//===-- ARMSubtarget.h - Define Subtarget for the ARM ----------*- C++ -*--===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file declares the ARM specific subclass of TargetSubtargetInfo. // //===----------------------------------------------------------------------===// #ifndef ARMSUBTARGET_H #define ARMSUBTARGET_H #include "ARMFrameLowering.h" #include "ARMISelLowering.h" #include "ARMInstrInfo.h" #include "ARMJITInfo.h" #include "ARMSelectionDAGInfo.h" #include "ARMSubtarget.h" #include "Thumb1FrameLowering.h" #include "Thumb1InstrInfo.h" #include "Thumb2InstrInfo.h" #include "ARMJITInfo.h" #include "MCTargetDesc/ARMMCTargetDesc.h" #include "llvm/ADT/Triple.h" #include "llvm/IR/DataLayout.h" #include "llvm/MC/MCInstrItineraries.h" #include "llvm/Target/TargetSubtargetInfo.h" #include #define GET_SUBTARGETINFO_HEADER #include "ARMGenSubtargetInfo.inc" namespace llvm { class GlobalValue; class StringRef; class TargetOptions; class ARMSubtarget : public ARMGenSubtargetInfo { protected: enum ARMProcFamilyEnum { Others, CortexA5, CortexA7, CortexA8, CortexA9, CortexA12, CortexA15, CortexR5, Swift, CortexA53, CortexA57, Krait }; enum ARMProcClassEnum { None, AClass, RClass, MClass }; /// ARMProcFamily - ARM processor family: Cortex-A8, Cortex-A9, and others. ARMProcFamilyEnum ARMProcFamily; /// ARMProcClass - ARM processor class: None, AClass, RClass or MClass. ARMProcClassEnum ARMProcClass; /// HasV4TOps, HasV5TOps, HasV5TEOps, /// HasV6Ops, HasV6MOps, HasV6T2Ops, HasV7Ops, HasV8Ops - /// Specify whether target support specific ARM ISA variants. bool HasV4TOps; bool HasV5TOps; bool HasV5TEOps; bool HasV6Ops; bool HasV6MOps; bool HasV6T2Ops; bool HasV7Ops; bool HasV8Ops; /// HasVFPv2, HasVFPv3, HasVFPv4, HasFPARMv8, HasNEON - Specify what /// floating point ISAs are supported. bool HasVFPv2; bool HasVFPv3; bool HasVFPv4; bool HasFPARMv8; bool HasNEON; /// UseNEONForSinglePrecisionFP - if the NEONFP attribute has been /// specified. Use the method useNEONForSinglePrecisionFP() to /// determine if NEON should actually be used. bool UseNEONForSinglePrecisionFP; /// UseMulOps - True if non-microcoded fused integer multiply-add and /// multiply-subtract instructions should be used. bool UseMulOps; /// SlowFPVMLx - If the VFP2 / NEON instructions are available, indicates /// whether the FP VML[AS] instructions are slow (if so, don't use them). bool SlowFPVMLx; /// HasVMLxForwarding - If true, NEON has special multiplier accumulator /// forwarding to allow mul + mla being issued back to back. bool HasVMLxForwarding; /// SlowFPBrcc - True if floating point compare + branch is slow. bool SlowFPBrcc; /// InThumbMode - True if compiling for Thumb, false for ARM. bool InThumbMode; /// HasThumb2 - True if Thumb2 instructions are supported. bool HasThumb2; /// NoARM - True if subtarget does not support ARM mode execution. bool NoARM; /// PostRAScheduler - True if using post-register-allocation scheduler. bool PostRAScheduler; /// IsR9Reserved - True if R9 is a not available as general purpose register. bool IsR9Reserved; /// UseMovt - True if MOVT / MOVW pairs are used for materialization of 32-bit /// imms (including global addresses). bool UseMovt; /// SupportsTailCall - True if the OS supports tail call. The dynamic linker /// must be able to synthesize call stubs for interworking between ARM and /// Thumb. bool SupportsTailCall; /// HasFP16 - True if subtarget supports half-precision FP (We support VFP+HF /// only so far) bool HasFP16; /// HasD16 - True if subtarget is limited to 16 double precision /// FP registers for VFPv3. bool HasD16; /// HasHardwareDivide - True if subtarget supports [su]div bool HasHardwareDivide; /// HasHardwareDivideInARM - True if subtarget supports [su]div in ARM mode bool HasHardwareDivideInARM; /// HasT2ExtractPack - True if subtarget supports thumb2 extract/pack /// instructions. bool HasT2ExtractPack; /// HasDataBarrier - True if the subtarget supports