// $Id$ //*************************************************************************** // File: // SparcInstrSelection.cpp // // Purpose: // BURS instruction selection for SPARC V9 architecture. // // History: // 7/02/01 - Vikram Adve - Created //**************************************************************************/ #include "SparcInternals.h" #include "SparcInstrSelectionSupport.h" #include "llvm/CodeGen/InstrSelectionSupport.h" #include "llvm/CodeGen/MachineInstr.h" #include "llvm/CodeGen/InstrForest.h" #include "llvm/CodeGen/InstrSelection.h" #include "llvm/DerivedTypes.h" #include "llvm/iTerminators.h" #include "llvm/iMemory.h" #include "llvm/iOther.h" #include "llvm/BasicBlock.h" #include "llvm/Method.h" #include "llvm/ConstantVals.h" #include "Support/MathExtras.h" #include //************************* Forward Declarations ***************************/ static void SetMemOperands_Internal (MachineInstr* minstr, const InstructionNode* vmInstrNode, Value* ptrVal, Value* arrayOffsetVal, const vector& idxVec, const TargetMachine& target); //************************ Internal Functions ******************************/ static inline MachineOpCode ChooseBprInstruction(const InstructionNode* instrNode) { MachineOpCode opCode; Instruction* setCCInstr = ((InstructionNode*) instrNode->leftChild())->getInstruction(); switch(setCCInstr->getOpcode()) { case Instruction::SetEQ: opCode = BRZ; break; case Instruction::SetNE: opCode = BRNZ; break; case Instruction::SetLE: opCode = BRLEZ; break; case Instruction::SetGE: opCode = BRGEZ; break; case Instruction::SetLT: opCode = BRLZ; break; case Instruction::SetGT: opCode = BRGZ; break; default: assert(0 && "Unrecognized VM instruction!"); opCode = INVALID_OPCODE; break; } return opCode; } static inline MachineOpCode ChooseBpccInstruction(const InstructionNode* instrNode, const BinaryOperator* setCCInstr) { MachineOpCode opCode = INVALID_OPCODE; bool isSigned = setCCInstr->getOperand(0)->getType()->isSigned(); if (isSigned) { switch(setCCInstr->getOpcode()) { case Instruction::SetEQ: opCode = BE; break; case Instruction::SetNE: opCode = BNE; break; case Instruction::SetLE: opCode = BLE; break; case Instruction::SetGE: opCode = BGE; break; case Instruction::SetLT: opCode = BL; break; case Instruction::SetGT: opCode = BG; break; default: assert(0 && "Unrecognized VM instruction!"); break; } } else { switch(setCCInstr->getOpcode()) { case Instruction::SetEQ: opCode = BE; break; case Instruction::SetNE: opCode = BNE; break; case Instruction::SetLE: opCode = BLEU; break; case Instruction::SetGE: opCode = BCC; break; case Instruction::SetLT: opCode = BCS; break; case Instruction::SetGT: opCode = BGU; break; default: assert(0 && "Unrecognized VM instruction!"); break; } } return opCode; } static inline MachineOpCode ChooseBFpccInstruction(const InstructionNode* instrNode, const BinaryOperator* setCCInstr) { MachineOpCode opCode = INVALID_OPCODE; switch(setCCInstr->getOpcode()) { case Instruction::SetEQ: opCode = FBE; break; case Instruction::SetNE: opCode = FBNE; break; case Instruction::SetLE: opCode = FBLE; break; case Instruction::SetGE: opCode = FBGE; break; case Instruction::SetLT: opCode = FBL; break; case Instruction::SetGT: opCode = FBG; break; default: assert(0 && "Unrecognized VM instruction!"); break; } return opCode; } // Create a unique TmpInstruction for a boolean value, // representing the CC register used by a branch on that value. // For now, hack this using a little static cache of TmpInstructions. // Eventually the entire BURG instruction selection should be put // into a separate class that can hold such information. // The static cache is not too bad because the memory for these // TmpInstructions will be freed along with the rest of the Method anyway. // static TmpInstruction* GetTmpForCC(Value* boolVal, const Method* method, const Type* ccType) { typedef hash_map BoolTmpCache; static BoolTmpCache boolToTmpCache; // Map boolVal -> TmpInstruction* static const Method* lastMethod = NULL; // Use to flush cache between methods assert(boolVal->getType() == Type::BoolTy && "Weird but ok! Delete assert"); if (lastMethod != method) { lastMethod = method; boolToTmpCache.clear(); } // Look for tmpI and create a new one otherwise. The new value is // directly written to map using the ref returned by operator[]. TmpInstruction*& tmpI = boolToTmpCache[boolVal]; if (tmpI == NULL) tmpI = new TmpInstruction(TMP_INSTRUCTION_OPCODE, ccType, boolVal, NULL); return tmpI; } static inline MachineOpCode ChooseBccInstruction(const InstructionNode* instrNode, bool& isFPBranch) { InstructionNode* setCCNode = (InstructionNode*) instrNode->leftChild(); BinaryOperator* setCCInstr = (BinaryOperator*) setCCNode->getInstruction(); const Type* setCCType = setCCInstr->getOperand(0)->getType(); isFPBranch = (setCCType == Type::FloatTy || setCCType == Type::DoubleTy); if (isFPBranch) return ChooseBFpccInstruction(instrNode, setCCInstr); else return ChooseBpccInstruction(instrNode, setCCInstr); } static inline MachineOpCode ChooseMovFpccInstruction(const InstructionNode* instrNode) { MachineOpCode opCode = INVALID_OPCODE; switch(instrNode->getInstruction()->getOpcode()) { case Instruction::SetEQ: opCode = MOVFE; break; case Instruction::SetNE: opCode = MOVFNE; break; case Instruction::SetLE: opCode = MOVFLE; break; case Instruction::SetGE: opCode = MOVFGE; break; case Instruction::SetLT: opCode = MOVFL; break; case Instruction::SetGT: opCode = MOVFG; break; default: assert(0 && "Unrecognized VM instruction!"); break; } return opCode; } // Assumes that SUBcc v1, v2 -> v3 has been executed. // In most cases, we want to clear v3 and then follow it by instruction // MOVcc 1 -> v3. // Set mustClearReg=false if v3 need not be cleared before conditional move. // Set valueToMove=0 if we want to conditionally move 0 instead of 1 // (i.e., we want to test inverse of a condition) // (The latter two cases do not seem to arise because SetNE needs nothing.) // static MachineOpCode ChooseMovpccAfterSub(const InstructionNode* instrNode, bool& mustClearReg, int& valueToMove) { MachineOpCode opCode = INVALID_OPCODE; mustClearReg = true; valueToMove = 1; switch(instrNode->getInstruction()->getOpcode()) { case Instruction::SetEQ: opCode = MOVE; break; case Instruction::SetLE: opCode = MOVLE; break; case Instruction::SetGE: opCode = MOVGE; break; case Instruction::SetLT: opCode = MOVL; break; case Instruction::SetGT: opCode = MOVG; break; case Instruction::SetNE: assert(0 && "No move required!"); break; default: assert(0 && "Unrecognized VM instr!"); break; } return opCode; } static inline MachineOpCode ChooseConvertToFloatInstr(const InstructionNode* instrNode, const Type* opType) { MachineOpCode opCode = INVALID_OPCODE; switch(instrNode->getOpLabel()) { case ToFloatTy: if (opType == Type::SByteTy || opType == Type::ShortTy || opType == Type::IntTy) opCode = FITOS; else if (opType == Type::LongTy) opCode = FXTOS; else if (opType == Type::DoubleTy) opCode = FDTOS; else if (opType == Type::FloatTy) ; else assert(0 && "Cannot convert this type to FLOAT on SPARC"); break; case ToDoubleTy: // Use FXTOD for all integer-to-double conversions. This has to be // consistent with the code in CreateCodeToCopyIntToFloat() since // that will be used to load the integer into an FP register. // if (opType == Type::SByteTy || opType == Type::ShortTy || opType == Type::IntTy || opType == Type::LongTy) opCode = FXTOD; else if (opType == Type::FloatTy) opCode = FSTOD; else if (opType == Type::DoubleTy) ; else assert(0 && "Cannot convert this type to DOUBLE on SPARC"); break; default: break; } return opCode; } static inline MachineOpCode ChooseConvertToIntInstr(const InstructionNode* instrNode, const Type* opType) { MachineOpCode opCode = INVALID_OPCODE;; int instrType = (int) instrNode->getOpLabel(); if (instrType == ToSByteTy || instrType == ToShortTy || instrType == ToIntTy) { switch (opType->getPrimitiveID()) { case Type::FloatTyID: opCode = FSTOI; break; case Type::DoubleTyID: opCode = FDTOI; break; default: assert(0 && "Non-numeric non-bool type cannot be converted to Int"); break; } } else if (instrType == ToLongTy) { switch (opType->getPrimitiveID()) { case Type::FloatTyID: opCode = FSTOX; break; case Type::DoubleTyID: opCode = FDTOX; break; default: assert(0 && "Non-numeric non-bool type cannot be converted to Long"); break; } } else assert(0 && "Should not get here, Mo!"); return opCode; } static inline MachineOpCode ChooseAddInstructionByType(const Type* resultType) { MachineOpCode opCode = INVALID_OPCODE; if (resultType->isIntegral() || resultType->isPointerType() || resultType->isLabelType() || isa(resultType) || resultType == Type::BoolTy) { opCode = ADD; } else switch(resultType->getPrimitiveID()) { case Type::FloatTyID: opCode = FADDS; break; case Type::DoubleTyID: opCode = FADDD; break; default: assert(0 && "Invalid type for ADD instruction"); break; } return opCode; } static inline MachineOpCode ChooseAddInstruction(const InstructionNode* instrNode) { return ChooseAddInstructionByType(instrNode->getInstruction()->getType()); } static inline MachineInstr* CreateMovFloatInstruction(const InstructionNode* instrNode, const Type* resultType) { MachineInstr* minstr = new MachineInstr((resultType == Type::FloatTy) ? FMOVS : FMOVD); minstr->SetMachineOperand(0, MachineOperand::MO_VirtualRegister, instrNode->leftChild()->getValue()); minstr->SetMachineOperand(1, MachineOperand::MO_VirtualRegister, instrNode->getValue()); return minstr; } static inline MachineInstr* CreateAddConstInstruction(const InstructionNode* instrNode) { MachineInstr* minstr = NULL; Value* constOp = ((InstrTreeNode*) instrNode->rightChild())->getValue(); assert(isa(constOp)); // Cases worth optimizing are: // (1) Add with 0 for float or double: use an FMOV of appropriate type, // instead of an FADD (1 vs 3 cycles). There is no integer MOV. // const Type* resultType = instrNode->getInstruction()->getType(); if (resultType == Type::FloatTy || resultType == Type::DoubleTy) { double dval = cast(constOp)->getValue(); if (dval == 0.0) minstr = CreateMovFloatInstruction(instrNode, resultType); } return minstr; } static inline MachineOpCode ChooseSubInstructionByType(const Type* resultType) { MachineOpCode opCode = INVALID_OPCODE; if (resultType->isIntegral() || resultType->isPointerType()) { opCode = SUB; } else switch(resultType->getPrimitiveID()) { case Type::FloatTyID: opCode = FSUBS; break; case Type::DoubleTyID: opCode = FSUBD; break; default: assert(0 && "Invalid type for SUB instruction"); break; } return opCode; } static inline MachineInstr* CreateSubConstInstruction(const InstructionNode* instrNode) { MachineInstr* minstr = NULL; Value* constOp = ((InstrTreeNode*) instrNode->rightChild())->getValue(); assert(isa(constOp)); // Cases worth optimizing are: // (1) Sub with 0 for float or double: use an FMOV of appropriate type, // instead of an FSUB (1 vs 3 cycles). There is no integer MOV. // const Type* resultType = instrNode->getInstruction()->getType(); if (resultType == Type::FloatTy || resultType == Type::DoubleTy) { double dval = cast(constOp)->getValue(); if (dval == 0.0) minstr = CreateMovFloatInstruction(instrNode, resultType); } return minstr; } static inline MachineOpCode ChooseFcmpInstruction(const InstructionNode* instrNode) { MachineOpCode opCode = INVALID_OPCODE; Value* operand = ((InstrTreeNode*) instrNode->leftChild())->getValue(); switch(operand->getType()->getPrimitiveID()) { case Type::FloatTyID: opCode = FCMPS; break; case Type::DoubleTyID: opCode = FCMPD; break; default: assert(0 && "Invalid type for FCMP instruction"); break; } return opCode; } // Assumes that leftArg and rightArg are both cast instructions. // static inline bool BothFloatToDouble(const InstructionNode* instrNode) { InstrTreeNode* leftArg = instrNode->leftChild(); InstrTreeNode* rightArg = instrNode->rightChild(); InstrTreeNode* leftArgArg = leftArg->leftChild(); InstrTreeNode* rightArgArg = rightArg->leftChild(); assert(leftArg->getValue()->getType() == rightArg->getValue()->getType()); // Check if both arguments are floats cast to double return (leftArg->getValue()->getType() == Type::DoubleTy && leftArgArg->getValue()->getType() == Type::FloatTy && rightArgArg->getValue()->getType() == Type::FloatTy); } static inline MachineOpCode ChooseMulInstructionByType(const Type* resultType) { MachineOpCode opCode = INVALID_OPCODE; if (resultType->isIntegral()) opCode = MULX; else switch(resultType->getPrimitiveID()) { case Type::FloatTyID: opCode = FMULS; break; case Type::DoubleTyID: opCode = FMULD; break; default: assert(0 && "Invalid type for MUL instruction"); break; } return opCode; } static inline MachineOpCode ChooseMulInstruction(const InstructionNode* instrNode, bool checkCasts) { if (checkCasts && BothFloatToDouble(instrNode)) return FSMULD; // else use the regular multiply instructions return ChooseMulInstructionByType(instrNode->getInstruction()->getType()); } static inline MachineInstr* CreateIntNegInstruction(TargetMachine& target, Value* vreg) { MachineInstr* minstr = new MachineInstr(SUB); minstr->SetMachineOperand(0, target.getRegInfo().getZeroRegNum()); minstr->SetMachineOperand(1, MachineOperand::MO_VirtualRegister, vreg); minstr->SetMachineOperand(2, MachineOperand::MO_VirtualRegister, vreg); return minstr; } static inline MachineInstr* CreateMulConstInstruction(TargetMachine &target, const InstructionNode* instrNode, MachineInstr*& getMinstr2) { MachineInstr* minstr = NULL; // return NULL if we cannot exploit constant getMinstr2 = NULL; // to create a cheaper instruction bool needNeg = false; Value* constOp = ((InstrTreeNode*) instrNode->rightChild())->getValue(); assert(isa(constOp)); // Cases worth optimizing are: // (1) Multiply by 0 or 1 for any type: replace with copy (ADD or FMOV) // (2) Multiply by 2^x for integer types: replace with Shift // const Type* resultType = instrNode->getInstruction()->getType(); if (resultType->isIntegral() || resultType->isPointerType()) { unsigned pow; bool isValidConst; int64_t C = GetConstantValueAsSignedInt(constOp, isValidConst); if (isValidConst) { bool needNeg = false; if (C < 0) { needNeg = true; C = -C; } if (C == 0 || C == 1) { minstr = new MachineInstr(ADD); if (C == 0) minstr->SetMachineOperand(0, target.getRegInfo().getZeroRegNum()); else minstr->SetMachineOperand(0,MachineOperand::MO_VirtualRegister, instrNode->leftChild()->getValue()); minstr->SetMachineOperand(1,target.getRegInfo().getZeroRegNum()); } else if (IsPowerOf2(C, pow)) { minstr = new MachineInstr((resultType == Type::LongTy) ? SLLX : SLL); minstr->SetMachineOperand(0, MachineOperand::MO_VirtualRegister, instrNode->leftChild()->getValue()); minstr->SetMachineOperand(1, MachineOperand::MO_UnextendedImmed, pow); } if (minstr && needNeg) { // insert after the instr to flip the sign getMinstr2 = CreateIntNegInstruction(target, instrNode->getValue()); } } } else { if (resultType == Type::FloatTy || resultType == Type::DoubleTy) { double dval = cast(constOp)->getValue(); if (fabs(dval) == 1) { bool needNeg = (dval < 0); MachineOpCode opCode = needNeg ? (resultType == Type::FloatTy? FNEGS : FNEGD) : (resultType == Type::FloatTy? FMOVS : FMOVD); minstr = new