) { Operands.reserve(3); Operands.push_back(Use(Ptr, this)); Operands.push_back(Use(Idx0, this)); Operands.push_back(Use(Idx1, this)); } GetElementPtrInst::GetElementPtrInst(Value *Ptr, const std::vector &Idx, const std::string &Name, Instruction *InBe) : Instruction(PointerType::get(checkType(getIndexedType(Ptr->getType(), Idx, true))), GetElementPtr, Name, InBe) { init(Ptr, Idx); } GetElementPtrInst::GetElementPtrInst(Value *Ptr, const std::vector &Idx, const std::string &Name, BasicBlock *IAE) : Instruction(PointerType::get(checkType(getIndexedType(Ptr->getType(), Idx, true))), GetElementPtr, Name, IAE) { init(Ptr, Idx); } GetElementPtrInst::GetElementPtrInst(Value *Ptr, Value *Idx0, Value *Idx1, const std::string &Name, Instruction *InBe) : Instruction(PointerType::get(checkType(getIndexedType(Ptr->getType(), Idx0, Idx1, true))), GetElementPtr, Name, InBe) { init(Ptr, Idx0, Idx1); } GetElementPtrInst::GetElementPtrInst(Value *Ptr, Value *Idx0, Value *Idx1, const std::string &Name, BasicBlock *IAE) : Instruction(PointerType::get(checkType(getIndexedType(Ptr->getType(), Idx0, Idx1, true))), GetElementPtr, Name, IAE) { init(Ptr, Idx0, Idx1); } // getIndexedType - Returns the type of the element that would be loaded with // a load instruction with the specified parameters. // // A null type is returned if the indices are invalid for the specified // pointer type. // const Type* GetElementPtrInst::getIndexedType(const Type *Ptr, const std::vector &Idx, bool AllowCompositeLeaf) { if (!isa(Ptr)) return 0; // Type isn't a pointer type! // Handle the special case of the empty set index set... if (Idx.empty()) if (AllowCompositeLeaf || cast(Ptr)->getElementType()->isFirstClassType()) return cast(Ptr)->getElementType(); else return 0; unsigned CurIdx = 0; while (const CompositeType *CT = dyn_cast(Ptr)) { if (Idx.size() == CurIdx) { if (AllowCompositeLeaf || CT->isFirstClassType()) return Ptr; return 0; // Can't load a whole structure or array!?!? } Value *Index = Idx[CurIdx++]; if (isa(CT) && CurIdx != 1) return 0; // Can only index into pointer types at the first index! if (!CT->indexValid(Index)) return 0; Ptr = CT->getTypeAtIndex(Index); // If the new type forwards to another type, then it is in the middle // of being refined to another type (and hence, may have dropped all // references to what it was using before). So, use the new forwarded // type. if (const Type * Ty = Ptr->getForwardedType()) { Ptr = Ty; } } return CurIdx == Idx.size() ? Ptr : 0; } const Type* GetElementPtrInst::getIndexedType(const Type *Ptr, Value *Idx0, Value *Idx1, bool AllowCompositeLeaf) { const PointerType *PTy = dyn_cast(Ptr); if (!PTy) return 0; // Type isn't a pointer type! // Check the pointer index. if (!PTy->indexValid(Idx0)) return 0; const CompositeType *CT = dyn_cast(PTy->getElementType()); if (!CT || !CT->indexValid(Idx1)) return 0; const Type *ElTy = CT->getTypeAtIndex(Idx1); if (AllowCompositeLeaf || ElTy->isFirstClassType()) return ElTy; return 0; } //===----------------------------------------------------------------------===// // BinaryOperator Class //===----------------------------------------------------------------------===// void BinaryOperator::init(BinaryOps iType, Value *S1, Value *S2) { Operands.reserve(2); Operands.push_back(Use(S1, this)); Operands.push_back(Use(S2, this)); assert(S1 && S2 && S1->getType() == S2->getType()); #ifndef NDEBUG switch (iType) { case Add: case Sub: case Mul: case Div: case Rem: assert(getType() == S1->getType() && "Arithmetic operation should return same type as operands!"); assert((getType()->isInteger() || getType()->isFloatingPoint() || isa(getType()) ) && "Tried to create an arithmetic operation on a non-arithmetic type!"); break; case And: case Or: case Xor: assert(getType() == S1->getType() && "Logical operation should return same type as operands!"); assert(getType()->isIntegral() && "Tried to create an logical operation on a non-integral type!"); break; case SetLT: case SetGT: case SetLE: case SetGE: case SetEQ: case SetNE: assert(getType() == Type::BoolTy && "Setcc must return bool!"); default: break; } #endif } BinaryOperator *BinaryOperator::create(BinaryOps Op, Value *S1, Value *S2, const std::string &Name, Instruction *InsertBefore) { assert(S1->getType() == S2->getType() && "Cannot create binary operator with two operands of differing type!"); switch (Op) { // Binary comparison operators... case SetLT: case SetGT: case SetLE: case SetGE: case SetEQ: case SetNE: return new SetCondInst(Op, S1, S2, Name, InsertBefore); default: return new BinaryOperator(Op, S1, S2, S1->getType(), Name, InsertBefore); } } BinaryOperator *BinaryOperator::create(BinaryOps Op, Value *S1, Value *S2, const std::string &Name, BasicBlock *InsertAtEnd) { BinaryOperator *Res = create(Op, S1, S2, Name); InsertAtEnd->getInstList().push_back(Res); return Res; } BinaryOperator *BinaryOperator::createNeg(Value *Op, const std::string &Name, Instruction *InsertBefore) { if (!Op->getType()->isFloatingPoint()) return new BinaryOperator(Instruction::Sub, Constant::getNullValue(Op->getType()), Op, Op->getType(), Name, InsertBefore); else return new BinaryOperator(Instruction::Sub, ConstantFP::get(Op->getType(), -0.0), Op, Op->getType(), Name, InsertBefore); } BinaryOperator *BinaryOperator::createNeg(Value *Op, const std::string &Name, BasicBlock *InsertAtEnd) { if (!Op->getType()->isFloatingPoint()) return new BinaryOperator(Instruction::Sub, Constant::getNullValue(Op->getType()), Op, Op->getType(), Name, InsertAtEnd); else return new BinaryOperator(Instruction::Sub, ConstantFP::get(Op->getType(), -0.0), Op, Op->getType(), Name, InsertAtEnd); } BinaryOperator *BinaryOperator::createNot(Value *Op, const std::string &Name, Instruction *InsertBefore) { return new BinaryOperator(Instruction::Xor, Op, ConstantIntegral::getAllOnesValue(Op->getType()), Op->getType(), Name, InsertBefore); } BinaryOperator *BinaryOperator::createNot(Value *Op, const std::string &Name, BasicBlock *InsertAtEnd) { return new BinaryOperator(Instruction::Xor, Op, ConstantIntegral::getAllOnesValue(Op->getType()), Op->getType(), Name, InsertAtEnd); } // isConstantAllOnes - Helper function for several functions below static inline bool isConstantAllOnes(const Value *V) { return isa(V) &&cast(V)->isAllOnesValue(); } bool BinaryOperator::isNeg(const Value *V) { if (const BinaryOperator *Bop = dyn_cast(V)) if (Bop->getOpcode() == Instruction::Sub) if (!V->getType()->isFloatingPoint()) return Bop->getOperand(0) == Constant::getNullValue(Bop->getType()); else return Bop->getOperand(0) == ConstantFP::get(Bop->getType(), -0.0); return false; } bool BinaryOperator::isNot(const Value *V) { if (const BinaryOperator *Bop = dyn_cast(V)) return (Bop->getOpcode() == Instruction::Xor && (isConstantAllOnes(Bop->getOperand(1)) || isConstantAllOnes(Bop->getOperand(0)))); return false; } Value *BinaryOperator::getNegArgument(BinaryOperator *Bop) { assert(isNeg(Bop) && "getNegArgument from non-'neg' instruction!"); return Bop->getOperand(1); } const Value *BinaryOperator::getNegArgument(const BinaryOperator *Bop) { return getNegArgument((BinaryOperator*)Bop); } Value *BinaryOperator::getNotArgument(BinaryOperator *Bop) { assert(isNot(Bop) && "getNotArgument on non-'not' instruction!"); Value *Op0 = Bop->getOperand(0); Value *Op1 = Bop->getOperand(1); if (isConstantAllOnes(Op0)) return Op1; assert(isConstantAllOnes(Op1)); return Op0; } const Value *BinaryOperator::getNotArgument(const BinaryOperator *Bop) { return getNotArgument((BinaryOperator*)Bop); } // swapOperands - Exchange the two operands to this instruction. This // instruction is safe to use on any binary instruction and does not // modify the semantics of the instruction. If the instruction is // order dependent (SetLT f.e.) the opcode is changed. // bool BinaryOperator::swapOperands() { if (isCommutative()) ; // If the instruction is commutative, it is safe to swap the operands else if (SetCondInst *SCI = dyn_cast(this)) /// FIXME: SetCC instructions shouldn't all have different opcodes. setOpcode(SCI->getSwappedCondition()); else return true; // Can't commute operands std::swap(Operands[0], Operands[1]); return false; } //===----------------------------------------------------------------------===// // SetCondInst Class //===----------------------------------------------------------------------===// SetCondInst::SetCondInst(BinaryOps Opcode, Value *S1, Value *S2, const std::string &Name, Instruction *InsertBefore) : BinaryOperator(Opcode, S1, S2, Type::BoolTy, Name, InsertBefore) { // Make