//===-- R600ExpandSpecialInstrs.cpp - Expand special instructions ---------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // /// \file /// Vector, Reduction, and Cube instructions need to fill the entire instruction /// group to work correctly. This pass expands these individual instructions /// into several instructions that will completely fill the instruction group. // //===----------------------------------------------------------------------===// #include "AMDGPU.h" #include "R600Defines.h" #include "R600InstrInfo.h" #include "R600MachineFunctionInfo.h" #include "R600RegisterInfo.h" #include "llvm/CodeGen/MachineFunctionPass.h" #include "llvm/CodeGen/MachineInstrBuilder.h" #include "llvm/CodeGen/MachineRegisterInfo.h" using namespace llvm; namespace { class R600ExpandSpecialInstrsPass : public MachineFunctionPass { private: static char ID; const R600InstrInfo *TII; void SetFlagInNewMI(MachineInstr *NewMI, const MachineInstr *OldMI, unsigned Op); public: R600ExpandSpecialInstrsPass(TargetMachine &tm) : MachineFunctionPass(ID), TII(nullptr) { } virtual bool runOnMachineFunction(MachineFunction &MF); const char *getPassName() const { return "R600 Expand special instructions pass"; } }; } // End anonymous namespace char R600ExpandSpecialInstrsPass::ID = 0; FunctionPass *llvm::createR600ExpandSpecialInstrsPass(TargetMachine &TM) { return new R600ExpandSpecialInstrsPass(TM); } void R600ExpandSpecialInstrsPass::SetFlagInNewMI(MachineInstr *NewMI, const MachineInstr *OldMI, unsigned Op) { int OpIdx = TII->getOperandIdx(*OldMI, Op); if (OpIdx > -1) { uint64_t Val = OldMI->getOperand(OpIdx).getImm(); TII->setImmOperand(NewMI, Op, Val); } } bool R600ExpandSpecialInstrsPass::runOnMachineFunction(MachineFunction &MF) { TII = static_cast(MF.getTarget().getInstrInfo()); const R600RegisterInfo &TRI = TII->getRegisterInfo(); for (MachineFunction::iterator BB = MF.begin(), BB_E = MF.end(); BB != BB_E; ++BB) { MachineBasicBlock &MBB = *BB; MachineBasicBlock::iterator I = MBB.begin(); while (I != MBB.end()) { MachineInstr &MI = *I; I = std::next(I); // Expand LDS_*_RET instructions if (TII->isLDSRetInstr(MI.getOpcode())) { int DstIdx = TII->getOperandIdx(MI.getOpcode(), AMDGPU::OpName::dst); assert(DstIdx != -1); MachineOperand &DstOp = MI.getOperand(DstIdx); MachineInstr *Mov = TII->buildMovInstr(&MBB, I, DstOp.getReg(), AMDGPU::OQAP); DstOp.setReg(AMDGPU::OQAP); int LDSPredSelIdx = TII->getOperandIdx(MI.getOpcode(), AMDGPU::OpName::pred_sel); int MovPredSelIdx = TII->getOperandIdx(Mov->getOpcode(), AMDGPU::OpName::pred_sel); // Copy the pred_sel bit Mov->getOperand(MovPredSelIdx).setReg( MI.getOperand(LDSPredSelIdx).getReg()); } switch (MI.getOpcode()) { default: break; // Expand PRED_X to one of the PRED_SET instructions. case AMDGPU::PRED_X: { uint64_t Flags = MI.getOperand(3).getImm(); // The native opcode used by PRED_X is stored as an immediate in the // third operand. MachineInstr *PredSet = TII->buildDefaultInstruction(MBB, I, MI.getOperand(2).getImm(), // opcode MI.getOperand(0).getReg(), // dst MI.getOperand(1).getReg(), // src0 AMDGPU::ZERO); // src1 