//===-- llvm/Support/PatternMatch.h - Match on the LLVM IR ------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file was developed by the LLVM research group and is distributed under // the University of Illinois Open Source License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file provides a simple and efficient mechanism for performing general // tree-based pattern matches on the LLVM IR. The power of these routines is // that it allows you to write concise patterns that are expressive and easy to // understand. The other major advantage of this is that is allows to you // trivially capture/bind elements in the pattern to variables. For example, // you can do something like this: // // Value *Exp = ... // Value *X, *Y; ConstantInt *C1, *C2; // (X & C1) | (Y & C2) // if (match(Exp, m_Or(m_And(m_Value(X), m_ConstantInt(C1)), // m_And(m_Value(Y), m_ConstantInt(C2))))) { // ... Pattern is matched and variables are bound ... // } // // This is primarily useful to things like the instruction combiner, but can // also be useful for static analysis tools or code generators. // //===----------------------------------------------------------------------===// #ifndef LLVM_SUPPORT_PATTERNMATCH_H #define LLVM_SUPPORT_PATTERNMATCH_H #include "llvm/Constants.h" #include "llvm/Instructions.h" namespace llvm { namespace PatternMatch { template bool match(Val *V, const Pattern &P) { return const_cast(P).match(V); } template struct leaf_ty { template bool match(ITy *V) { return isa(V); } }; inline leaf_ty m_Value() { return leaf_ty(); } inline leaf_ty m_ConstantInt() { return leaf_ty(); } template struct bind_ty { Class *&VR; bind_ty(Class *&V) : VR(V) {} template bool match(ITy *V) { if (Class *CV = dyn_cast(V)) { VR = CV; return true; } return false; } }; inline bind_ty m_Value(Value *&V) { return V; } inline bind_ty m_ConstantInt(ConstantInt *&CI) { return CI; } //===----------------------------------------------------------------------===// // Matchers for specific binary operators. // template struct BinaryOp_match { LHS_t L; RHS_t R; BinaryOp_match(const LHS_t &LHS, const RHS_t &RHS) : L(LHS), R(RHS) {} template bool match(OpTy *V) { if (V->getValueType() == Value::InstructionVal + Opcode) { ConcreteTy *I = cast(V); return I->getOpcode() == Opcode && L.match(I->getOperand(0)) && R.match(I->getOperand(1)); } if (ConstantExpr *CE = dyn_cast(V)) return CE->getOpcode() == Opcode && L.match(CE->getOperand(0)) && R.match(CE->getOperand(1)); return false; } }; template inline BinaryOp_match m_Add(const LHS &L, const RHS &R) { return BinaryOp_match(L, R); } template inline BinaryOp_match m_Sub(const LHS &L, const RHS &R) { return BinaryOp_match(L, R); } template inline BinaryOp_match m_Mul(const LHS &L, const RHS &R) { return BinaryOp_match(L, R); } template inline BinaryOp_match m_Div(const LHS &L, const RHS &R) { return BinaryOp_match(L, R); } template inline BinaryOp_match m_Rem(const LHS &L, const RHS &R) { return BinaryOp_match(L, R); } template inline BinaryOp_match m_And(const LHS &L, const RHS &R) { return BinaryOp_match(L, R); } template inline BinaryOp_match m_Or(const LHS &L, const RHS &R) { return BinaryOp_match(L, R); } template inline BinaryOp_match m_Xor(const LHS &L, const RHS &R) { return BinaryOp_match(L, R); } template inline BinaryOp_match m_Shl(const LHS &L, const RHS &R) { return BinaryOp_match(L, R); } template inline BinaryOp_match m_Shr(const LHS &L, const RHS &R) { return BinaryOp_match(L, R); } //===----------------------------------------------------------------------===// // Matchers for binary classes // template struct BinaryOpClass_match { OpcType &Opcode; LHS_t L; RHS_t R; BinaryOpClass_match(OpcType &Op, const LHS_t &LHS, const