#include "llvm/Analysis/Passes.h" #include "llvm/ExecutionEngine/ExecutionEngine.h" #include "llvm/ExecutionEngine/MCJIT.h" #include "llvm/ExecutionEngine/SectionMemoryManager.h" #include "llvm/IR/DataLayout.h" #include "llvm/IR/DerivedTypes.h" #include "llvm/IR/IRBuilder.h" #include "llvm/IR/LLVMContext.h" #include "llvm/IR/LegacyPassManager.h" #include "llvm/IR/Module.h" #include "llvm/IR/Verifier.h" #include "llvm/Support/TargetSelect.h" #include "llvm/Transforms/Scalar.h" #include #include #include #include #include using namespace llvm; //===----------------------------------------------------------------------===// // Lexer //===----------------------------------------------------------------------===// // The lexer returns tokens [0-255] if it is an unknown character, otherwise one // of these for known things. enum Token { tok_eof = -1, // commands tok_def = -2, tok_extern = -3, // primary tok_identifier = -4, tok_number = -5 }; static std::string IdentifierStr; // Filled in if tok_identifier static double NumVal; // Filled in if tok_number /// gettok - Return the next token from standard input. static int gettok() { static int LastChar = ' '; // Skip any whitespace. while (isspace(LastChar)) LastChar = getchar(); if (isalpha(LastChar)) { // identifier: [a-zA-Z][a-zA-Z0-9]* IdentifierStr = LastChar; while (isalnum((LastChar = getchar()))) IdentifierStr += LastChar; if (IdentifierStr == "def") return tok_def; if (IdentifierStr == "extern") return tok_extern; return tok_identifier; } if (isdigit(LastChar) || LastChar == '.') { // Number: [0-9.]+ std::string NumStr; do { NumStr += LastChar; LastChar = getchar(); } while (isdigit(LastChar) || LastChar == '.'); NumVal = strtod(NumStr.c_str(), 0); return tok_number; } if (LastChar == '#') { // Comment until end of line. do LastChar = getchar(); while (LastChar != EOF && LastChar != '\n' && LastChar != '\r'); if (LastChar != EOF) return gettok(); } // Check for end of file. Don't eat the EOF. if (LastChar == EOF) return tok_eof; // Otherwise, just return the character as its ascii value. int ThisChar = LastChar; LastChar = getchar(); return ThisChar; } //===----------------------------------------------------------------------===// // Abstract Syntax Tree (aka Parse Tree) //===----------------------------------------------------------------------===// namespace { /// ExprAST - Base class for all expression nodes. class ExprAST { public: virtual ~ExprAST() {} virtual Value *Codegen() = 0; }; /// NumberExprAST - Expression class for numeric literals like "1.0". class NumberExprAST : public ExprAST { double Val; public: NumberExprAST(double val) : Val(val) {} virtual Value *Codegen(); }; /// VariableExprAST - Expression class for referencing a variable, like "a". class VariableExprAST : public ExprAST { std::string Name; public: VariableExprAST(const std::string &name) : Name(name) {} virtual Value *Codegen(); }; /// BinaryExprAST - Expression class for a binary operator. class BinaryExprAST : public ExprAST { char Op; ExprAST *LHS, *RHS; public: BinaryExprAST(char op, ExprAST *lhs, ExprAST *rhs) : Op(op), LHS(lhs), RHS(rhs) {} virtual Value *Codegen(); }; /// CallExprAST - Expression class for function calls. class CallExprAST : public ExprAST { std::string Callee; std::vector Args; public: CallExprAST(const std::string &callee, std::vector &args) : Callee(callee), Args(args) {} virtual Value *Codegen(); }; /// PrototypeAST - This class represents the "prototype" for a function, /// which captures its name, and its argument names (thus implicitly the number /// of arguments the function takes). class PrototypeAST { std::string Name; std::vector Args; public: PrototypeAST(const std::string &name, const std::vector &args) : Name(name), Args(args) {} Function *Codegen(); }; /// FunctionAST - This class represents a function definition itself. class FunctionAST { PrototypeAST *Proto; ExprAST *Body; public: FunctionAST(PrototypeAST *proto, ExprAST *body) : Proto(proto), Body(body) {} Function *Codegen(); }; } // end anonymous namespace //===----------------------------------------------------------------------===// // Parser //===----------------------------------------------------------------------===// /// CurTok/getNextToken - Provide a