MachineInstr(opCode); minstr->SetMachineOperand(0, MachineOperand::MO_VirtualRegister, instrNode->leftChild()->getValue()); } } } if (minstr != NULL) minstr->SetMachineOperand(2, MachineOperand::MO_VirtualRegister, instrNode->getValue()); return minstr; } // Generate a divide instruction for Div or Rem. // For Rem, this assumes that the operand type will be signed if the result // type is signed. This is correct because they must have the same sign. // static inline MachineOpCode ChooseDivInstruction(TargetMachine &target, const InstructionNode* instrNode) { MachineOpCode opCode = INVALID_OPCODE; const Type* resultType = instrNode->getInstruction()->getType(); if (resultType->isIntegral()) opCode = resultType->isSigned()? SDIVX : UDIVX; else switch(resultType->getPrimitiveID()) { case Type::FloatTyID: opCode = FDIVS; break; case Type::DoubleTyID: opCode = FDIVD; break; default: assert(0 && "Invalid type for DIV instruction"); break; } return opCode; } static inline MachineInstr* CreateDivConstInstruction(TargetMachine &target, const InstructionNode* instrNode, MachineInstr*& getMinstr2) { MachineInstr* minstr = NULL; getMinstr2 = NULL; Value* constOp = ((InstrTreeNode*) instrNode->rightChild())->getValue(); assert(isa(constOp)); // Cases worth optimizing are: // (1) Divide by 1 for any type: replace with copy (ADD or FMOV) // (2) Divide by 2^x for integer types: replace with SR[L or A]{X} // const Type* resultType = instrNode->getInstruction()->getType(); if (resultType->isIntegral()) { unsigned pow; bool isValidConst; int64_t C = GetConstantValueAsSignedInt(constOp, isValidConst); if (isValidConst) { bool needNeg = false; if (C < 0) { needNeg = true; C = -C; } if (C == 1) { minstr = new MachineInstr(ADD); minstr->SetMachineOperand(0,MachineOperand::MO_VirtualRegister, instrNode->leftChild()->getValue()); minstr->SetMachineOperand(1,target.getRegInfo().getZeroRegNum()); } else if (IsPowerOf2(C, pow)) { MachineOpCode opCode= ((resultType->isSigned()) ? (resultType==Type::LongTy)? SRAX : SRA : (resultType==Type::LongTy)? SRLX : SRL); minstr = new MachineInstr(opCode); minstr->SetMachineOperand(0, MachineOperand::MO_VirtualRegister, instrNode->leftChild()->getValue()); minstr->SetMachineOperand(1, MachineOperand::MO_UnextendedImmed, pow); } if (minstr && needNeg) { // insert after the instr to flip the sign getMinstr2 = CreateIntNegInstruction(target, instrNode->getValue()); } } } else { if (resultType == Type::FloatTy || resultType == Type::DoubleTy) { double dval = cast(constOp)->getValue(); if (fabs(dval) == 1) { bool needNeg = (dval < 0); MachineOpCode opCode = needNeg ? (resultType == Type::FloatTy? FNEGS : FNEGD) : (resultType == Type::FloatTy? FMOVS : FMOVD); minstr = new MachineInstr(opCode); minstr->SetMachineOperand(0, MachineOperand::MO_VirtualRegister, instrNode->leftChild()->getValue()); } } } if (minstr != NULL) minstr->SetMachineOperand(2, MachineOperand::MO_VirtualRegister, instrNode->getValue()); return minstr; } //------------------------------------------------------------------------ // Function SetOperandsForMemInstr // // Choose addressing mode for the given load or store instruction. // Use [reg+reg] if it is an indexed reference, and the index offset is // not a constant or if it cannot fit in the offset field. // Use [reg+offset] in all other cases. // // This assumes that all array refs are "lowered" to one of these forms: // %x = load (subarray*) ptr, constant ; single constant offset // %x = load (subarray*) ptr, offsetVal ; single non-constant offset // Generally, this should happen via strength reduction + LICM. // Also, strength reduction should take care of using the same register for // the loop index variable and an array index, when that is profitable. //------------------------------------------------------------------------ static void SetOperandsForMemInstr(MachineInstr* minstr, const InstructionNode* vmInstrNode, const TargetMachine& target) { MemAccessInst* memInst = (MemAccessInst*) vmInstrNode->getInstruction(); // Variables to hold the index vector, ptr value, and offset value. // The major work here is to extract these for all 3 instruction types // and then call the common function SetMemOperands_Internal(). // const vector OLDIDXVEC = memInst->getIndicesBROKEN(); const vector* idxVec = &OLDIDXVEC; //FIXME vector* newIdxVec = NULL; Value* ptrVal; Value* arrayOffsetVal = NULL; // Test if a GetElemPtr instruction is being folded into this mem instrn. // If so, it will be in the left child for Load and GetElemPtr, // and in the right child for Store instructions. // InstrTreeNode* ptrChild = (vmInstrNode->getOpLabel() == Instruction::Store ? vmInstrNode->rightChild() : vmInstrNode->leftChild()); if (ptrChild->getOpLabel() == Instruction::GetElementPtr || ptrChild->getOpLabel() == GetElemPtrIdx) { // There is a GetElemPtr instruction and there may be a chain of // more than one. Use the pointer value of the last one in the chain. // Fold the index vectors from the entire chain and from the mem // instruction into one single index vector. // Finally, we never fold for an array instruction so make that NULL. newIdxVec = new vector; ptrVal = FoldGetElemChain((InstructionNode*) ptrChild, *newIdxVec); newIdxVec->insert(newIdxVec->end(), idxVec->begin(), idxVec->end()); idxVec = newIdxVec; assert(!((PointerType*)ptrVal->getType())->getElementType()->isArrayType() && "GetElemPtr cannot be folded into array refs in selection"); } else { // There is no GetElemPtr instruction. // Use the pointer value and the index vector from the Mem instruction. // If it is an array reference, get the array offset value. // ptrVal = memInst->getPointerOperand(); const Type* opType = cast(ptrVal->getType())->getElementType(); if (opType->isArrayType()) { assert((memInst->getNumOperands() == (unsigned) 1 + memInst->getFirstIndexOperandNumber()) && "Array refs must be lowered before Instruction Selection"); arrayOffsetVal = memInst->getOperand(memInst->getFirstIndexOperandNumber()); } } SetMemOperands_Internal(minstr, vmInstrNode, ptrVal, arrayOffsetVal, *idxVec, target); if (newIdxVec != NULL) delete newIdxVec; } static void SetMemOperands_Internal(MachineInstr* minstr, const InstructionNode* vmInstrNode, Value* ptrVal, Value* arrayOffsetVal, const vector& idxVec, const TargetMachine& target) { MemAccessInst* memInst = (MemAccessInst*) vmInstrNode->getInstruction(); // Initialize so we default to storing the offset in a register. int64_t smallConstOffset = 0; Value* valueForRegOffset = NULL; MachineOperand::MachineOperandType offsetOpType =MachineOperand::MO_VirtualRegister; // Check if there is an index vector and if so, if it translates to // a small enough constant to fit in the immediate-offset field. // if (idxVec.size() > 0) { bool isConstantOffset = false; unsigned offset = 0; const PointerType* ptrType = (PointerType*) ptrVal->getType(); if (ptrType->getElementType()->isStructType()) { // the offset is always constant for structs isConstantOffset = true; // Compute the offset value using the index vector offset = target.DataLayout.getIndexedOffset(ptrType, idxVec); } else { // It must be an array ref. Check if the offset is a constant, // and that the indexing has been lowered to a single offset. // assert(isa(ptrType->getElementType())); assert(arrayOffsetVal != NULL && "Expect to be given Value* for array offsets"); if (Constant *CPV = dyn_cast(arrayOffsetVal)) { isConstantOffset = true; // always constant for structs assert(arrayOffsetVal->getType()->isIntegral()); offset = (CPV->getType()->isSigned() ? cast(CPV)->getValue() : (int64_t) cast(CPV)->getValue()); } else { valueForRegOffset = arrayOffsetVal; } } if (isConstantOffset) { // create a virtual register for the constant valueForRegOffset = ConstantSInt::get(Type::IntTy, offset); } } else { offsetOpType = MachineOperand::MO_SignExtendedImmed; smallConstOffset = 0; } // Operand 0 is value for STORE, ptr for LOAD or GET_ELEMENT_PTR // It is the left child in the instruction tree in all cases. Value* leftVal = vmInstrNode->leftChild()->getValue(); minstr->SetMachineOperand(0, MachineOperand::MO_VirtualRegister, leftVal); // Operand 1 is ptr for STORE, offset for LOAD or GET_ELEMENT_PTR // Operand 2 is offset for STORE, result reg for LOAD or GET_ELEMENT_PTR // unsigned offsetOpNum = (memInst->getOpcode() == Instruction::Store)? 