//===-- ScheduleDAGSimple.cpp - Implement a trivial DAG scheduler ---------===// // // The LLVM Compiler Infrastructure // // This file was developed by James M. Laskey and is distributed under the // University of Illinois Open Source License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This implements a simple two pass scheduler. The first pass attempts to push // backward any lengthy instructions and critical paths. The second pass packs // instructions into semi-optimal time slots. // //===----------------------------------------------------------------------===// #define DEBUG_TYPE "sched" #include "llvm/CodeGen/ScheduleDAG.h" #include "llvm/CodeGen/SelectionDAG.h" #include "llvm/Target/TargetMachine.h" #include "llvm/Target/TargetInstrInfo.h" #include "llvm/Support/Debug.h" #include using namespace llvm; namespace { //===----------------------------------------------------------------------===// /// /// BitsIterator - Provides iteration through individual bits in a bit vector. /// template class BitsIterator { private: T Bits; // Bits left to iterate through public: /// Ctor. BitsIterator(T Initial) : Bits(Initial) {} /// Next - Returns the next bit set or zero if exhausted. inline T Next() { // Get the rightmost bit set T Result = Bits & -Bits; // Remove from rest Bits &= ~Result; // Return single bit or zero return Result; } }; //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// /// /// ResourceTally - Manages the use of resources over time intervals. Each /// item (slot) in the tally vector represents the resources used at a given /// moment. A bit set to 1 indicates that a resource is in use, otherwise /// available. An assumption is made that the tally is large enough to schedule /// all current instructions (asserts otherwise.) /// template class ResourceTally { private: std::vector Tally; // Resources used per slot typedef typename std::vector::iterator Iter; // Tally iterator /// SlotsAvailable - Returns true if all units are available. /// bool SlotsAvailable(Iter Begin, unsigned N, unsigned ResourceSet, unsigned &Resource) { assert(N && "Must check availability with N != 0"); // Determine end of interval Iter End = Begin + N; assert(End <= Tally.end() && "Tally is not large enough for schedule"); // Iterate thru each resource BitsIterator Resources(ResourceSet & ~*Begin); while (unsigned Res = Resources.Next()) { // Check if resource is available for next N slots Iter Interval = End; do { Interval--; if (*Interval & Res) break; } while (Interval != Begin); // If available for N if (Interval == Begin) { // Success Resource = Res; return true; } } // No luck Resource = 0; return false; } /// RetrySlot - Finds a good candidate slot to retry search. Iter RetrySlot(Iter Begin, unsigned N, unsigned ResourceSet) { assert(N && "Must check availability with N != 0"); // Determine end of interval Iter End = Begin + N; assert(End <= Tally.end() && "Tally is not large enough for schedule"); while (Begin != End--) { // Clear units in use ResourceSet &= ~*End; // If no units left then we should go no further if (!ResourceSet) return End + 1; } // Made it all the way through return Begin; } /// FindAndReserveStages - Return true if the stages can be completed. If /// so mark as busy. bool FindAndReserveStages(Iter Begin, InstrStage *Stage, InstrStage *StageEnd) { // If at last stage then we're done if (Stage == StageEnd) return true; // Get number of cycles for current stage unsigned N = Stage->Cycles; // Check to see if N slots are available, if not fail unsigned Resource; if (!SlotsAvailable(Begin, N, Stage->Units, Resource)) return false; // Check to see if remaining stages are available, if not fail if (!FindAndReserveStages(Begin + N, Stage + 1, StageEnd)) return false; // Reserve resource Reserve(Begin, N, Resource); // Success return true; } /// Reserve - Mark busy (set) the specified N slots. void Reserve(Iter Begin, unsigned N, unsigned Resource) { // Determine end of interval Iter End = Begin + N; assert(End <= Tally.end() && "Tally is not large enough for schedule"); // Set resource bit in each slot for (; Begin < End; Begin++) *Begin |= Resource; } /// FindSlots - Starting