DMB / DSB data barrier /// instructions. bool HasDataBarrier; /// Pref32BitThumb - If true, codegen would prefer 32-bit Thumb instructions /// over 16-bit ones. bool Pref32BitThumb; /// AvoidCPSRPartialUpdate - If true, codegen would avoid using instructions /// that partially update CPSR and add false dependency on the previous /// CPSR setting instruction. bool AvoidCPSRPartialUpdate; /// AvoidMOVsShifterOperand - If true, codegen should avoid using flag setting /// movs with shifter operand (i.e. asr, lsl, lsr). bool AvoidMOVsShifterOperand; /// HasRAS - Some processors perform return stack prediction. CodeGen should /// avoid issue "normal" call instructions to callees which do not return. bool HasRAS; /// HasMPExtension - True if the subtarget supports Multiprocessing /// extension (ARMv7 only). bool HasMPExtension; /// HasVirtualization - True if the subtarget supports the Virtualization /// extension. bool HasVirtualization; /// FPOnlySP - If true, the floating point unit only supports single /// precision. bool FPOnlySP; /// If true, the processor supports the Performance Monitor Extensions. These /// include a generic cycle-counter as well as more fine-grained (often /// implementation-specific) events. bool HasPerfMon; /// HasTrustZone - if true, processor supports TrustZone security extensions bool HasTrustZone; /// HasCrypto - if true, processor supports Cryptography extensions bool HasCrypto; /// HasCRC - if true, processor supports CRC instructions bool HasCRC; /// If true, the instructions "vmov.i32 d0, #0" and "vmov.i32 q0, #0" are /// particularly effective at zeroing a VFP register. bool HasZeroCycleZeroing; /// AllowsUnalignedMem - If true, the subtarget allows unaligned memory /// accesses for some types. For details, see /// ARMTargetLowering::allowsUnalignedMemoryAccesses(). bool AllowsUnalignedMem; /// RestrictIT - If true, the subtarget disallows generation of deprecated IT /// blocks to conform to ARMv8 rule. bool RestrictIT; /// Thumb2DSP - If true, the subtarget supports the v7 DSP (saturating arith /// and such) instructions in Thumb2 code. bool Thumb2DSP; /// NaCl TRAP instruction is generated instead of the regular TRAP. bool UseNaClTrap; /// Target machine allowed unsafe FP math (such as use of NEON fp) bool UnsafeFPMath; /// stackAlignment - The minimum alignment known to hold of the stack frame on /// entry to the function and which must be maintained by every function. unsigned stackAlignment; /// CPUString - String name of used CPU. std::string CPUString; /// IsLittle - The target is Little Endian bool IsLittle; /// TargetTriple - What processor and OS we're targeting. Triple TargetTriple; /// SchedModel - Processor specific instruction costs. const MCSchedModel *SchedModel; /// Selected instruction itineraries (one entry per itinerary class.) InstrItineraryData InstrItins; /// Options passed via command line that could influence the target const TargetOptions &Options; public: enum { ARM_ABI_UNKNOWN, ARM_ABI_APCS, ARM_ABI_AAPCS // ARM EABI } TargetABI; /// This constructor initializes the data members to match that /// of the specified triple. /// ARMSubtarget(const std::string &TT, const std::string &CPU, const std::string &FS, TargetMachine &TM, bool IsLittle, const TargetOptions &Options); /// getMaxInlineSizeThreshold - Returns the maximum memset / memcpy size /// that still makes it profitable to inline the call. unsigned getMaxInlineSizeThreshold() const { return 64; } /// ParseSubtargetFeatures - Parses features string setting specified /// subtarget options. Definition of function is auto generated by tblgen. void ParseSubtargetFeatures(StringRef CPU, StringRef FS); /// \brief Reset the features for the ARM target. void resetSubtargetFeatures(const MachineFunction *MF) override; /// initializeSubtargetDependencies - Initializes using a CPU and feature string /// so that we can use initializer lists for subtarget initialization. ARMSubtarget &initializeSubtargetDependencies(StringRef CPU, StringRef FS); const DataLayout *getDataLayout() const { return &DL; } const ARMSelectionDAGInfo *getSelectionDAGInfo() const { return &TSInfo; } ARMJITInfo *getJITInfo() { return &JITInfo; } const ARMBaseInstrInfo *getInstrInfo() const { return InstrInfo.get(); } const ARMTargetLowering *getTargetLowering() const { return &TLInfo; } const ARMFrameLowering *getFrameLowering() const { return FrameLowering.get(); } const ARMBaseRegisterInfo *getRegisterInfo() const { return &InstrInfo->getRegisterInfo(); } private: const DataLayout DL; ARMSelectionDAGInfo TSInfo; ARMJITInfo JITInfo; // Either Thumb1InstrInfo or Thumb2InstrInfo. std::unique_ptr InstrInfo; ARMTargetLowering TLInfo; // Either Thumb1FrameLowering or ARMFrameLowering. std::unique_ptr FrameLowering; void initializeEnvironment(); void resetSubtargetFeatures(StringRef CPU, StringRef FS); public: void computeIssueWidth(); bool hasV4TOps() const { return HasV4TOps; } bool hasV5TOps() const { return HasV5TOps; } bool hasV5TEOps() const { return HasV5TEOps; } bool hasV6Ops() const { return HasV6Ops; } bool hasV6MOps() const { return HasV6MOps; } bool hasV6T2Ops() const { return HasV6T2Ops; } bool hasV7Ops() const { return HasV7Ops; } bool hasV8Ops() const { return HasV8Ops; } bool isCortexA5() const { return ARMProcFamily == CortexA5; } bool isCortexA7() const { return ARMProcFamily == CortexA7; } bool isCortexA8() const { return ARMProcFamily == CortexA8; } bool isCortexA9() const { return ARMProcFamily == CortexA9; } bool isCortexA15() const { return ARMProcFamily == CortexA15; } bool isSwift() const { return ARMProcFamily == Swift; } bool isCortexM3() const { return CPUString == "cortex-m3"; } bool isLikeA9() const { return isCortexA9() || isCortexA15() || isKrait(); } bool isCortexR5() const { return ARMProcFamily == CortexR5; } bool isKrait() const { return ARMProcFamily == Krait; } bool hasARMOps() const { return !NoARM; } bool hasVFP2() const { return HasVFPv2; } bool hasVFP3() const { return HasVFPv3; } bool hasVFP4() const { return HasVFPv4; } bool hasFPARMv8() const { return HasFPARMv8; } bool hasNEON() const { return HasNEON; } bool hasCrypto() const { return HasCrypto; } bool hasCRC() const { return HasCRC; } bool hasVirtualization() const { return HasVirtualization; } bool useNEONForSinglePrecisionFP() const { return hasNEON() && UseNEONForSinglePrecisionFP; } bool hasDivide() const { return HasHardwareDivide; } bool hasDivideInARMMode() const { return HasHardwareDivideInARM; } bool hasT2ExtractPack() const { return HasT2ExtractPack; } bool hasDataBarrier() const { return HasDataBarrier; } bool hasAnyDataBarrier() const { return HasDataBarrier || (hasV6Ops() && !isThumb()); } bool useMulOps() const { return UseMulOps; } bool useFPVMLx() const { return !SlowFPVMLx; } bool hasVMLxForwarding() const { return HasVMLxForwarding; } bool isFPBrccSlow() const { return SlowFPBrcc; } bool isFPOnlySP() const { return FPOnlySP; } bool hasPerfMon() const { return HasPerfMon; } bool hasTrustZone() const { return HasTrustZone; } bool hasZeroCycleZeroing() const { return HasZeroCycleZeroing; } bool prefers32BitThumb() const { return Pref32BitThumb; } bool avoidCPSRPartialUpdate() const { return AvoidCPSRPartialUpdate; } bool avoidMOVsShifterOperand() const { return AvoidMOVsShifterOperand; } bool hasRAS() const { return HasRAS; } bool hasMPExtension() const { return HasMPExtension; } bool hasThumb2DSP() const { return Thumb2DSP; } bool useNaClTrap() const { return UseNaClTrap; } bool hasFP16() const { return HasFP16; } bool hasD16() const { return HasD16; } const Triple &getTargetTriple() const { return TargetTriple; } bool isTargetDarwin() const { return TargetTriple.isOSDarwin(); } bool isTargetIOS() const { return TargetTriple.isiOS(); } bool isTargetLinux() const { return TargetTriple.isOSLinux(); } bool isTargetNaCl() const { return TargetTriple.isOSNaCl(); } bool