sure it's a valid type... getInverseCondition will assert out if not. assert(getInverseCondition(Opcode)); } SetCondInst::SetCondInst(BinaryOps Opcode, Value *S1, Value *S2, const std::string &Name, BasicBlock *InsertAtEnd) : BinaryOperator(Opcode, S1, S2, Type::BoolTy, Name, InsertAtEnd) { // Make sure it's a valid type... getInverseCondition will assert out if not. assert(getInverseCondition(Opcode)); } // getInverseCondition - Return the inverse of the current condition opcode. // For example seteq -> setne, setgt -> setle, setlt -> setge, etc... // Instruction::BinaryOps SetCondInst::getInverseCondition(BinaryOps Opcode) { switch (Opcode) { default: assert(0 && "Unknown setcc opcode!"); case SetEQ: return SetNE; case SetNE: return SetEQ; case SetGT: return SetLE; case SetLT: return SetGE; case SetGE: return SetLT; case SetLE: return SetGT; } } // getSwappedCondition - Return the condition opcode that would be the result // of exchanging the two operands of the setcc instruction without changing // the result produced. Thus, seteq->seteq, setle->setge, setlt->setgt, etc. // Instruction::BinaryOps SetCondInst::getSwappedCondition(BinaryOps Opcode) { switch (Opcode) { default: assert(0 && "Unknown setcc instruction!"); case SetEQ: case SetNE: return Opcode; case SetGT: return SetLT; case SetLT: return SetGT; case SetGE: return SetLE; case SetLE: return SetGE; } } //===----------------------------------------------------------------------===// // SwitchInst Implementation //===----------------------------------------------------------------------===// void SwitchInst::init(Value *Value, BasicBlock *Default) { assert(Value && Default); Operands.push_back(Use(Value, this)); Operands.push_back(Use(Default, this)); } SwitchInst::SwitchInst(const SwitchInst &SI) : TerminatorInst(Instruction::Switch) { Operands.reserve(SI.Operands.size()); for (unsigned i = 0, E = SI.Operands.size(); i != E; i+=2) { Operands.push_back(Use(SI.Operands[i], this)); Operands.push_back(Use(SI.Operands[i+1], this)); } } /// addCase - Add an entry to the switch instruction... /// void SwitchInst::addCase(Constant *OnVal, BasicBlock *Dest) { Operands.push_back(Use((Value*)OnVal, this)); Operands.push_back(Use((Value*)Dest, this)); } /// removeCase - This method removes the specified successor from the switch /// instruction. Note that this cannot be used to remove the default /// destination (successor #0). /// void SwitchInst::removeCase(unsigned idx) { assert(idx != 0 && "Cannot remove the default case!"); assert(idx*2 < Operands.size() && "Successor index out of range!!!"); Operands.erase(Operands.begin()+idx*2, Operands.begin()+(idx+1)*2); } // Define these methods here so vtables don't get emitted into every translation // unit that uses these classes. GetElementPtrInst *GetElementPtrInst::clone() const { return new GetElementPtrInst(*this); } BinaryOperator *BinaryOperator::clone() const { return create(getOpcode(), Operands[0], Operands[1]); } MallocInst *MallocInst::clone() const { return new MallocInst(*this); } AllocaInst *AllocaInst::clone() const { return new AllocaInst(*this); } FreeInst *FreeInst::clone() const { return new FreeInst(Operands[0]); } LoadInst *LoadInst::clone() const { return new LoadInst(*this); } StoreInst *StoreInst::clone() const { return new StoreInst(*this); } CastInst *CastInst::clone() const { return new CastInst(*this); } CallInst *CallInst::clone() const { return new CallInst(*this); } ShiftInst *ShiftInst::clone() const { return new ShiftInst(*this); } SelectInst *SelectInst::clone() const { return new SelectInst(*this); } VANextInst *VANextInst::clone() const { return new VANextInst(*this); } VAArgInst *VAArgInst::clone() const { return new VAArgInst(*this); } PHINode *PHINode::clone() const { return new PHINode(*this); } ReturnInst *ReturnInst::clone() const { return new ReturnInst(*this); } BranchInst *BranchInst::clone() const { return new BranchInst(*this); } SwitchInst *SwitchInst::clone() const { return new SwitchInst(*this); } InvokeInst *InvokeInst::clone() const { return new InvokeInst(*this); } UnwindInst *UnwindInst::clone() const { return new UnwindInst(); } UnreachableInst *UnreachableInst::clone() const { return new UnreachableInst();}