//===- SubtargetEmitter.cpp - Generate subtarget enumerations -------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This tablegen backend emits subtarget enumerations. // //===----------------------------------------------------------------------===// #include "CodeGenTarget.h" #include "CodeGenSchedule.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/StringExtras.h" #include "llvm/MC/MCInstrItineraries.h" #include "llvm/Support/Debug.h" #include "llvm/Support/Format.h" #include "llvm/TableGen/Error.h" #include "llvm/TableGen/Record.h" #include "llvm/TableGen/TableGenBackend.h" #include #include #include #include using namespace llvm; #define DEBUG_TYPE "subtarget-emitter" namespace { class SubtargetEmitter { // Each processor has a SchedClassDesc table with an entry for each SchedClass. // The SchedClassDesc table indexes into a global write resource table, write // latency table, and read advance table. struct SchedClassTables { std::vector > ProcSchedClasses; std::vector WriteProcResources; std::vector WriteLatencies; std::vector WriterNames; std::vector ReadAdvanceEntries; // Reserve an invalid entry at index 0 SchedClassTables() { ProcSchedClasses.resize(1); WriteProcResources.resize(1); WriteLatencies.resize(1); WriterNames.push_back("InvalidWrite"); ReadAdvanceEntries.resize(1); } }; struct LessWriteProcResources { bool operator()(const MCWriteProcResEntry &LHS, const MCWriteProcResEntry &RHS) { return LHS.ProcResourceIdx < RHS.ProcResourceIdx; } }; RecordKeeper &Records; CodeGenSchedModels &SchedModels; std::string Target; void Enumeration(raw_ostream &OS, const char *ClassName, bool isBits); unsigned FeatureKeyValues(raw_ostream &OS); unsigned CPUKeyValues(raw_ostream &OS); void FormItineraryStageString(const std::string &Names, Record *ItinData, std::string &ItinString, unsigned &NStages); void FormItineraryOperandCycleString(Record *ItinData, std::string &ItinString, unsigned &NOperandCycles); void FormItineraryBypassString(const std::string &Names, Record *ItinData, std::string &ItinString, unsigned NOperandCycles); void EmitStageAndOperandCycleData(raw_ostream &OS, std::vector > &ProcItinLists); void EmitItineraries(raw_ostream &OS, std::vector > &ProcItinLists); void EmitProcessorProp(raw_ostream &OS, const Record *R, const char *Name, char Separator); void EmitProcessorResources(const CodeGenProcModel &ProcModel, raw_ostream &OS); Record *FindWriteResources(const CodeGenSchedRW &SchedWrite, const CodeGenProcModel &ProcModel); Record *FindReadAdvance(const CodeGenSchedRW &SchedRead, const CodeGenProcModel &ProcModel); void ExpandProcResources(RecVec &PRVec, std::vector &Cycles, const CodeGenProcModel &ProcModel); void GenSchedClassTables(const CodeGenProcModel &ProcModel, SchedClassTables &SchedTables); void EmitSchedClassTables(SchedClassTables &SchedTables, raw_ostream &OS); void EmitProcessorModels(raw_ostream &OS); void EmitProcessorLookup(raw_ostream &OS); void EmitSchedModelHelpers(std::string ClassName, raw_ostream &OS); void EmitSchedModel(raw_ostream &OS); void ParseFeaturesFunction(raw_ostream &OS, unsigned NumFeatures, unsigned NumProcs); public: SubtargetEmitter(RecordKeeper &R, CodeGenTarget &TGT): Records(R), SchedModels(TGT.getSchedModels()), Target(TGT.getName()) {} void run(raw_ostream &o); }; } // End anonymous namespace // // Enumeration - Emit the specified class as an enumeration. // void SubtargetEmitter::Enumeration(raw_ostream &OS, const char *ClassName, bool isBits) { // Get all records of class and sort std::vector DefList = Records.getAllDerivedDefinitions(ClassName); std::sort(DefList.begin(), DefList.end(), LessRecord()); unsigned N = DefList.size(); if (N == 0) return; if (N > 64) { errs() << "Too many (> 64) subtarget features!\n"; exit(1); } OS << "namespace " << Target << " {\n"; // For bit flag enumerations with more than 32 items, emit constants. // Emit an enum for everything else. if (isBits && N > 32) { // For each record for (unsigned i = 0; i < N; i++) { // Next record Record *Def = DefList[i]; // Get and emit name and expression (1 << i) OS << " const uint64_t " << Def->getName() << " = 1ULL << " << i << ";\n"; } } else { // Open enumeration OS << "enum {\n"; // For each record for (unsigned i = 0; i < N;) { // Next record Record *Def = DefList[i]; // Get and emit name OS << " " << Def->getName(); // If bit flags then emit expression (1 << i) if (isBits) OS << " = " << " 1ULL << " << i; // Depending on 'if more in the list' emit comma if (++i < N) OS << ","; OS << "\n"; } // Close enumeration OS << "};\n"; } OS << "}\n"; } // // FeatureKeyValues - Emit data of all the subtarget features. Used by the // command line. // unsigned SubtargetEmitter::FeatureKeyValues(raw_ostream &OS) { // Gather and sort all the features std::vector FeatureList = Records.getAllDerivedDefinitions("SubtargetFeature"); if (FeatureList.empty()) return 0; std::sort(FeatureList.begin(), FeatureList.end(), LessRecordFieldName()); // Begin feature table OS << "// Sorted (by key) array of values for CPU features.