isTargetNetBSD() const { return TargetTriple.getOS() == Triple::NetBSD; } bool isTargetWindows() const { return TargetTriple.isOSWindows(); } bool isTargetCOFF() const { return TargetTriple.isOSBinFormatCOFF(); } bool isTargetELF() const { return TargetTriple.isOSBinFormatELF(); } bool isTargetMachO() const { return TargetTriple.isOSBinFormatMachO(); } // ARM EABI is the bare-metal EABI described in ARM ABI documents and // can be accessed via -target arm-none-eabi. This is NOT GNUEABI. // FIXME: Add a flag for bare-metal for that target and set Triple::EABI // even for GNUEABI, so we can make a distinction here and still conform to // the EABI on GNU (and Android) mode. This requires change in Clang, too. // FIXME: The Darwin exception is temporary, while we move users to // "*-*-*-macho" triples as quickly as possible. bool isTargetAEABI() const { return (TargetTriple.getEnvironment() == Triple::EABI || TargetTriple.getEnvironment() == Triple::EABIHF) && !isTargetDarwin() && !isTargetWindows(); } // ARM Targets that support EHABI exception handling standard // Darwin uses SjLj. Other targets might need more checks. bool isTargetEHABICompatible() const { return (TargetTriple.getEnvironment() == Triple::EABI || TargetTriple.getEnvironment() == Triple::GNUEABI || TargetTriple.getEnvironment() == Triple::EABIHF || TargetTriple.getEnvironment() == Triple::GNUEABIHF || TargetTriple.getEnvironment() == Triple::Android) && !isTargetDarwin() && !isTargetWindows(); } bool isTargetHardFloat() const { // FIXME: this is invalid for WindowsCE return TargetTriple.getEnvironment() == Triple::GNUEABIHF || TargetTriple.getEnvironment() == Triple::EABIHF || isTargetWindows(); } bool isTargetAndroid() const { return TargetTriple.getEnvironment() == Triple::Android; } bool isAPCS_ABI() const { assert(TargetABI != ARM_ABI_UNKNOWN); return TargetABI == ARM_ABI_APCS; } bool isAAPCS_ABI() const { assert(TargetABI != ARM_ABI_UNKNOWN); return TargetABI == ARM_ABI_AAPCS; } bool isThumb() const { return InThumbMode; } bool isThumb1Only() const { return InThumbMode && !HasThumb2; } bool isThumb2() const { return InThumbMode && HasThumb2; } bool hasThumb2() const { return HasThumb2; } bool isMClass() const { return ARMProcClass == MClass; } bool isRClass() const { return ARMProcClass == RClass; } bool isAClass() const { return ARMProcClass == AClass; } bool isR9Reserved() const { return IsR9Reserved; } bool useMovt(const MachineFunction &MF) const; bool supportsTailCall() const { return SupportsTailCall; } bool allowsUnalignedMem() const { return AllowsUnalignedMem; } bool restrictIT() const { return RestrictIT; } const std::string & getCPUString() const { return CPUString; } bool isLittle() const { return IsLittle; } unsigned getMispredictionPenalty() const; /// This function returns true if the target has sincos() routine in its /// compiler runtime or math libraries. bool hasSinCos() const; /// True for some subtargets at > -O0. bool enablePostMachineScheduler() const; /// enablePostRAScheduler - True at 'More' optimization. bool enablePostRAScheduler(CodeGenOpt::Level OptLevel, TargetSubtargetInfo::AntiDepBreakMode& Mode, RegClassVector& CriticalPathRCs) const override; // enableAtomicExpandLoadLinked - True if we need to expand our atomics. bool enableAtomicExpandLoadLinked() const override; /// getInstrItins - Return the instruction itineraies based on subtarget /// selection. const InstrItineraryData &getInstrItineraryData() const { return InstrItins; } /// getStackAlignment - Returns the minimum alignment known to hold of the /// stack frame on entry to the function and which must be maintained by every /// function for this subtarget. unsigned getStackAlignment() const { return stackAlignment; } /// GVIsIndirectSymbol - true if the GV will be accessed via an indirect /// symbol. bool GVIsIndirectSymbol(const GlobalValue *GV, Reloc::Model RelocM) const; }; } // End llvm namespace #endif // ARMSUBTARGET_H