//===-- OptimizeExts.cpp - Optimize sign / zero extension instrs -----===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This pass performs optimization of sign / zero extension instructions. It // may be extended to handle other instructions of similar property. // // On some targets, some instructions, e.g. X86 sign / zero extension, may // leave the source value in the lower part of the result. This pass will // replace (some) uses of the pre-extension value with uses of the sub-register // of the results. // //===----------------------------------------------------------------------===// #define DEBUG_TYPE "ext-opt" #include "llvm/CodeGen/Passes.h" #include "llvm/CodeGen/MachineDominators.h" #include "llvm/CodeGen/MachineInstrBuilder.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/Target/TargetInstrInfo.h" #include "llvm/Target/TargetRegisterInfo.h" #include "llvm/Support/CommandLine.h" #include "llvm/ADT/SmallPtrSet.h" #include "llvm/ADT/Statistic.h" using namespace llvm; static cl::opt Aggressive("aggressive-ext-opt", cl::Hidden, cl::desc("Aggressive extension optimization")); STATISTIC(NumReuse, "Number of extension results reused"); namespace { class OptimizeExts : public MachineFunctionPass { const TargetMachine *TM; const TargetInstrInfo *TII; MachineRegisterInfo *MRI; MachineDominatorTree *DT; // Machine dominator tree public: static char ID; // Pass identification OptimizeExts() : MachineFunctionPass(&ID) {} virtual bool runOnMachineFunction(MachineFunction &MF); virtual void getAnalysisUsage(AnalysisUsage &AU) const { AU.setPreservesCFG(); MachineFunctionPass::getAnalysisUsage(AU); if (Aggressive) { AU.addRequired(); AU.addPreserved(); } } private: bool OptimizeInstr(MachineInstr *MI, MachineBasicBlock *MBB, SmallPtrSet &LocalMIs); }; } char OptimizeExts::ID = 0; static RegisterPass X("opt-exts", "Optimize sign / zero extensions"); FunctionPass *llvm::createOptimizeExtsPass() { return new OptimizeExts(); } /// OptimizeInstr - If instruction is a copy-like instruction, i.e. it reads /// a single register and writes a single register and it does not modify /// the source, and if the source value is preserved as a sub-register of /// the result, then replace all reachable uses of the source with the subreg /// of the result. bool OptimizeExts::OptimizeInstr(MachineInstr *MI, MachineBasicBlock *MBB, SmallPtrSet &LocalMIs) { bool Changed = false; LocalMIs.insert(MI); unsigned SrcReg, DstReg, SubIdx; if (TII->isCoalescableExtInstr(*MI, SrcReg, DstReg, SubIdx)) { if (TargetRegisterInfo::isPhysicalRegister(DstReg) || TargetRegisterInfo::isPhysicalRegister(SrcReg)) return false; MachineRegisterInfo::use_iterator UI = MRI->use_begin(SrcReg); if (++UI == MRI->use_end()) // No other uses. return false; // Ok, the source has other uses. See if we can replace the other uses // with use of the result of the extension. SmallPtrSet ReachedBBs; UI = MRI->use_begin(DstReg); for (MachineRegisterInfo::use_iterator UE = MRI->use_end(); UI != UE; ++UI) ReachedBBs.insert(UI->getParent()); bool ExtendLife = true; // Uses that are in the same BB of uses of the result of the instruction. SmallVector Uses; // Uses that the result of the instruction can reach. SmallVector ExtendedUses; UI = MRI->use_begin(SrcReg); for (MachineRegisterInfo::use_iterator UE = MRI->use_end(); UI != UE; ++UI) { MachineOperand &UseMO = UI.getOperand(); MachineInstr *UseMI = &*UI; if (UseMI == MI) continue; if (UseMI->getOpcode() == TargetInstrInfo::PHI) { ExtendLife = false; continue; } MachineBasicBlock *UseMBB = UseMI->getParent(); if (UseMBB == MBB) { // Local uses that come after the extension. if (!LocalMIs.count(UseMI)) Uses.push_back(&UseMO); } else if (ReachedBBs.count(UseMBB)) // Non-local uses where the result of extension is used. Always // replace these unless it's a PHI. Uses.push_back(&UseMO); else if (Aggressive && DT->dominates(MBB, UseMBB)) // We may want to extend live range of the extension result in order // to replace these uses. ExtendedUses.push_back(&UseMO); else { // Both will be live out of the def MBB anyway. Don't extend live // range of the extension result. ExtendLife = false; break; } } if (ExtendLife && !ExtendedUses.empty()) // Ok, we'll extend the liveness of the extension result. std::copy(ExtendedUses.begin(), ExtendedUses.end(), std::back_inserter(Uses)); // Now replace all uses. if (!Uses.empty()) { const TargetRegisterClass *RC = MRI->getRegClass(SrcReg); for (unsigned i = 0, e = Uses.size(); i != e; ++i) { MachineOperand *UseMO = Uses[i]; MachineInstr *UseMI = UseMO->getParent(); MachineBasicBlock *UseMBB = UseMI->getParent(); unsigned NewVR = MRI->createVirtualRegister(RC); BuildMI(*UseMBB, UseMI, UseMI->getDebugLoc(), TII->get(TargetInstrInfo::EXTRACT_SUBREG), NewVR) .addReg(DstReg).addImm(SubIdx); UseMO->setReg(NewVR); ++NumReuse; Changed = true; } } } return Changed; } bool OptimizeExts::runOnMachineFunction(MachineFunction &MF) { TM = &MF.getTarget(); TII = TM->getInstrInfo(); MRI = &MF.getRegInfo(); DT = Aggressive ? &getAnalysis() : 0; bool Changed = false; SmallPtrSet LocalMIs; for (MachineFunction::iterator I = MF.begin(), E = MF.end(); I != E; ++I) { MachineBasicBlock *MBB = &*I; LocalMIs.clear(); for (MachineBasicBlock::iterator MII = I->begin(), ME = I->end(); MII != ME; ++MII) { MachineInstr *MI = &*MII; Changed |= OptimizeInstr(MI, MBB, LocalMIs); } } return Changed; }