TII->addFlag(PredSet, 0, MO_FLAG_MASK); if (Flags & MO_FLAG_PUSH) { TII->setImmOperand(PredSet, AMDGPU::OpName::update_exec_mask, 1); } else { TII->setImmOperand(PredSet, AMDGPU::OpName::update_pred, 1); } MI.eraseFromParent(); continue; } case AMDGPU::INTERP_PAIR_XY: { MachineInstr *BMI; unsigned PReg = AMDGPU::R600_ArrayBaseRegClass.getRegister( MI.getOperand(2).getImm()); for (unsigned Chan = 0; Chan < 4; ++Chan) { unsigned DstReg; if (Chan < 2) DstReg = MI.getOperand(Chan).getReg(); else DstReg = Chan == 2 ? AMDGPU::T0_Z : AMDGPU::T0_W; BMI = TII->buildDefaultInstruction(MBB, I, AMDGPU::INTERP_XY, DstReg, MI.getOperand(3 + (Chan % 2)).getReg(), PReg); if (Chan > 0) { BMI->bundleWithPred(); } if (Chan >= 2) TII->addFlag(BMI, 0, MO_FLAG_MASK); if (Chan != 3) TII->addFlag(BMI, 0, MO_FLAG_NOT_LAST); } MI.eraseFromParent(); continue; } case AMDGPU::INTERP_PAIR_ZW: { MachineInstr *BMI; unsigned PReg = AMDGPU::R600_ArrayBaseRegClass.getRegister( MI.getOperand(2).getImm()); for (unsigned Chan = 0; Chan < 4; ++Chan) { unsigned DstReg; if (Chan < 2) DstReg = Chan == 0 ? AMDGPU::T0_X : AMDGPU::T0_Y; else DstReg = MI.getOperand(Chan-2).getReg(); BMI = TII->buildDefaultInstruction(MBB, I, AMDGPU::INTERP_ZW, DstReg, MI.getOperand(3 + (Chan % 2)).getReg(), PReg); if (Chan > 0) { BMI->bundleWithPred(); } if (Chan < 2) TII->addFlag(BMI, 0, MO_FLAG_MASK); if (Chan != 3) TII->addFlag(BMI, 0, MO_FLAG_NOT_LAST); } MI.eraseFromParent(); continue; } case AMDGPU::INTERP_VEC_LOAD: { const R600RegisterInfo &TRI = TII->getRegisterInfo(); MachineInstr *BMI; unsigned PReg = AMDGPU::R600_ArrayBaseRegClass.getRegister( MI.getOperand(1).getImm()); unsigned DstReg = MI.getOperand(0).getReg(); for (unsigned Chan = 0; Chan < 4; ++Chan) { BMI = TII->buildDefaultInstruction(MBB, I, AMDGPU::INTERP_LOAD_P0, TRI.getSubReg(DstReg, TRI.getSubRegFromChannel(Chan)), PReg); if (Chan > 0) { BMI->bundleWithPred(); } if (Chan != 3) TII->addFlag(BMI, 0, MO_FLAG_NOT_LAST); } MI.eraseFromParent(); continue; } case AMDGPU::DOT_4: { const R600RegisterInfo &TRI = TII->getRegisterInfo(); unsigned DstReg = MI.getOperand(0).getReg(); unsigned DstBase = TRI.getEncodingValue(DstReg) & HW_REG_MASK; for (unsigned Chan = 0; Chan < 4; ++Chan) { bool Mask = (Chan != TRI.getHWRegChan(DstReg)); unsigned SubDstReg = AMDGPU::R600_TReg32RegClass.getRegister((DstBase * 4) + Chan); MachineInstr *BMI = TII->buildSlotOfVectorInstruction(MBB, &MI, Chan, SubDstReg); if (Chan > 0) { BMI->bundleWithPred(); } if (Mask) { TII->addFlag(BMI, 0, MO_FLAG_MASK); } if (Chan != 3) TII->addFlag(BMI, 0, MO_FLAG_NOT_LAST); unsigned Opcode = BMI->getOpcode(); // While not strictly necessary from hw point of view, we force // all src operands of a dot4 inst to belong to the same slot. unsigned Src0 = BMI->getOperand( TII->getOperandIdx(Opcode, AMDGPU::OpName::src0)) .getReg(); unsigned Src1 = BMI->getOperand( TII->getOperandIdx(Opcode, AMDGPU::OpName::src1)) .getReg(); (void) Src0; (void) Src1; if ((TRI.getEncodingValue(Src0) & 0xff) < 127 && (TRI.getEncodingValue(Src1) & 0xff) < 127) assert(TRI.getHWRegChan(Src0) == TRI.getHWRegChan(Src1)); } MI.eraseFromParent(); continue; } } bool