2 : 1; if (offsetOpType == MachineOperand::MO_VirtualRegister) { assert(valueForRegOffset != NULL); minstr->SetMachineOperand(offsetOpNum, offsetOpType, valueForRegOffset); } else minstr->SetMachineOperand(offsetOpNum, offsetOpType, smallConstOffset); if (memInst->getOpcode() == Instruction::Store) minstr->SetMachineOperand(1, MachineOperand::MO_VirtualRegister, ptrVal); else minstr->SetMachineOperand(2, MachineOperand::MO_VirtualRegister, vmInstrNode->getValue()); } // // Substitute operand `operandNum' of the instruction in node `treeNode' // in place of the use(s) of that instruction in node `parent'. // Check both explicit and implicit operands! // static void ForwardOperand(InstructionNode* treeNode, InstrTreeNode* parent, int operandNum) { assert(treeNode && parent && "Invalid invocation of ForwardOperand"); Instruction* unusedOp = treeNode->getInstruction(); Value* fwdOp = unusedOp->getOperand(operandNum); // The parent itself may be a list node, so find the real parent instruction while (parent->getNodeType() != InstrTreeNode::NTInstructionNode) { parent = parent->parent(); assert(parent && "ERROR: Non-instruction node has no parent in tree."); } InstructionNode* parentInstrNode = (InstructionNode*) parent; Instruction* userInstr = parentInstrNode->getInstruction(); MachineCodeForVMInstr& mvec = userInstr->getMachineInstrVec(); for (unsigned i=0, N=mvec.size(); i < N; i++) { MachineInstr* minstr = mvec[i]; for (unsigned i=0, numOps=minstr->getNumOperands(); i < numOps; ++i) { const MachineOperand& mop = minstr->getOperand(i); if (mop.getOperandType() == MachineOperand::MO_VirtualRegister && mop.getVRegValue() == unusedOp) { minstr->SetMachineOperand(i, MachineOperand::MO_VirtualRegister, fwdOp); } } for (unsigned i=0, numOps=minstr->getNumImplicitRefs(); i < numOps; ++i) if (minstr->getImplicitRef(i) == unusedOp) minstr->setImplicitRef(i, fwdOp, minstr->implicitRefIsDefined(i)); } } void UltraSparcInstrInfo:: CreateCopyInstructionsByType(const TargetMachine& target, Value* src, Instruction* dest, vector& minstrVec) const { bool loadConstantToReg = false; const Type* resultType = dest->getType(); MachineOpCode opCode = ChooseAddInstructionByType(resultType); if (opCode == INVALID_OPCODE) { assert(0 && "Unsupported result type in CreateCopyInstructionsByType()"); return; } // if `src' is a constant that doesn't fit in the immed field or if it is // a global variable (i.e., a constant address), generate a load // instruction instead of an add // if (isa(src)) { unsigned int machineRegNum; int64_t immedValue; MachineOperand::MachineOperandType opType = ChooseRegOrImmed(src, opCode, target, /*canUseImmed*/ true, machineRegNum, immedValue); if (opType == MachineOperand::MO_VirtualRegister) loadConstantToReg = true; } else if (isa(src)) loadConstantToReg = true; if (loadConstantToReg) { // `src' is constant and cannot fit in immed field for the ADD // Insert instructions to "load" the constant into a register vector tempVec; target.getInstrInfo().CreateCodeToLoadConst(src,dest,minstrVec,tempVec); for (unsigned i=0; i < tempVec.size(); i++) dest->getMachineInstrVec().addTempValue(tempVec[i]); } else { // Create the appropriate add instruction. // Make `src' the second operand, in case it is a constant // Use (unsigned long) 0 for a NULL pointer value. // const Type* nullValueType = (resultType->getPrimitiveID() == Type::PointerTyID)? Type::ULongTy : resultType; MachineInstr* minstr = new MachineInstr(opCode); minstr->SetMachineOperand(0, MachineOperand::MO_VirtualRegister, Constant::getNullConstant(nullValueType)); minstr->SetMachineOperand(1, MachineOperand::MO_VirtualRegister, src); minstr->SetMachineOperand(2, MachineOperand::MO_VirtualRegister, dest); minstrVec.push_back(minstr); } } //******************* Externally Visible Functions *************************/ //------------------------------------------------------------------------ // External Function: GetInstructionsForProlog // External Function: GetInstructionsForEpilog // // Purpose: // Create prolog and epilog code for procedure entry and exit //------------------------------------------------------------------------ extern unsigned GetInstructionsForProlog(BasicBlock* entryBB, TargetMachine &target, MachineInstr** mvec) { int64_t s0=0; // used to avoid overloading ambiguity below const MachineFrameInfo& frameInfo = target.getFrameInfo(); // The second operand is the stack size. If it does not fit in the // immediate field, we either have to find an unused register in the // caller's window or move some elements to the dynamically allocated // area of the stack frame (just above save area and method args). Method* method = entryBB->getParent(); MachineCodeForMethod& mcInfo = MachineCodeForMethod::get(method); unsigned int staticStackSize = mcInfo.getStaticStackSize(); if (staticStackSize < (unsigned) frameInfo.getMinStackFrameSize()) staticStackSize = (unsigned) frameInfo.getMinStackFrameSize(); if (unsigned padsz = (staticStackSize % (unsigned) frameInfo.getStackFrameSizeAlignment())) staticStackSize += frameInfo.getStackFrameSizeAlignment() - padsz; assert(target.getInstrInfo().constantFitsInImmedField(SAVE, staticStackSize) && "Stack size too large for immediate field of SAVE instruction. Need additional work as described in the comment above"); mvec[0] = new MachineInstr(SAVE); mvec[0]->SetMachineOperand(0, target.getRegInfo().getStackPointer()); mvec[0]->SetMachineOperand(1, MachineOperand::MO_SignExtendedImmed, - (int) staticStackSize); mvec[0]->SetMachineOperand(2, target.getRegInfo().getStackPointer()); return 1; } extern unsigned GetInstructionsForEpilog(BasicBlock* anExitBB, TargetMachine &target, MachineInstr** mvec) { int64_t s0=0; // used to avoid overloading ambiguity below mvec[0] = new MachineInstr(RESTORE); mvec[0]->SetMachineOperand(0, target.getRegInfo().getZeroRegNum()); mvec[0]->SetMachineOperand(1, MachineOperand::MO_SignExtendedImmed, s0); mvec[0]->SetMachineOperand(2, target.getRegInfo().getZeroRegNum()); return 1; } //------------------------------------------------------------------------ // External Function: ThisIsAChainRule // // Purpose: // Check if a given BURG rule is a chain rule. //------------------------------------------------------------------------ extern bool ThisIsAChainRule(int eruleno) { switch(eruleno) { case 111: // stmt: reg case 113: // stmt: bool case 123: case 124: case 125: case 126: case 127: case 128: case 129: case 130: case 131: case 132: case 133: case 155: case 221: case 222: case 241: case 242: case 243: case 244: return true; break; default: return false; break; } } //------------------------------------------------------------------------ // External Function: GetInstructionsByRule // // Purpose: // Choose machine instructions for the SPARC according to the // patterns chosen by the BURG-generated