simple token buffer. CurTok is the current /// token the parser is looking at. getNextToken reads another token from the /// lexer and updates CurTok with its results. static int CurTok; static int getNextToken() { return CurTok = gettok(); } /// BinopPrecedence - This holds the precedence for each binary operator that is /// defined. static std::map BinopPrecedence; /// GetTokPrecedence - Get the precedence of the pending binary operator token. static int GetTokPrecedence() { if (!isascii(CurTok)) return -1; // Make sure it's a declared binop. int TokPrec = BinopPrecedence[CurTok]; if (TokPrec <= 0) return -1; return TokPrec; } /// Error* - These are little helper functions for error handling. ExprAST *Error(const char *Str) { fprintf(stderr, "Error: %s\n", Str); return 0; } PrototypeAST *ErrorP(const char *Str) { Error(Str); return 0; } FunctionAST *ErrorF(const char *Str) { Error(Str); return 0; } static ExprAST *ParseExpression(); /// identifierexpr /// ::= identifier /// ::= identifier '(' expression* ')' static ExprAST *ParseIdentifierExpr() { std::string IdName = IdentifierStr; getNextToken(); // eat identifier. if (CurTok != '(') // Simple variable ref. return new VariableExprAST(IdName); // Call. getNextToken(); // eat ( std::vector Args; if (CurTok != ')') { while (1) { ExprAST *Arg = ParseExpression(); if (!Arg) return 0; Args.push_back(Arg); if (CurTok == ')') break; if (CurTok != ',') return Error("Expected ')' or ',' in argument list"); getNextToken(); } } // Eat the ')'. getNextToken(); return new CallExprAST(IdName, Args); } /// numberexpr ::= number static ExprAST *ParseNumberExpr() { ExprAST *Result = new NumberExprAST(NumVal); getNextToken(); // consume the number return Result; } /// parenexpr ::= '(' expression ')' static ExprAST *ParseParenExpr() { getNextToken(); // eat (. ExprAST *V = ParseExpression(); if (!V) return 0; if (CurTok != ')') return Error("expected ')'"); getNextToken(); // eat ). return V; } /// primary /// ::= identifierexpr /// ::= numberexpr /// ::= parenexpr static ExprAST *ParsePrimary() { switch (CurTok) { default: return Error("unknown token when expecting an expression"); case tok_identifier: return ParseIdentifierExpr(); case tok_number: return ParseNumberExpr(); case '(': return ParseParenExpr(); } } /// binoprhs /// ::= ('+' primary)* static ExprAST *ParseBinOpRHS(int ExprPrec, ExprAST *LHS) { // If this is a binop, find its precedence. while (1) { int TokPrec = GetTokPrecedence(); // If this is a binop that binds at least as tightly as the current binop, // consume it, otherwise we are done. if (TokPrec < ExprPrec) return LHS; // Okay, we know this is a binop. int BinOp = CurTok; getNextToken(); // eat binop // Parse the primary expression after the binary operator. ExprAST *RHS = ParsePrimary(); if (!RHS) return 0; // If BinOp binds less tightly with RHS than the operator after RHS, let // the pending operator take RHS as its LHS. int NextPrec = GetTokPrecedence(); if (TokPrec < NextPrec) { RHS = ParseBinOpRHS(TokPrec + 1, RHS); if (RHS == 0) return 0; } // Merge LHS/RHS. LHS = new BinaryExprAST(BinOp, LHS, RHS); } } /// expression /// ::= primary binoprhs /// static ExprAST *ParseExpression() { ExprAST *LHS = ParsePrimary(); if (!LHS) return 0; return ParseBinOpRHS(0, LHS); } /// prototype /// ::= id '(' id* ')' static PrototypeAST *ParsePrototype() { if (CurTok != tok_identifier) return ErrorP("Expected function name in prototype"); std::string FnName = IdentifierStr; getNextToken(); if (CurTok != '(') return ErrorP("Expected '(' in prototype"); std::vector ArgNames; while (getNextToken() == tok_identifier) ArgNames.push_back(IdentifierStr); if (CurTok != ')') return ErrorP("Expected ')' in prototype"); // success. getNextToken(); // eat ')'. return new PrototypeAST(FnName, ArgNames); } /// definition ::= 'def' prototype expression static FunctionAST *ParseDefinition() { getNextToken(); // eat def. PrototypeAST *Proto = ParsePrototype(); if (Proto == 0) return 0; if (ExprAST *E = ParseExpression()) return new FunctionAST(Proto, E); return 0; } /// toplevelexpr ::= expression static FunctionAST *ParseTopLevelExpr() { if (ExprAST *E = ParseExpression()) { // Make an anonymous proto. PrototypeAST *Proto = new PrototypeAST("", std::vector()); return