IsReduction = TII->isReductionOp(MI.getOpcode()); bool IsVector = TII->isVector(MI); bool IsCube = TII->isCubeOp(MI.getOpcode()); if (!IsReduction && !IsVector && !IsCube) { continue; } // Expand the instruction // // Reduction instructions: // T0_X = DP4 T1_XYZW, T2_XYZW // becomes: // TO_X = DP4 T1_X, T2_X // TO_Y (write masked) = DP4 T1_Y, T2_Y // TO_Z (write masked) = DP4 T1_Z, T2_Z // TO_W (write masked) = DP4 T1_W, T2_W // // Vector instructions: // T0_X = MULLO_INT T1_X, T2_X // becomes: // T0_X = MULLO_INT T1_X, T2_X // T0_Y (write masked) = MULLO_INT T1_X, T2_X // T0_Z (write masked) = MULLO_INT T1_X, T2_X // T0_W (write masked) = MULLO_INT T1_X, T2_X // // Cube instructions: // T0_XYZW = CUBE T1_XYZW // becomes: // TO_X = CUBE T1_Z, T1_Y // T0_Y = CUBE T1_Z, T1_X // T0_Z = CUBE T1_X, T1_Z // T0_W = CUBE T1_Y, T1_Z for (unsigned Chan = 0; Chan < 4; Chan++) { unsigned DstReg = MI.getOperand( TII->getOperandIdx(MI, AMDGPU::OpName::dst)).getReg(); unsigned Src0 = MI.getOperand( TII->getOperandIdx(MI, AMDGPU::OpName::src0)).getReg(); unsigned Src1 = 0; // Determine the correct source registers if (!IsCube) { int Src1Idx = TII->getOperandIdx(MI, AMDGPU::OpName::src1); if (Src1Idx != -1) { Src1 = MI.getOperand(Src1Idx).getReg(); } } if (IsReduction) { unsigned SubRegIndex = TRI.getSubRegFromChannel(Chan); Src0 = TRI.getSubReg(Src0, SubRegIndex); Src1 = TRI.getSubReg(Src1, SubRegIndex); } else if (IsCube) { static const int CubeSrcSwz[] = {2, 2, 0, 1}; unsigned SubRegIndex0 = TRI.getSubRegFromChannel(CubeSrcSwz[Chan]); unsigned SubRegIndex1 = TRI.getSubRegFromChannel(CubeSrcSwz[3 - Chan]); Src1 = TRI.getSubReg(Src0, SubRegIndex1); Src0 = TRI.getSubReg(Src0, SubRegIndex0); } // Determine the correct destination registers; bool Mask = false; bool NotLast = true; if (IsCube) { unsigned SubRegIndex = TRI.getSubRegFromChannel(Chan); DstReg = TRI.getSubReg(DstReg, SubRegIndex); } else { // Mask the write if the original instruction does not write to // the current Channel. Mask = (Chan != TRI.getHWRegChan(DstReg)); unsigned DstBase = TRI.getEncodingValue(DstReg) & HW_REG_MASK; DstReg = AMDGPU::R600_TReg32RegClass.getRegister((DstBase * 4) + Chan); } // Set the IsLast bit NotLast = (Chan != 3 ); // Add the new instruction unsigned Opcode = MI.getOpcode(); switch (Opcode) { case AMDGPU::CUBE_r600_pseudo: Opcode = AMDGPU::CUBE_r600_real; break; case AMDGPU::CUBE_eg_pseudo: Opcode = AMDGPU::CUBE_eg_real; break; default: break; } MachineInstr *NewMI = TII->buildDefaultInstruction(MBB, I, Opcode, DstReg, Src0, Src1); if (Chan != 0) NewMI->bundleWithPred(); if (Mask) { TII->addFlag(NewMI, 0, MO_FLAG_MASK); } if (NotLast) { TII->addFlag(NewMI, 0, MO_FLAG_NOT_LAST); } SetFlagInNewMI(NewMI, &MI, AMDGPU::OpName::clamp); SetFlagInNewMI(NewMI, &MI, AMDGPU::OpName::literal); SetFlagInNewMI(NewMI, &MI, AMDGPU::OpName::src0_abs); SetFlagInNewMI(NewMI, &MI, AMDGPU::OpName::src1_abs); SetFlagInNewMI(NewMI, &MI, AMDGPU::OpName::src0_neg); SetFlagInNewMI(NewMI, &MI, AMDGPU::OpName::src1_neg); } MI.eraseFromParent(); } } return false; }