parser. //------------------------------------------------------------------------ unsigned GetInstructionsByRule(InstructionNode* subtreeRoot, int ruleForNode, short* nts, TargetMachine &target, MachineInstr** mvec) { int numInstr = 1; // initialize for common case bool checkCast = false; // initialize here to use fall-through int nextRule; int forwardOperandNum = -1; int64_t s0=0, s8=8; // variables holding constants to avoid uint64_t u0=0; // overloading ambiguities below for (unsigned i=0; i < MAX_INSTR_PER_VMINSTR; i++) mvec[i] = NULL; // // Let's check for chain rules outside the switch so that we don't have // to duplicate the list of chain rule production numbers here again // if (ThisIsAChainRule(ruleForNode)) { // Chain rules have a single nonterminal on the RHS. // Get the rule that matches the RHS non-terminal and use that instead. // assert(nts[0] && ! nts[1] && "A chain rule should have only one RHS non-terminal!"); nextRule = burm_rule(subtreeRoot->state, nts[0]); nts = burm_nts[nextRule]; numInstr = GetInstructionsByRule(subtreeRoot, nextRule, nts,target,mvec); } else { switch(ruleForNode) { case 1: // stmt: Ret case 2: // stmt: RetValue(reg) { // NOTE: Prepass of register allocation is responsible // for moving return value to appropriate register. // Mark the return-address register as a hidden virtual reg. // Mark the return value register as an implicit ref of // the machine instruction. // Finally put a NOP in the delay slot. ReturnInst *returnInstr = cast(subtreeRoot->getInstruction()); assert(returnInstr->getOpcode() == Instruction::Ret); Method* method = returnInstr->getParent()->getParent(); Instruction* returnReg = new TmpInstruction(TMP_INSTRUCTION_OPCODE, returnInstr, NULL); returnInstr->getMachineInstrVec().addTempValue(returnReg); mvec[0] = new MachineInstr(JMPLRET); mvec[0]->SetMachineOperand(0, MachineOperand::MO_VirtualRegister, returnReg); mvec[0]->SetMachineOperand(1, MachineOperand::MO_SignExtendedImmed,s8); mvec[0]->SetMachineOperand(2, target.getRegInfo().getZeroRegNum()); if (returnInstr->getReturnValue() != NULL) mvec[0]->addImplicitRef(returnInstr->getReturnValue()); unsigned n = numInstr++; // delay slot mvec[n] = new MachineInstr(NOP); break; } case 3: // stmt: Store(reg,reg) case 4: // stmt: Store(reg,ptrreg) mvec[0] = new MachineInstr( ChooseStoreInstruction( subtreeRoot->leftChild()->getValue()->getType())); SetOperandsForMemInstr(mvec[0], subtreeRoot, target); break; case 5: // stmt: BrUncond mvec[0] = new MachineInstr(BA); mvec[0]->SetMachineOperand(0, MachineOperand::MO_CCRegister, (Value*)NULL); mvec[0]->SetMachineOperand(1, MachineOperand::MO_PCRelativeDisp, cast(subtreeRoot->getInstruction())->getSuccessor(0)); // delay slot mvec[numInstr++] = new MachineInstr(NOP); break; case 206: // stmt: BrCond(setCCconst) { // setCCconst => boolean was computed with `%b = setCC type reg1 const' // If the constant is ZERO, we can use the branch-on-integer-register // instructions and avoid the SUBcc instruction entirely. // Otherwise this is just the same as case 5, so just fall through. // InstrTreeNode* constNode = subtreeRoot->leftChild()->rightChild(); assert(constNode && constNode->getNodeType() ==InstrTreeNode::NTConstNode); Constant *constVal = cast(constNode->getValue()); bool isValidConst; if ((constVal->getType()->isIntegral() || constVal->getType()->isPointerType()) && GetConstantValueAsSignedInt(constVal, isValidConst) == 0 && isValidConst) { BranchInst* brInst=cast(subtreeRoot->getInstruction()); // That constant is a zero after all... // Use the left child of setCC as the first argument! mvec[0] = new MachineInstr(ChooseBprInstruction(subtreeRoot)); mvec[0]->SetMachineOperand(0, MachineOperand::MO_VirtualRegister, subtreeRoot->leftChild()->leftChild()->getValue()); mvec[0]->SetMachineOperand(1, MachineOperand::MO_PCRelativeDisp, brInst->getSuccessor(0)); // delay slot mvec[numInstr++] = new MachineInstr(NOP); // false branch int n = numInstr++; mvec[n] = new MachineInstr(BA); mvec[n]->SetMachineOperand(0, MachineOperand::MO_CCRegister, (Value*) NULL); mvec[n]->SetMachineOperand(1, MachineOperand::MO_PCRelativeDisp, brInst->getSuccessor(1)); // delay slot mvec[numInstr++] = new MachineInstr(NOP); break; } // ELSE FALL THROUGH } case 6: // stmt: BrCond(bool) { // bool => boolean was computed with some boolean operator // (SetCC, Not, ...). We need to check whether the type was a FP, // signed int or unsigned int, and check the branching condition in // order to choose the branch to use. // If it is an integer CC, we also need to find the unique // TmpInstruction representing that CC. // BranchInst* brInst = cast(subtreeRoot->getInstruction()); bool isFPBranch; mvec[0] = new MachineInstr(ChooseBccInstruction(subtreeRoot, isFPBranch)); Value* ccValue = GetTmpForCC(subtreeRoot->leftChild()->getValue(), brInst->getParent()->getParent(), isFPBranch? Type::FloatTy : Type::IntTy); mvec[0]->SetMachineOperand(0, MachineOperand::MO_CCRegister, ccValue); mvec[0]->SetMachineOperand(1, MachineOperand::MO_PCRelativeDisp, brInst->getSuccessor(0)); // delay slot mvec[numInstr++] = new MachineInstr(NOP); // false branch int n = numInstr++; mvec[n] = new MachineInstr(BA); mvec[n]->SetMachineOperand(0, MachineOperand::MO_CCRegister, (Value*) NULL); mvec[n]->SetMachineOperand(1, MachineOperand::MO_PCRelativeDisp, brInst->getSuccessor(1)); // delay slot mvec[numInstr++] = new MachineInstr(NOP); break; } case 208: // stmt: BrCond(boolconst) { // boolconst => boolean is a constant; use BA to first or second label Constant* constVal = cast(subtreeRoot->leftChild()->getValue()); unsigned dest = cast(constVal)->getValue()? 0 : 1; mvec[0] = new MachineInstr(BA); mvec[0]->SetMachineOperand(0, MachineOperand::MO_CCRegister, (Value*) NULL); mvec[0]->SetMachineOperand(1, MachineOperand::MO_PCRelativeDisp, ((BranchInst*) subtreeRoot->getInstruction())->getSuccessor(dest)); // delay slot mvec[numInstr++] = new MachineInstr(NOP); break; } case 8: // stmt: BrCond(boolreg) { // boolreg => boolean is stored in an existing register. // Just use the branch-on-integer-register instruction! // mvec[0] = new MachineInstr(BRNZ); mvec[0]->SetMachineOperand(0, MachineOperand::MO_VirtualRegister, subtreeRoot->leftChild()->getValue()); mvec[0]->SetMachineOperand(1, MachineOperand::MO_PCRelativeDisp, ((BranchInst*) subtreeRoot->getInstruction())->getSuccessor(0)); // delay slot mvec[numInstr++] = new MachineInstr(NOP); // delay slot // false branch int n = numInstr++; mvec[n] = new MachineInstr(BA); mvec[n]->SetMachineOperand(0, MachineOperand::MO_CCRegister, (Value*) NULL); mvec[n]->SetMachineOperand(1, MachineOperand::MO_PCRelativeDisp, ((BranchInst*) subtreeRoot->getInstruction())->getSuccessor(1)); // delay slot mvec[numInstr++] = new MachineInstr(NOP); break; } case 9: // stmt: Switch(reg) assert(0 && "*** SWITCH instruction is not implemented yet."); numInstr = 0; break; case 10: // reg: VRegList(reg, reg) assert(0 && "VRegList should never be the topmost non-chain rule"); break; case 21: // bool: Not(bool): Both these are implemented as: case 321: // reg: BNot(reg) : reg = reg XOR-NOT 0 mvec[0] = new MachineInstr(XNOR); mvec[0]->SetMachineOperand(0, MachineOperand::MO_VirtualRegister, subtreeRoot->leftChild()->getValue()); mvec[0]->SetMachineOperand(1, target.getRegInfo().getZeroRegNum()); mvec[0]->SetMachineOperand(2, MachineOperand::MO_VirtualRegister, subtreeRoot->getValue()); break; case 322: // reg: ToBoolTy(bool): case 22: // reg: ToBoolTy(reg): { const Type* opType = subtreeRoot->leftChild()->getValue()->getType(); assert(opType->isIntegral() || opType->isPointerType() || opType == Type::BoolTy); numInstr = 0; forwardOperandNum = 0; break; } case 23: // reg: ToUByteTy(reg) case 25: // reg: ToUShortTy(reg) case 27: // reg: ToUIntTy(reg) case 29: // reg: ToULongTy(reg) { const Type* opType = subtreeRoot->leftChild()->getValue()->getType(); assert(opType->isIntegral() || opType->isPointerType() || opType == Type::BoolTy && "Cast is illegal for other types"); numInstr = 0; forwardOperandNum = 0; break; } case 24: // reg: ToSByteTy(reg) case 26: // reg: ToShortTy(reg) case 28: // reg: ToIntTy(reg) case 30: // reg: ToLongTy(reg) { const Type* opType = subtreeRoot->leftChild()->getValue()->getType(); if (opType->isIntegral() || opType->isPointerType() || opType == Type::BoolTy) { numInstr = 0; forwardOperandNum = 0; } else { // If the source operand is an FP type, the int result must be // copied from float to int register via memory! Instruction *dest = subtreeRoot->getInstruction(); Value* leftVal = subtreeRoot->leftChild()->getValue(); Value* destForCast; vector minstrVec; if (opType == Type::FloatTy || opType == Type::DoubleTy) { // Create a temporary to represent the INT register // into which the FP value will be copied via memory. // The type of this temporary will determine the FP // register used: single-prec for a 32-bit int or smaller, // double-prec for a 64-bit int. // const Type* destTypeToUse = (dest->getType() == Type::LongTy)? Type::DoubleTy : Type::FloatTy; destForCast = new TmpInstruction(TMP_INSTRUCTION_OPCODE, destTypeToUse, leftVal, NULL); dest->getMachineInstrVec().addTempValue(destForCast); vector tempVec; target.getInstrInfo().CreateCodeToCopyFloatToInt( dest->getParent()->getParent(), (TmpInstruction*) destForCast, dest, minstrVec, tempVec, target); for (unsigned i=0; i < tempVec.size(); ++i) dest->getMachineInstrVec().addTempValue(tempVec[i]); } else destForCast = leftVal; MachineOpCode opCode=ChooseConvertToIntInstr(subtreeRoot, opType); assert(opCode != INVALID_OPCODE && "Expected to need conversion!"); mvec[0] = new MachineInstr(opCode); mvec[0]->SetMachineOperand(0, MachineOperand::MO_VirtualRegister, leftVal); mvec[0]->SetMachineOperand(1, MachineOperand::MO_VirtualRegister, destForCast); assert(numInstr == 1 && "Should be initialized to 1 at the top"); for (unsigned i=0; i < minstrVec.size(); ++i) mvec[numInstr++] = minstrVec[i]; } break; } case 31: // reg: ToFloatTy(reg): case 32: // reg: ToDoubleTy(reg): case 232: // reg: ToDoubleTy(Constant): // If this instruction has a parent (a user) in the tree // and the user is translated as an FsMULd instruction, // then the cast is unnecessary. So check that first. // In the future, we'll want to do the same for the FdMULq instruction, // so do the check here instead of only for ToFloatTy(reg). // if (subtreeRoot->parent() != NULL && ((InstructionNode*) subtreeRoot->parent())->getInstruction()->getMachineInstrVec()[0]->getOpCode() == FSMULD) { numInstr = 0; forwardOperandNum = 0; } else { Value* leftVal = subtreeRoot->leftChild()->getValue(); const Type* opType = leftVal->getType(); MachineOpCode opCode=ChooseConvertToFloatInstr(subtreeRoot,opType); if (opCode == INVALID_OPCODE) // no conversion needed { numInstr = 0; forwardOperandNum = 0; } else { // If the source operand is a non-FP type it must be // first copied from int to float register via memory! Instruction *dest = subtreeRoot->getInstruction(); Value* srcForCast; int n = 0; if (opType != Type::FloatTy && opType != Type::DoubleTy) { // Create a temporary to represent the FP register // into which the integer will be copied via memory. // The type of this temporary will determine the FP // register used: single-prec for a 32-bit int or smaller, // double-prec for a 64-bit int. // const Type* srcTypeToUse = (leftVal->getType() == Type::LongTy)? Type::DoubleTy : Type::FloatTy; srcForCast = new TmpInstruction(TMP_INSTRUCTION_OPCODE, srcTypeToUse, dest, NULL); dest->getMachineInstrVec().addTempValue(srcForCast); vector minstrVec; vector tempVec; target.getInstrInfo().CreateCodeToCopyIntToFloat( dest->getParent()->getParent(), leftVal, (TmpInstruction*) srcForCast, minstrVec, tempVec, target); for (unsigned i=0; i < minstrVec.size(); ++i) mvec[n++] = minstrVec[i]; for (unsigned i=0; i < tempVec.size(); ++i) dest->getMachineInstrVec().addTempValue(tempVec[i]); } else srcForCast = leftVal; MachineInstr* castI = new MachineInstr(opCode); castI->SetMachineOperand(0, MachineOperand::MO_VirtualRegister, srcForCast); castI->SetMachineOperand(1, MachineOperand::MO_VirtualRegister, dest); mvec[n++] = castI; numInstr = n; } } break; case 19: // reg: ToArrayTy(reg): case 20: // reg: ToPointerTy(reg): numInstr = 0; forwardOperandNum = 0; break; case 233: // reg: Add(reg, Constant) mvec[0] = CreateAddConstInstruction(subtreeRoot); if (mvec[0] != NULL) break; // ELSE FALL THROUGH case 33: // reg: Add(reg, reg) mvec[0] = new MachineInstr(ChooseAddInstruction(subtreeRoot)); Set3OperandsFromInstr(mvec[0], subtreeRoot, target); break; case 234: // reg: Sub(reg, Constant) mvec[0] = CreateSubConstInstruction(subtreeRoot); if (mvec[0] != NULL) break; // ELSE FALL THROUGH case 34: // reg: Sub(reg, reg) mvec[0] = new MachineInstr(ChooseSubInstructionByType( subtreeRoot->getInstruction()->getType())); Set3OperandsFromInstr(mvec[0], subtreeRoot, target); break; case 135: // reg: Mul(todouble, todouble) checkCast = true; // FALL THROUGH case 35: // reg: Mul(reg, reg) mvec[0] =new MachineInstr(ChooseMulInstruction(subtreeRoot,checkCast)); Set3OperandsFromInstr(mvec[0], subtreeRoot, target); break; case 335: // reg: Mul(todouble, todoubleConst) checkCast = true; // FALL THROUGH case 235: // reg: Mul(reg, Constant) mvec[0] = CreateMulConstInstruction(target, subtreeRoot, mvec[1]); if (mvec[0] == NULL) { mvec[0] = new MachineInstr(ChooseMulInstruction(subtreeRoot, checkCast)); Set3OperandsFromInstr(mvec[0], subtreeRoot, target); } else if (mvec[1] != NULL) ++numInstr; break; case 236: // reg: Div(reg, Constant) mvec[0] = CreateDivConstInstruction(target, subtreeRoot, mvec[1]); if (mvec[0] != NULL) { if (mvec[1] != NULL) ++numInstr; } else // ELSE FALL THROUGH case 36: // reg: Div(reg, reg) mvec[0] = new MachineInstr(ChooseDivInstruction(target, subtreeRoot)); Set3OperandsFromInstr(mvec[0], subtreeRoot, target); break; case 37: // reg: Rem(reg, reg) case 237: // reg: Rem(reg, Constant) { Instruction* remInstr = subtreeRoot->getInstruction(); TmpInstruction* quot = new TmpInstruction(TMP_INSTRUCTION_OPCODE, subtreeRoot->leftChild()->getValue(), subtreeRoot->rightChild()->getValue()); TmpInstruction* prod = new TmpInstruction(TMP_INSTRUCTION_OPCODE, quot, subtreeRoot->rightChild()->getValue()); remInstr->getMachineInstrVec().addTempValue(quot); remInstr->getMachineInstrVec().addTempValue(prod); mvec[0] = new MachineInstr(ChooseDivInstruction(target, subtreeRoot)); Set3OperandsFromInstr(mvec[0], subtreeRoot, target); mvec[0]->SetMachineOperand(2, MachineOperand::MO_VirtualRegister,quot); int n = numInstr++; mvec[n] = new MachineInstr(ChooseMulInstructionByType( subtreeRoot->getInstruction()->getType())); mvec[n]->SetMachineOperand(0, MachineOperand::MO_VirtualRegister,quot); mvec[n]->SetMachineOperand(1, MachineOperand::MO_VirtualRegister, subtreeRoot->rightChild()->getValue()); mvec[n]->SetMachineOperand(2, MachineOperand::MO_VirtualRegister,prod); n = numInstr++; mvec[n] = new MachineInstr(ChooseSubInstructionByType( subtreeRoot->getInstruction()->getType())); Set3OperandsFromInstr(mvec[n], subtreeRoot, target); mvec[n]->SetMachineOperand(1, MachineOperand::MO_VirtualRegister,prod); break; } case 38: // bool: And(bool, bool) case 238: // bool: And(bool, boolconst) case 338: // reg : BAnd(reg, reg) case 538: // reg : BAnd(reg, Constant) mvec[0] = new MachineInstr(AND); Set3OperandsFromInstr(mvec[0], subtreeRoot, target); break; case 138: // bool: And(bool, not) case 438: // bool: BAnd(bool, not) mvec[0] = new MachineInstr(ANDN); Set3OperandsFromInstr(mvec[0], subtreeRoot, target); break; case 39: // bool: Or(bool, bool) case 239: // bool: Or(bool, boolconst) case 339: // reg : BOr(reg, reg) case 539: // reg : BOr(reg, Constant) mvec[0] = new MachineInstr(ORN); Set3OperandsFromInstr(mvec[0], subtreeRoot, target); break; case 139: // bool: Or(bool, not) case 439: // bool: BOr(bool, not) mvec[0] = new MachineInstr(ORN); Set3OperandsFromInstr(mvec[0], subtreeRoot, target); break; case 40: // bool: Xor(bool, bool) case 240: // bool: Xor(bool, boolconst) case 340: // reg : BXor(reg, reg) case 540: // reg : BXor(reg, Constant) mvec[0] = new MachineInstr(XOR); Set3OperandsFromInstr(mvec[0], subtreeRoot, target); break; case 140: // bool: Xor(bool, not) case 440: // bool: BXor(bool, not) mvec[0] = new MachineInstr(XNOR); Set3OperandsFromInstr(mvec[0], subtreeRoot, target); break; case 41: // boolconst: SetCC(reg, Constant) // Check if this is an integer comparison, and // there is a parent, and the parent decided to use // a branch-on-integer-register instead of branch-on-condition-code. // If so, the SUBcc instruction is not required. // (However, we must still check for constants to be loaded from // the constant pool so that such a load can be associated with // this instruction.) // // Otherwise this is just the same as case 42, so just fall through. // if ((subtreeRoot->leftChild()->getValue()->getType()->isIntegral() || subtreeRoot->leftChild()->getValue()->getType()->isPointerType()) && subtreeRoot->parent() != NULL) { InstructionNode* parent = (InstructionNode*) subtreeRoot->parent(); assert(parent->getNodeType() == InstrTreeNode::NTInstructionNode); const vector& minstrVec = parent->getInstruction()->getMachineInstrVec(); MachineOpCode parentOpCode; if (parent->getInstruction()->getOpcode() == Instruction::Br && (parentOpCode = minstrVec[0]->getOpCode()) >= BRZ && parentOpCode <= BRGEZ) { numInstr = 0; // don't forward the operand! break; } } // ELSE FALL THROUGH case 42: // bool: SetCC(reg, reg): { // This generates a SUBCC instruction, putting the difference in // a result register, and setting a condition code. // // If the boolean result of the SetCC is used by anything other // than a single branch instruction, the boolean must be // computed and stored in the result register. Otherwise, discard // the difference (by using %g0) and keep only the condition code. // // To compute the boolean result in a register we use a conditional // move, unless the result of the SUBCC instruction can be used as // the bool! This assumes that zero is FALSE and any non-zero // integer is TRUE. // InstructionNode* parentNode = (InstructionNode*) subtreeRoot->parent(); Instruction* setCCInstr = subtreeRoot->getInstruction(); bool keepBoolVal = (parentNode == NULL || parentNode->getInstruction()->getOpcode() != Instruction::Br); bool subValIsBoolVal = setCCInstr->getOpcode() == Instruction::SetNE; bool keepSubVal = keepBoolVal && subValIsBoolVal; bool computeBoolVal = keepBoolVal && ! subValIsBoolVal; bool mustClearReg; int valueToMove; MachineOpCode movOpCode = 0; // Mark the 4th operand as being a CC register, and as a def // A TmpInstruction is created to represent the CC "result". // Unlike other instances of TmpInstruction, this one is used // by machine code of multiple LLVM instructions, viz., // the SetCC and the branch. Make sure to get the same one! // Note that we do this even for FP CC registers even though they // are explicit operands, because the type of the operand // needs to be a floating point condition code, not an integer // condition code. Think of this as casting the bool result to // a FP condition code register. // Value* leftVal = subtreeRoot->leftChild()->getValue(); bool isFPCompare = (leftVal->getType() == Type::FloatTy || leftVal->getType() == Type::DoubleTy); TmpInstruction* tmpForCC = GetTmpForCC(setCCInstr, setCCInstr->getParent()->getParent(), isFPCompare? Type::FloatTy : Type::IntTy); setCCInstr->getMachineInstrVec().addTempValue(tmpForCC); if (! isFPCompare) { // Integer condition: dest. should be %g0 or an integer register. // If result must be saved but condition is not SetEQ then we need // a separate instruction to compute the bool result, so discard // result of SUBcc instruction anyway. // mvec[0] = new MachineInstr(SUBcc); Set3OperandsFromInstr(mvec[0], subtreeRoot, target, ! keepSubVal); mvec[0]->SetMachineOperand(3, MachineOperand::MO_CCRegister, tmpForCC, /*def*/true); if (computeBoolVal) { // recompute bool using the integer condition codes movOpCode = ChooseMovpccAfterSub(subtreeRoot,mustClearReg,valueToMove); } } else { // FP condition: dest of FCMP should be some FCCn register mvec[0] = new MachineInstr(ChooseFcmpInstruction(subtreeRoot)); mvec[0]->SetMachineOperand(0, MachineOperand::MO_CCRegister, tmpForCC); mvec[0]->SetMachineOperand(1,MachineOperand::MO_VirtualRegister, subtreeRoot->leftChild()->getValue()); mvec[0]->SetMachineOperand(2,MachineOperand::MO_VirtualRegister, subtreeRoot->rightChild()->getValue()); if (computeBoolVal) {// recompute bool using the FP condition codes mustClearReg = true; valueToMove = 1; movOpCode = ChooseMovFpccInstruction(subtreeRoot); } } if (computeBoolVal) { if (mustClearReg) {// Unconditionally set register to 0 int n = numInstr++; mvec[n] = new MachineInstr(SETHI); mvec[n]->SetMachineOperand(0,MachineOperand::MO_UnextendedImmed, s0); mvec[n]->SetMachineOperand(1,MachineOperand::MO_VirtualRegister, setCCInstr); } // Now conditionally move `valueToMove' (0 or 1) into the register int n = numInstr++; mvec[n] = new MachineInstr(movOpCode); mvec[n]->SetMachineOperand(0, MachineOperand::MO_CCRegister, tmpForCC); mvec[n]->SetMachineOperand(1, MachineOperand::MO_UnextendedImmed, valueToMove); mvec[n]->SetMachineOperand(2, MachineOperand::MO_VirtualRegister, setCCInstr); } break; } case 43: // boolreg: VReg case 44: // boolreg: Constant numInstr = 0; break; case 51: // reg: Load(reg) case 52: // reg: Load(ptrreg) case 53: // reg: LoadIdx(reg,reg) case 54: // reg: LoadIdx(ptrreg,reg) mvec[0] = new MachineInstr(ChooseLoadInstruction( subtreeRoot->getValue()->getType())); SetOperandsForMemInstr(mvec[0], subtreeRoot, target); break; case 55: // reg: GetElemPtr(reg) case 56: // reg: GetElemPtrIdx(reg,reg) if (subtreeRoot->parent() != NULL) { // If the parent was a memory operation and not an array access, // the parent will fold this instruction in so generate nothing. // Instruction* parent = cast(subtreeRoot->parent()->getValue()); if (parent->getOpcode() == Instruction::Load || parent->getOpcode() == Instruction::Store || parent->getOpcode() == Instruction::GetElementPtr) { // Check if the parent is an array access, // If so, we still need to generate this instruction. GetElementPtrInst* getElemInst = cast(subtreeRoot->getInstruction()); const PointerType* ptrType = cast(getElemInst->getPointerOperand()->getType()); if (! ptrType->getElementType()->isArrayType()) {// we don't need a separate instr numInstr = 0; // don't forward operand! break; } } } // else in all other cases we need to a separate ADD instruction mvec[0] = new MachineInstr(ADD); SetOperandsForMemInstr(mvec[0], subtreeRoot, target); break; case 57: // reg: Alloca: Implement as 1 instruction: { // add %fp, offsetFromFP -> result