from Begin, locate consecutive slots where all stages /// can be completed. Returns the address of first slot. Iter FindSlots(Iter Begin, InstrStage *StageBegin, InstrStage *StageEnd) { // Track position Iter Cursor = Begin; // Try all possible slots forward while (true) { // Try at cursor, if successful return position. if (FindAndReserveStages(Cursor, StageBegin, StageEnd)) return Cursor; // Locate a better position Cursor = RetrySlot(Cursor + 1, StageBegin->Cycles, StageBegin->Units); } } public: /// Initialize - Resize and zero the tally to the specified number of time /// slots. inline void Initialize(unsigned N) { Tally.assign(N, 0); // Initialize tally to all zeros. } // FindAndReserve - Locate an ideal slot for the specified stages and mark // as busy. unsigned FindAndReserve(unsigned Slot, InstrStage *StageBegin, InstrStage *StageEnd) { // Where to begin Iter Begin = Tally.begin() + Slot; // Find a free slot Iter Where = FindSlots(Begin, StageBegin, StageEnd); // Distance is slot number unsigned Final = Where - Tally.begin(); return Final; } }; //===----------------------------------------------------------------------===// /// /// ScheduleDAGSimple - Simple two pass scheduler. /// class ScheduleDAGSimple : public ScheduleDAG { private: ResourceTally Tally; // Resource usage tally unsigned NSlots; // Total latency static const unsigned NotFound = ~0U; // Search marker public: // Ctor. ScheduleDAGSimple(SchedHeuristics hstc, SelectionDAG &dag, MachineBasicBlock *bb, const TargetMachine &tm) : ScheduleDAG(hstc, dag, bb, tm), Tally(), NSlots(0) { assert(&TII && "Target doesn't provide instr info?"); assert(&MRI && "Target doesn't provide register info?"); } virtual ~ScheduleDAGSimple() {}; void Schedule(); private: static bool isDefiner(NodeInfo *A, NodeInfo *B); void IncludeNode(NodeInfo *NI); void VisitAll(); void GatherSchedulingInfo(); void FakeGroupDominators(); bool isStrongDependency(NodeInfo *A, NodeInfo *B); bool isWeakDependency(NodeInfo *A, NodeInfo *B); void ScheduleBackward(); void ScheduleForward(); }; //===----------------------------------------------------------------------===// /// Special case itineraries. /// enum { CallLatency = 40, // To push calls back in time RSInteger = 0xC0000000, // Two integer units RSFloat = 0x30000000, // Two float units RSLoadStore = 0x0C000000, // Two load store units RSBranch = 0x02000000 // One branch unit }; static InstrStage CallStage = { CallLatency, RSBranch }; static InstrStage LoadStage = { 5, RSLoadStore }; static InstrStage StoreStage = { 2, RSLoadStore }; static InstrStage IntStage = { 2, RSInteger }; static InstrStage FloatStage = { 3, RSFloat }; //===----------------------------------------------------------------------===// } // namespace //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// /// isDefiner - Return true if node A is a definer for B. /// bool ScheduleDAGSimple::isDefiner(NodeInfo *A, NodeInfo *B) { // While there are A nodes NodeGroupIterator NII(A); while (NodeInfo *NI = NII.next()) { // Extract node SDNode *Node = NI->Node; // While there operands in nodes of B NodeGroupOpIterator NGOI(B); while (!NGOI.isEnd()) { SDOperand Op = NGOI.next(); // If node from A defines a node in B if (Node == Op.Val) return true; } } return false; } /// IncludeNode - Add node to NodeInfo vector. /// void ScheduleDAGSimple::IncludeNode(NodeInfo *NI) { // Get node SDNode *Node = NI->Node; // Ignore entry node if (Node->getOpcode() == ISD::EntryToken) return; // Check current count for node int Count = NI->getPending(); // If the node is already in list if (Count < 0) return; // Decrement count to indicate a visit Count--; // If count has gone to zero then add node to list if (!Count) { // Add node if (NI->isInGroup()) { Ordering.push_back(NI->Group->getDominator()); } else { Ordering.push_back(NI); } // indicate node has been added Count--; } // Mark as visited with new count NI->setPending(Count); } /// GatherSchedulingInfo - Get latency and resource information about each node. /// void ScheduleDAGSimple::GatherSchedulingInfo() { // Get instruction itineraries for the target const InstrItineraryData InstrItins = TM.getInstrItineraryData(); // For