new FunctionAST(Proto, E); } return 0; } /// external ::= 'extern' prototype static PrototypeAST *ParseExtern() { getNextToken(); // eat extern. return ParsePrototype(); } //===----------------------------------------------------------------------===// // Quick and dirty hack //===----------------------------------------------------------------------===// // FIXME: Obviously we can do better than this std::string GenerateUniqueName(const char *root) { static int i = 0; char s[16]; sprintf(s, "%s%d", root, i++); std::string S = s; return S; } std::string MakeLegalFunctionName(std::string Name) { std::string NewName; if (!Name.length()) return GenerateUniqueName("anon_func_"); // Start with what we have NewName = Name; // Look for a numberic first character if (NewName.find_first_of("0123456789") == 0) { NewName.insert(0, 1, 'n'); } // Replace illegal characters with their ASCII equivalent std::string legal_elements = "_abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789"; size_t pos; while ((pos = NewName.find_first_not_of(legal_elements)) != std::string::npos) { char old_c = NewName.at(pos); char new_str[16]; sprintf(new_str, "%d", (int)old_c); NewName = NewName.replace(pos, 1, new_str); } return NewName; } //===----------------------------------------------------------------------===// // MCJIT helper class //===----------------------------------------------------------------------===// class MCJITHelper { public: MCJITHelper(LLVMContext &C) : Context(C), OpenModule(NULL) {} ~MCJITHelper(); Function *getFunction(const std::string FnName); Module *getModuleForNewFunction(); void *getPointerToFunction(Function *F); void *getSymbolAddress(const std::string &Name); void dump(); private: typedef std::vector ModuleVector; typedef std::vector EngineVector; LLVMContext &Context; Module *OpenModule; ModuleVector Modules; EngineVector Engines; }; class HelpingMemoryManager : public SectionMemoryManager { HelpingMemoryManager(const HelpingMemoryManager &) = delete; void operator=(const HelpingMemoryManager &) = delete; public: HelpingMemoryManager(MCJITHelper *Helper) : MasterHelper(Helper) {} virtual ~HelpingMemoryManager() {} /// This method returns the address of the specified symbol. /// Our implementation will attempt to find symbols in other /// modules associated with the MCJITHelper to cross link symbols /// from one generated module to another. virtual uint64_t getSymbolAddress(const std::string &Name) override; private: MCJITHelper *MasterHelper; }; uint64_t HelpingMemoryManager::getSymbolAddress(const std::string &Name) { uint64_t FnAddr = SectionMemoryManager::getSymbolAddress(Name); if (FnAddr) return FnAddr; uint64_t HelperFun = (uint64_t)MasterHelper->getSymbolAddress(Name); if (!HelperFun) report_fatal_error("Program used extern function '" + Name + "' which could not be resolved!"); return HelperFun; } MCJITHelper::~MCJITHelper() { if (OpenModule) delete OpenModule; EngineVector::iterator begin = Engines.begin(); EngineVector::iterator end = Engines.end(); EngineVector::iterator it; for (it = begin; it != end; ++it) delete *it; } Function *MCJITHelper::getFunction(const std::string FnName) { ModuleVector::iterator begin = Modules.begin(); ModuleVector::iterator end = Modules.end(); ModuleVector::iterator it; for (it = begin; it != end; ++it) { Function *F = (*it)->getFunction(FnName); if (F) { if (*it == OpenModule) return F; assert(OpenModule != NULL); // This function is in a module that has already been JITed. // We need to generate a new prototype for external linkage. Function *PF = OpenModule->getFunction(FnName); if (PF && !PF->empty()) { ErrorF("redefinition of function across modules"); return 0; } // If we don't have a prototype yet, create one. if (!PF) PF = Function::Create(F->getFunctionType(), Function::ExternalLinkage, FnName, OpenModule); return PF; } } return NULL; } Module *MCJITHelper::getModuleForNewFunction() { // If we have a Module that hasn't been JITed, use that. if (OpenModule) return OpenModule; // Otherwise create a new Module. std::string ModName = GenerateUniqueName("mcjit_module_"); Module *M = new Module(ModName, Context); Modules.push_back(M); OpenModule = M; return M; } void *MCJITHelper::getPointerToFunction(Function *F) { // See if an existing instance of MCJIT has this function. EngineVector::iterator begin = Engines.begin(); EngineVector::iterator end = Engines.end(); EngineVector::iterator it; for (it = begin; it != end; ++it) { void *P = (*it)->getPointerToFunction(F); if (P) return P; } // If we didn't find the function, see if we can generate it. if (OpenModule) { std::string ErrStr; ExecutionEngine *NewEngine = EngineBuilder(std::unique_ptr(OpenModule)) .setErrorStr(&ErrStr) .setMCJITMemoryManager(std::unique_ptr( new HelpingMemoryManager(this))) .create(); if (!NewEngine) { fprintf(stderr, "Could not create ExecutionEngine: %s\n", ErrStr.c_str()); exit(1); } // Create a function pass manager for this engine auto *FPM = new legacy::FunctionPassManager(OpenModule); // Set up the optimizer pipeline. Start with registering info about how the // target lays out data structures. OpenModule->setDataLayout(NewEngine->getDataLayout()); FPM->add(new DataLayoutPass()); // Provide basic AliasAnalysis support for GVN. FPM->add(createBasicAliasAnalysisPass()); // Promote allocas to registers. FPM->add(createPromoteMemoryToRegisterPass()); // Do simple "peephole" optimizations and bit-twiddling optzns. FPM->add(createInstructionCombiningPass()); // Reassociate expressions. FPM->add(createReassociatePass()); // Eliminate Common SubExpressions. FPM->add(createGVNPass()); // Simplify the control flow graph (deleting unreachable blocks, etc). FPM->add(createCFGSimplificationPass()); FPM->doInitialization(); // For each function in the module Module::iterator it; Module::iterator end = OpenModule->end(); for (it = OpenModule->begin(); it != end; ++it) { // Run the FPM on this function FPM->run(*it); } // We don't need this anymore delete FPM; OpenModule = NULL; Engines.push_back(NewEngine); NewEngine->finalizeObject(); return NewEngine->getPointerToFunction(F); } return NULL; } void *MCJITHelper::getSymbolAddress(const std::string &Name) { // Look for the symbol in each of our execution engines. EngineVector::iterator begin = Engines.begin(); EngineVector::iterator end = Engines.end(); EngineVector::iterator it; for (it = begin; it != end; ++it) { uint64_t FAddr = (*it)->getFunctionAddress(Name); if (FAddr) { return (void *)FAddr; } } return NULL; } void MCJITHelper::dump() { ModuleVector::iterator begin = Modules.begin(); ModuleVector::iterator end = Modules.end(); ModuleVector::iterator it; for (it = begin; it != end; ++it) (*it)->dump(); } //===----------------------------------------------------------------------===// // Code Generation //===----------------------------------------------------------------------===// static MCJITHelper *JITHelper; static IRBuilder<> Builder(getGlobalContext()); static std::map NamedValues; Value *ErrorV(const char *Str) { Error(Str); return 0; } Value *NumberExprAST::Codegen() { return ConstantFP::get(getGlobalContext(), APFloat(Val)); } Value *VariableExprAST::Codegen() { // Look this variable up in the function. Value *V = NamedValues[Name]; return V ? V : ErrorV("Unknown variable name"); } Value *BinaryExprAST::Codegen() { Value *L = LHS->Codegen(); Value *R = RHS->Codegen(); if (L == 0 || R == 0) return 0; switch (Op) { case '+': return Builder.CreateFAdd(L, R, "addtmp"); case '-': return Builder.CreateFSub(L, R, "subtmp"); case '*': return Builder.CreateFMul(L, R, "multmp"); case '<': L = Builder.CreateFCmpULT(L, R, "cmptmp"); // Convert bool 0/1 to double 0.0 or 1.0 return Builder.CreateUIToFP(L, Type::getDoubleTy(getGlobalContext()), "booltmp"); default: return ErrorV("invalid binary operator"); } } Value *CallExprAST::Codegen() { // Look up the name in the global module table. Function *CalleeF = JITHelper->getFunction(Callee); if (CalleeF == 0) return ErrorV("Unknown function referenced"); // If argument mismatch error. if (CalleeF->arg_size() != Args.size()) return ErrorV("Incorrect # arguments passed"); std::vector ArgsV; for (unsigned i = 0, e = Args.size(); i != e; ++i) { ArgsV.push_back(Args[i]->Codegen()); if (ArgsV.back() == 0) return 0; } return Builder.CreateCall(CalleeF, ArgsV, "calltmp"); } Function *PrototypeAST::Codegen() { // Make the function type: double(double,double) etc. std::vector Doubles(Args.size(), Type::getDoubleTy(getGlobalContext())); FunctionType *FT = FunctionType::get(Type::getDoubleTy(getGlobalContext()), Doubles, false); std::string FnName = MakeLegalFunctionName(Name); Module *M = JITHelper->getModuleForNewFunction(); Function *F = Function::Create(FT, Function::ExternalLinkage, FnName, M); // If F conflicted, there was already something named 'Name'. If it has a // body, don't allow redefinition or reextern. if (F->getName() != FnName) { // Delete the one we just made and get the existing one. F->eraseFromParent(); F = JITHelper->getFunction(Name); // If F already has a body, reject this. if (!F->empty()) { ErrorF("redefinition of function"); return 0; } // If F took a different number of args, reject. if (F->arg_size() != Args.size()) { ErrorF("redefinition of function with different # args"); return 0; } } // Set names for all arguments. unsigned Idx = 0; for (Function::arg_iterator AI = F->arg_begin(); Idx != Args.size(); ++AI, ++Idx) { AI->setName(Args[Idx]); // Add arguments to variable symbol table. NamedValues[Args[Idx]] = AI; } return F; } Function *FunctionAST::Codegen() { NamedValues.clear(); Function *TheFunction = Proto->Codegen(); if (TheFunction == 0) return 0; // Create a new basic block to start insertion into. BasicBlock *BB = BasicBlock::Create(getGlobalContext(), "entry", TheFunction); Builder.SetInsertPoint(BB); if (Value *RetVal = Body->Codegen()) { // Finish off the function. Builder.CreateRet(RetVal); // Validate the generated code, checking for consistency. verifyFunction(*TheFunction); return TheFunction; } // Error reading body, remove function. TheFunction->eraseFromParent(); return 0; } //===----------------------------------------------------------------------===// // Top-Level parsing and JIT Driver //===----------------------------------------------------------------------===// static void HandleDefinition() { if (FunctionAST *F = ParseDefinition()) { if (Function *LF = F->Codegen()) { fprintf(stderr, "Read function definition:"); LF->dump(); } } else { // Skip token for error recovery. getNextToken(); } } static void HandleExtern() { if (PrototypeAST *P = ParseExtern()) { if (Function *F = P->Codegen()) { fprintf(stderr, "Read extern: "); F->dump(); } } else { // Skip token for error recovery. getNextToken(); } } static void HandleTopLevelExpression() { // Evaluate a top-level expression into an anonymous function. if (FunctionAST *F = ParseTopLevelExpr()) { if (Function *LF = F->Codegen()) { // JIT the function, returning a function pointer. void *FPtr = JITHelper->getPointerToFunction(LF); // Cast it to the right type (takes no arguments, returns a double) so we // can call it as a native function. double (*FP)() = (double (*)())(intptr_t)FPtr; fprintf(stderr, "Evaluated to %f\n", FP()); } } else { // Skip token for error recovery. getNextToken(); } } /// top ::= definition | external | expression | ';' static void MainLoop() { while (1) { fprintf(stderr, "ready> "); switch (CurTok) { case tok_eof: return; case ';': getNextToken(); break; // ignore top-level semicolons. case tok_def: HandleDefinition(); break; case tok_extern: HandleExtern(); break; default: HandleTopLevelExpression(); break; } } } //===----------------------------------------------------------------------===// // "Library" functions that can be "extern'd" from user code. //===----------------------------------------------------------------------===// /// putchard - putchar that takes a double and returns 0. extern "C" double putchard(double X) { putchar((char)X); return 0; } //===----------------------------------------------------------------------===// // Main driver code. //===----------------------------------------------------------------------===// int main() { InitializeNativeTarget(); InitializeNativeTargetAsmPrinter(); InitializeNativeTargetAsmParser(); LLVMContext &Context = getGlobalContext(); JITHelper = new MCJITHelper(Context); // Install standard binary operators. // 1 is lowest precedence. BinopPrecedence['<'] = 10; BinopPrecedence['+'] = 20; BinopPrecedence['-'] = 20; BinopPrecedence['*'] = 40; // highest. // Prime the first token. fprintf(stderr, "ready> "); getNextToken(); // Run the main "interpreter loop" now. MainLoop(); // Print out all of the generated code. JITHelper->dump(); return 0; }