Instruction* instr = subtreeRoot->getInstruction(); const PointerType* instrType = (const PointerType*) instr->getType(); assert(instrType->isPointerType()); int tsize = (int) target.findOptimalStorageSize(instrType->getElementType()); assert(tsize != 0 && "Just to check when this can happen"); Method* method = instr->getParent()->getParent(); MachineCodeForMethod& mcInfo = MachineCodeForMethod::get(method); int offsetFromFP = mcInfo.allocateLocalVar(target, instr, (unsigned int) tsize); // Create a temporary Value to hold the constant offset. // This is needed because it may not fit in the immediate field. ConstantSInt* offsetVal = ConstantSInt::get(Type::IntTy, offsetFromFP); // Instruction 1: add %fp, offsetFromFP -> result mvec[0] = new MachineInstr(ADD); mvec[0]->SetMachineOperand(0, target.getRegInfo().getFramePointer()); mvec[0]->SetMachineOperand(1, MachineOperand::MO_VirtualRegister, offsetVal); mvec[0]->SetMachineOperand(2, MachineOperand::MO_VirtualRegister, instr); break; } case 58: // reg: Alloca(reg): Implement as 3 instructions: // mul num, typeSz -> tmp // sub %sp, tmp -> %sp { // add %sp, frameSizeBelowDynamicArea -> result Instruction* instr = subtreeRoot->getInstruction(); const PointerType* instrType = (const PointerType*) instr->getType(); assert(instrType->isPointerType() && instrType->getElementType()->isArrayType()); const Type* eltType = ((ArrayType*) instrType->getElementType())->getElementType(); int tsize = (int) target.findOptimalStorageSize(eltType); assert(tsize != 0 && "Just to check when this can happen"); // Create a temporary Value to hold the constant type-size ConstantSInt* tsizeVal = ConstantSInt::get(Type::IntTy, tsize); // Create a temporary Value to hold the constant offset from SP Method* method = instr->getParent()->getParent(); bool ignore; // we don't need this ConstantSInt* dynamicAreaOffset = ConstantSInt::get(Type::IntTy, target.getFrameInfo().getDynamicAreaOffset(MachineCodeForMethod::get(method), ignore)); // Create a temporary value to hold `tmp' Instruction* tmpInstr = new TmpInstruction(TMP_INSTRUCTION_OPCODE, subtreeRoot->leftChild()->getValue(), NULL /*could insert tsize here*/); subtreeRoot->getInstruction()->getMachineInstrVec().addTempValue(tmpInstr); // Instruction 1: mul numElements, typeSize -> tmp mvec[0] = new MachineInstr(MULX); mvec[0]->SetMachineOperand(0, MachineOperand::MO_VirtualRegister, subtreeRoot->leftChild()->getValue()); mvec[0]->SetMachineOperand(1, MachineOperand::MO_VirtualRegister, tsizeVal); mvec[0]->SetMachineOperand(2, MachineOperand::MO_VirtualRegister, tmpInstr); // Instruction 2: sub %sp, tmp -> %sp numInstr++; mvec[1] = new MachineInstr(SUB); mvec[1]->SetMachineOperand(0, target.getRegInfo().getStackPointer()); mvec[1]->SetMachineOperand(1, MachineOperand::MO_VirtualRegister, tmpInstr); mvec[1]->SetMachineOperand(2, target.getRegInfo().getStackPointer()); // Instruction 3: add %sp, frameSizeBelowDynamicArea -> result numInstr++; mvec[2] = new MachineInstr(ADD); mvec[2]->SetMachineOperand(0, target.getRegInfo().getStackPointer()); mvec[2]->SetMachineOperand(1, MachineOperand::MO_VirtualRegister, dynamicAreaOffset); mvec[2]->SetMachineOperand(2,MachineOperand::MO_VirtualRegister,instr); break; } case 61: // reg: Call { // Generate a call-indirect (i.e., jmpl) for now to expose // the potential need for registers. If an absolute address // is available, replace this with a CALL instruction. // Mark both the indirection register and the return-address // register as hidden virtual registers. // Also, mark the operands of the Call and return value (if // any) as implicit operands of the CALL machine instruction. // CallInst *callInstr = cast(subtreeRoot->getInstruction()); Value *callee = callInstr->getCalledValue(); Instruction* retAddrReg = new TmpInstruction(TMP_INSTRUCTION_OPCODE, callInstr, NULL); // Note temporary values in the machineInstrVec for the VM instr. // // WARNING: Operands 0..N-1 must go in slots 0..N-1 of implicitUses. // The result value must go in slot N. This is assumed // in register allocation. // callInstr->getMachineInstrVec().addTempValue(retAddrReg); // Generate the machine instruction and its operands. // Use CALL for direct function calls; this optimistically assumes // the PC-relative address fits in the CALL address field (22 bits). // Use JMPL for indirect calls. // if (callee->getValueType() == Value::MethodVal) { // direct function call mvec[0] = new MachineInstr(CALL); mvec[0]->SetMachineOperand(0, MachineOperand::MO_PCRelativeDisp, callee); } else { // indirect function call mvec[0] = new MachineInstr(JMPLCALL); mvec[0]->SetMachineOperand(0, MachineOperand::MO_VirtualRegister, callee); mvec[0]->SetMachineOperand(1, MachineOperand::MO_SignExtendedImmed, (int64_t) 0); mvec[0]->SetMachineOperand(2, MachineOperand::MO_VirtualRegister, retAddrReg); } // Add the call operands and return value as implicit refs for (unsigned i=0, N=callInstr->getNumOperands(); i < N; ++i) if (callInstr->getOperand(i) != callee) mvec[0]->addImplicitRef(callInstr->getOperand(i)); if (callInstr->getType() != Type::VoidTy) mvec[0]->addImplicitRef(callInstr, /*isDef*/ true); // For the CALL instruction, the ret. addr. reg. is also implicit if (callee->getValueType() == Value::MethodVal) mvec[0]->addImplicitRef(retAddrReg, /*isDef*/ true); mvec[numInstr++] = new MachineInstr(NOP); // delay slot break; } case 62: // reg: Shl(reg, reg) { const Type* opType = subtreeRoot->leftChild()->getValue()->getType(); assert(opType->isIntegral() || opType == Type::BoolTy || opType->isPointerType()&& "Shl unsupported for other types"); mvec[0] = new MachineInstr((opType == Type::LongTy)? SLLX : SLL); Set3OperandsFromInstr(mvec[0], subtreeRoot, target); break; } case 63: // reg: Shr(reg, reg) { const Type* opType = subtreeRoot->leftChild()->getValue()->getType(); assert(opType->isIntegral() || opType == Type::BoolTy || opType->isPointerType() &&"Shr unsupported for other types"); mvec[0] = new MachineInstr((opType->isSigned() ? ((opType == Type::LongTy)? SRAX : SRA) : ((opType == Type::LongTy)? SRLX : SRL))); Set3OperandsFromInstr(mvec[0], subtreeRoot, target); break; } case 64: // reg: Phi(reg,reg) numInstr = 0; // don't forward the value break; #undef NEED_PHI_MACHINE_INSTRS #ifdef NEED_PHI_MACHINE_INSTRS { // This instruction has variable #operands, so resultPos is 0. Instruction* phi = subtreeRoot->getInstruction(); mvec[0] = new MachineInstr(PHI, 1 + phi->getNumOperands()); mvec[0]->SetMachineOperand(0, MachineOperand::MO_VirtualRegister, subtreeRoot->getValue()); for (unsigned i=0, N=phi->getNumOperands(); i < N; i++) mvec[0]->SetMachineOperand(i+1, MachineOperand::MO_VirtualRegister, phi->getOperand(i)); break; } #endif NEED_PHI_MACHINE_INSTRS case 71: // reg: VReg case 72: // reg: Constant numInstr = 0; // don't forward the value break; default: assert(0 && "Unrecognized BURG rule"); numInstr = 0; break; } } if (forwardOperandNum >= 0) { // We did not generate a machine instruction but need to use operand. // If user is in the same tree, replace Value in its machine operand. // If not, insert a copy instruction which should get coalesced away // by register allocation. if (subtreeRoot->parent() != NULL) ForwardOperand(subtreeRoot, subtreeRoot->parent(), forwardOperandNum); else { vector minstrVec; target.getInstrInfo().CreateCopyInstructionsByType(target, subtreeRoot->getInstruction()->getOperand(forwardOperandNum), subtreeRoot->getInstruction(), minstrVec); assert(minstrVec.size() > 0); for (unsigned i=0; i < minstrVec.size(); ++i) mvec[numInstr++] = minstrVec[i]; } } return numInstr; }