RHS_t &RHS) : Opcode(Op), L(LHS), R(RHS) {} template bool match(OpTy *V) { if (Class *I = dyn_cast(V)) if (L.match(I->getOperand(0)) && R.match(I->getOperand(1))) { Opcode = I->getOpcode(); return true; } #if 0 // Doesn't handle constantexprs yet! if (ConstantExpr *CE = dyn_cast(V)) return CE->getOpcode() == Opcode && L.match(CE->getOperand(0)) && R.match(CE->getOperand(1)); #endif return false; } }; template inline BinaryOpClass_match m_SetCond(Instruction::BinaryOps &Op, const LHS &L, const RHS &R) { return BinaryOpClass_match(Op, L, R); } template inline BinaryOpClass_match m_Shift(Instruction::OtherOps &Op, const LHS &L, const RHS &R) { return BinaryOpClass_match(Op, L, R); } template inline BinaryOpClass_match m_Shift(const LHS &L, const RHS &R) { Instruction::OtherOps Op; return BinaryOpClass_match(Op, L, R); } //===----------------------------------------------------------------------===// // Matchers for unary operators // template struct neg_match { LHS_t L; neg_match(const LHS_t &LHS) : L(LHS) {} template bool match(OpTy *V) { if (Instruction *I = dyn_cast(V)) if (I->getOpcode() == Instruction::Sub) return matchIfNeg(I->getOperand(0), I->getOperand(1)); if (ConstantExpr *CE = dyn_cast(V)) if (CE->getOpcode() == Instruction::Sub) return matchIfNeg(CE->getOperand(0), CE->getOperand(1)); if (ConstantInt *CI = dyn_cast(V)) return L.match(ConstantExpr::getNeg(CI)); return false; } private: bool matchIfNeg(Value *LHS, Value *RHS) { if (!LHS->getType()->isFloatingPoint()) return LHS == Constant::getNullValue(LHS->getType()) && L.match(RHS); else return LHS == ConstantFP::get(LHS->getType(), -0.0) && L.match(RHS); } }; template inline neg_match m_Neg(const LHS &L) { return L; } template struct not_match { LHS_t L; not_match(const LHS_t &LHS) : L(LHS) {} template bool match(OpTy *V) { if (Instruction *I = dyn_cast(V)) if (I->getOpcode() == Instruction::Xor) return matchIfNot(I->getOperand(0), I->getOperand(1)); if (ConstantExpr *CE = dyn_cast(V)) if (CE->getOpcode() == Instruction::Xor) return matchIfNot(CE->getOperand(0), CE->getOperand(1)); if (ConstantInt *CI = dyn_cast(V)) return L.match(ConstantExpr::getNot(CI)); return false; } private: bool matchIfNot(Value *LHS, Value *RHS) { if (ConstantIntegral *CI = dyn_cast(RHS)) return CI->isAllOnesValue() && L.match(LHS); else if (ConstantIntegral *CI = dyn_cast(LHS)) return CI->isAllOnesValue() && L.match(RHS); return false; } }; template inline not_match m_Not(const LHS &L) { return L; } template struct cast_match { Op_t Op; const Type **DestTy; cast_match(const Op_t &op, const Type **destTy) : Op(op), DestTy(destTy) {} template bool match(OpTy *V) { if (CastInst *I = dyn_cast(V)) { if (DestTy) *DestTy = I->getType(); return Op.match(I->getOperand(0)); } else if (ConstantExpr *CE = dyn_cast(V)) { if (CE->getOpcode() == Instruction::Cast) { if (DestTy) *DestTy = I->getType(); return Op.match(CE->getOperand(0)); } } return false; } }; template inline cast_match m_Cast(const Op_t &Op, const Type *&Ty) { return cast_match(Op, &Ty); } template inline cast_match m_Cast(const Op_t &Op) { return cast_match(Op, 0); } //===----------------------------------------------------------------------===// // Matchers for control flow // template struct brc_match { Cond_t Cond; BasicBlock *&T, *&F; brc_match(const Cond_t &C, BasicBlock *&t, BasicBlock *&f) : Cond(C), T(t), F(f) { } template bool match(OpTy *V) { if (BranchInst *BI = dyn_cast(V)) if (BI->isConditional()) { if (Cond.match(BI->getCondition())) { T = BI->getSuccessor(0); F = BI->getSuccessor(1); return true; } } return false; } }; template inline brc_match m_Br(const Cond_t &C, BasicBlock *&T, BasicBlock *&F){ return brc_match(C, T, F); } }} // end llvm::match #endif