each node for (unsigned i = 0, N = NodeCount; i < N; i++) { // Get node info NodeInfo* NI = &Info[i]; SDNode *Node = NI->Node; // If there are itineraries and it is a machine instruction if (InstrItins.isEmpty() || Heuristic == simpleNoItinScheduling) { // If machine opcode if (Node->isTargetOpcode()) { // Get return type to guess which processing unit MVT::ValueType VT = Node->getValueType(0); // Get machine opcode MachineOpCode TOpc = Node->getTargetOpcode(); NI->IsCall = TII->isCall(TOpc); NI->IsLoad = TII->isLoad(TOpc); NI->IsStore = TII->isStore(TOpc); if (TII->isLoad(TOpc)) NI->StageBegin = &LoadStage; else if (TII->isStore(TOpc)) NI->StageBegin = &StoreStage; else if (MVT::isInteger(VT)) NI->StageBegin = &IntStage; else if (MVT::isFloatingPoint(VT)) NI->StageBegin = &FloatStage; if (NI->StageBegin) NI->StageEnd = NI->StageBegin + 1; } } else if (Node->isTargetOpcode()) { // get machine opcode MachineOpCode TOpc = Node->getTargetOpcode(); // Check to see if it is a call NI->IsCall = TII->isCall(TOpc); // Get itinerary stages for instruction unsigned II = TII->getSchedClass(TOpc); NI->StageBegin = InstrItins.begin(II); NI->StageEnd = InstrItins.end(II); } // One slot for the instruction itself NI->Latency = 1; // Add long latency for a call to push it back in time if (NI->IsCall) NI->Latency += CallLatency; // Sum up all the latencies for (InstrStage *Stage = NI->StageBegin, *E = NI->StageEnd; Stage != E; Stage++) { NI->Latency += Stage->Cycles; } // Sum up all the latencies for max tally size NSlots += NI->Latency; } // Unify metrics if in a group if (HasGroups) { for (unsigned i = 0, N = NodeCount; i < N; i++) { NodeInfo* NI = &Info[i]; if (NI->isInGroup()) { NodeGroup *Group = NI->Group; if (!Group->getDominator()) { NIIterator NGI = Group->group_begin(), NGE = Group->group_end(); NodeInfo *Dominator = *NGI; unsigned Latency = 0; for (NGI++; NGI != NGE; NGI++) { NodeInfo* NGNI = *NGI; Latency += NGNI->Latency; if (Dominator->Latency < NGNI->Latency) Dominator = NGNI; } Dominator->Latency = Latency; Group->setDominator(Dominator); } } } } } /// VisitAll - Visit each node breadth-wise to produce an initial ordering. /// Note that the ordering in the Nodes vector is reversed. void ScheduleDAGSimple::VisitAll() { // Add first element to list NodeInfo *NI = getNI(DAG.getRoot().Val); if (NI->isInGroup()) { Ordering.push_back(NI->Group->getDominator()); } else { Ordering.push_back(NI); } // Iterate through all nodes that have been added for (unsigned i = 0; i < Ordering.size(); i++) { // note: size() varies // Visit all operands NodeGroupOpIterator NGI(Ordering[i]); while (!NGI.isEnd()) { // Get next operand SDOperand Op = NGI.next(); // Get node SDNode *Node = Op.Val; // Ignore passive nodes if (isPassiveNode(Node)) continue; // Check out node IncludeNode(getNI(Node)); } } // Add entry node last (IncludeNode filters entry nodes) if (DAG.getEntryNode().Val != DAG.getRoot().Val) Ordering.push_back(getNI(DAG.getEntryNode().Val)); // Reverse the order std::reverse(Ordering.begin(), Ordering.end()); } /// FakeGroupDominators - Set dominators for non-scheduling. /// void ScheduleDAGSimple::FakeGroupDominators() { for (unsigned i = 0, N = NodeCount; i < N; i++) { NodeInfo* NI = &Info[i]; if (NI->isInGroup()) { NodeGroup *Group = NI->Group; if (!Group->getDominator()) { Group->setDominator(NI); } } } } /// isStrongDependency - Return true if node A has results used by node B. /// I.E., B must wait for latency of A. bool ScheduleDAGSimple::isStrongDependency(NodeInfo *A, NodeInfo *B) { // If A defines for B then it's a strong dependency or // if a load follows a store (may be dependent but why take a chance.) return isDefiner(A, B) || (A->IsStore && B->IsLoad); } /// isWeakDependency Return true if node A produces a result that will /// conflict with operands of B. It is assumed that we have called /// isStrongDependency prior. bool ScheduleDAGSimple::isWeakDependency(NodeInfo *A, NodeInfo *B) { // TODO check for conflicting real registers and aliases #if 0 // FIXME - Since we are in SSA form and not checking register aliasing return A->Node->getOpcode() == ISD::EntryToken || isStrongDependency(B, A); #else return A->Node->getOpcode() == ISD::EntryToken; #endif } /// ScheduleBackward - Schedule instructions so that any long latency /// instructions and the critical path get pushed back in time. Time is run in /// reverse to allow code reuse of the Tally and eliminate the overhead of /// biasing every slot indices against NSlots. void ScheduleDAGSimple::ScheduleBackward() { // Size and clear the resource tally Tally.Initialize(NSlots); // Get number of nodes to schedule unsigned N = Ordering.size(); // For each node being scheduled for (unsigned i = N; 0 < i--;) { NodeInfo *NI = Ordering[i]; // Track insertion unsigned Slot = NotFound; // Compare against those previously scheduled nodes unsigned j = i + 1; for (; j < N; j++) { // Get following instruction NodeInfo *Other = Ordering[j]; // Check dependency against previously inserted nodes if (isStrongDependency(NI, Other)) { Slot = Other->Slot + Other->Latency; break; } else if (isWeakDependency(NI, Other)) { Slot = Other->Slot; break; } } // If independent of others (or first entry) if (Slot == NotFound) Slot = 0; #if 0 // FIXME - measure later // Find a slot where the needed resources are available if (NI->StageBegin != NI->StageEnd) Slot = Tally.FindAndReserve(Slot, NI->StageBegin, NI->StageEnd); #endif // Set node slot NI->Slot = Slot; // Insert sort based on slot j = i + 1; for (; j < N; j++) { // Get following instruction NodeInfo *Other = Ordering[j]; // Should we look further (remember slots are in reverse time) if (Slot >= Other->Slot) break; // Shuffle other into ordering Ordering[j - 1] = Other; } // Insert node in proper slot if (j != i + 1) Ordering[j - 1] = NI; } } /// ScheduleForward - Schedule instructions to maximize packing. /// void ScheduleDAGSimple::ScheduleForward() { // Size and clear the resource tally Tally.Initialize(NSlots); // Get number of nodes to schedule unsigned N = Ordering.size(); // For each node being scheduled for (unsigned i = 0; i < N; i++) { NodeInfo *NI = Ordering[i]; // Track insertion unsigned Slot = NotFound; // Compare against those previously scheduled nodes unsigned j = i; for (; 0 < j--;) { // Get following instruction NodeInfo *Other = Ordering[j]; // Check dependency against previously inserted nodes if (isStrongDependency(Other, NI)) { Slot = Other->Slot + Other->Latency; break; } else if (Other->IsCall || isWeakDependency(Other, NI)) { Slot = Other->Slot; break; } } // If independent of others (or first entry) if (Slot == NotFound) Slot = 0; // Find a slot where the needed resources are available if (NI->StageBegin != NI->StageEnd) Slot = Tally.FindAndReserve(Slot, NI->StageBegin, NI->StageEnd); // Set node slot NI->Slot = Slot; // Insert sort based on slot j = i; for (; 0 < j--;) { // Get prior instruction NodeInfo *Other = Ordering[j]; // Should we look further if (Slot >= Other->Slot) break; // Shuffle other into ordering Ordering[j + 1] = Other; } // Insert node in proper slot if (j != i) Ordering[j + 1] = NI; } } /// Schedule - Order nodes according to selected style. /// void ScheduleDAGSimple::Schedule() { // Test to see if scheduling should occur bool ShouldSchedule = NodeCount > 3 && Heuristic != noScheduling; // Don't waste time if is only entry and return if (ShouldSchedule) { // Get latency and resource requirements GatherSchedulingInfo(); } else if (HasGroups) { // Make sure all the groups have dominators FakeGroupDominators(); } // Breadth first walk of DAG VisitAll(); #ifndef NDEBUG static unsigned Count = 0; Count++; for (unsigned i = 0, N = Ordering.size(); i < N; i++) { NodeInfo *NI = Ordering[i]; NI->Preorder = i; } #endif // Don't waste time if is only entry and return if (ShouldSchedule) { // Push back long instructions and critical path ScheduleBackward(); // Pack instructions to maximize resource utilization ScheduleForward(); } DEBUG(printChanges(Count)); // Emit in scheduled order EmitAll(); } /// createSimpleDAGScheduler - This creates a simple two pass instruction /// scheduler. llvm::ScheduleDAG* llvm::createSimpleDAGScheduler(SchedHeuristics Heuristic, SelectionDAG &DAG, MachineBasicBlock *BB) { return new ScheduleDAGSimple(Heuristic, DAG, BB, DAG.getTarget()); }