\n" << "extern const llvm::SubtargetFeatureKV " << Target << "FeatureKV[] = {\n"; // For each feature unsigned NumFeatures = 0; for (unsigned i = 0, N = FeatureList.size(); i < N; ++i) { // Next feature Record *Feature = FeatureList[i]; const std::string &Name = Feature->getName(); const std::string &CommandLineName = Feature->getValueAsString("Name"); const std::string &Desc = Feature->getValueAsString("Desc"); if (CommandLineName.empty()) continue; // Emit as { "feature", "description", featureEnum, i1 | i2 | ... | in } OS << " { " << "\"" << CommandLineName << "\", " << "\"" << Desc << "\", " << Target << "::" << Name << ", "; const std::vector &ImpliesList = Feature->getValueAsListOfDefs("Implies"); if (ImpliesList.empty()) { OS << "0ULL"; } else { for (unsigned j = 0, M = ImpliesList.size(); j < M;) { OS << Target << "::" << ImpliesList[j]->getName(); if (++j < M) OS << " | "; } } OS << " }"; ++NumFeatures; // Depending on 'if more in the list' emit comma if ((i + 1) < N) OS << ","; OS << "\n"; } // End feature table OS << "};\n"; return NumFeatures; } // // CPUKeyValues - Emit data of all the subtarget processors. Used by command // line. // unsigned SubtargetEmitter::CPUKeyValues(raw_ostream &OS) { // Gather and sort processor information std::vector ProcessorList = Records.getAllDerivedDefinitions("Processor"); std::sort(ProcessorList.begin(), ProcessorList.end(), LessRecordFieldName()); // Begin processor table OS << "// Sorted (by key) array of values for CPU subtype.\n" << "extern const llvm::SubtargetFeatureKV " << Target << "SubTypeKV[] = {\n"; // For each processor for (unsigned i = 0, N = ProcessorList.size(); i < N;) { // Next processor Record *Processor = ProcessorList[i]; const std::string &Name = Processor->getValueAsString("Name"); const std::vector &FeatureList = Processor->getValueAsListOfDefs("Features"); // Emit as { "cpu", "description", f1 | f2 | ... fn }, OS << " { " << "\"" << Name << "\", " << "\"Select the " << Name << " processor\", "; if (FeatureList.empty()) { OS << "0ULL"; } else { for (unsigned j = 0, M = FeatureList.size(); j < M;) { OS << Target << "::" << FeatureList[j]->getName(); if (++j < M) OS << " | "; } } // The "0" is for the "implies" section of this data structure. OS << ", 0ULL }"; // Depending on 'if more in the list' emit comma if (++i < N) OS << ","; OS << "\n"; } // End processor table OS << "};\n"; return ProcessorList.size(); } // // FormItineraryStageString - Compose a string containing the stage // data initialization for the specified itinerary. N is the number // of stages. // void SubtargetEmitter::FormItineraryStageString(const std::string &Name, Record *ItinData, std::string &ItinString, unsigned &NStages) { // Get states list const std::vector &StageList = ItinData->getValueAsListOfDefs("Stages"); // For each stage unsigned N = NStages = StageList.size(); for (unsigned i = 0; i < N;) { // Next stage const Record *Stage = StageList[i]; // Form string as ,{ cycles, u1 | u2 | ... | un, timeinc, kind } int Cycles = Stage->getValueAsInt("Cycles"); ItinString += " { " + itostr(Cycles) + ", "; // Get unit list const std::vector &UnitList = Stage->getValueAsListOfDefs("Units"); // For each unit for (unsigned j = 0, M = UnitList.size(); j < M;) { // Add name and bitwise or ItinString += Name + "FU::" + UnitList[j]->getName(); if (++j < M) ItinString += " | "; } int TimeInc = Stage->getValueAsInt("TimeInc"); ItinString += ", " + itostr(TimeInc); int Kind = Stage->getValueAsInt("Kind"); ItinString += ", (llvm::InstrStage::ReservationKinds)" + itostr(Kind); // Close off stage ItinString += " }"; if (++i < N) ItinString += ", "; } } // // FormItineraryOperandCycleString - Compose a string containing the // operand cycle initialization for the specified itinerary. N is the // number of operands that has cycles specified. // void SubtargetEmitter::FormItineraryOperandCycleString(Record *ItinData, std::string &ItinString, unsigned &NOperandCycles) { // Get operand cycle list const std::vector &OperandCycleList = ItinData->getValueAsListOfInts("OperandCycles"); // For each operand cycle unsigned N = NOperandCycles = OperandCycleList.size(); for (unsigned i = 0; i < N;) { // Next operand cycle const int OCycle = OperandCycleList[i]; ItinString += " " + itostr(OCycle); if (++i < N) ItinString += ", "; } } void SubtargetEmitter::FormItineraryBypassString(const std::string &Name, Record *ItinData, std::string &ItinString, unsigned NOperandCycles) { const std::vector &BypassList = ItinData->getValueAsListOfDefs("Bypasses"); unsigned N = BypassList.size(); unsigned i = 0; for (; i < N;) { ItinString += Name + "Bypass::" + BypassList[i]->getName(); if (++i < NOperandCycles) ItinString += ", "; } for (; i < NOperandCycles;) { ItinString += " 0"; if (++i < NOperandCycles) ItinString += ", "; } } // // EmitStageAndOperandCycleData - Generate unique itinerary stages and operand // cycle tables. Create a list of InstrItinerary objects (ProcItinLists) indexed // by CodeGenSchedClass::Index. // void SubtargetEmitter:: EmitStageAndOperandCycleData(raw_ostream &OS, std::vector > &ProcItinLists) { // Multiple processor models may share an itinerary record. Emit it once. SmallPtrSet ItinsDefSet; // Emit functional units for all the itineraries. for (CodeGenSchedModels::ProcIter PI = SchedModels.procModelBegin(), PE = SchedModels.procModelEnd(); PI != PE; ++PI) { if (!ItinsDefSet.insert(PI->ItinsDef)) continue; std::vector FUs = PI->ItinsDef->getValueAsListOfDefs("FU"); if (FUs.empty()) continue; const std::string &Name = PI->ItinsDef->getName(); OS << "\n// Functional units for \"" << Name << "\"\n" << "namespace " << Name << "FU {\n"; for (unsigned j = 0, FUN = FUs.size(); j < FUN; ++j) OS << " const unsigned " << FUs[j]->getName() << " = 1 << " << j << ";\n"; OS << "}\n"; std::vector BPs = PI->ItinsDef->getValueAsListOfDefs("BP"); if (BPs.size()) { OS << "\n// Pipeline forwarding pathes for itineraries \"" << Name << "\"\n" << "namespace " << Name << "Bypass {\n"; OS << " const unsigned NoBypass = 0;\n"; for (unsigned j = 0, BPN = BPs.size(); j < BPN; ++j) OS << " const unsigned " << BPs[j]->getName() << " = 1 << " << j << ";\n"; OS << "}\n"; } } // Begin stages table std::string StageTable = "\nextern const llvm::InstrStage " + Target + "Stages[] = {\n"; StageTable += " { 0, 0, 0, llvm::InstrStage::Required }, // No itinerary\n"; // Begin operand cycle table std::string OperandCycleTable = "extern const unsigned " + Target + "OperandCycles[] = {\n"; OperandCycleTable += " 0, // No itinerary\n"; // Begin pipeline bypass table std::string BypassTable = "extern const unsigned " + Target + "ForwardingPaths[] = {\n"; BypassTable += " 0, // No itinerary\n"; // For each Itinerary across all processors, add a unique entry to the stages, // operand cycles, and pipepine bypess tables. Then add the new Itinerary // object with computed offsets to the ProcItinLists result. unsigned StageCount = 1, OperandCycleCount = 1; std::map ItinStageMap, ItinOperandMap; for (CodeGenSchedModels::ProcIter PI = SchedModels.procModelBegin(), PE = SchedModels.procModelEnd(); PI != PE; ++PI) { const CodeGenProcModel &ProcModel = *PI; // Add process itinerary to the list. ProcItinLists.resize(ProcItinLists.size()+1); // If this processor defines no itineraries, then leave the itinerary list // empty. std::vector &ItinList = ProcItinLists.back(); if (!ProcModel.hasItineraries()) continue; const std::string &Name = ProcModel.ItinsDef->getName(); ItinList.resize(SchedModels.numInstrSchedClasses()); assert(ProcModel.ItinDefList.size() == ItinList.size() && "bad Itins"); for (unsigned SchedClassIdx = 0, SchedClassEnd = ItinList.size(); SchedClassIdx < SchedClassEnd; ++SchedClassIdx) { // Next itinerary data Record *ItinData = ProcModel.ItinDefList[SchedClassIdx]; // Get string and stage count std::string ItinStageString; unsigned NStages = 0; if (ItinData) FormItineraryStageString(Name, ItinData, ItinStageString, NStages); // Get string and operand cycle count std::string ItinOperandCycleString; unsigned NOperandCycles = 0; std::string ItinBypassString; if (ItinData) { FormItineraryOperandCycleString(ItinData, ItinOperandCycleString, NOperandCycles); FormItineraryBypassString(Name, ItinData, ItinBypassString, NOperandCycles); } // Check to see if stage already exists and create if it doesn't unsigned FindStage = 0; if (NStages > 0) { FindStage = ItinStageMap[ItinStageString]; if (FindStage == 0) { // Emit as { cycles, u1 | u2 | ... | un, timeinc }, // indices StageTable += ItinStageString + ", // " + itostr(StageCount); if (NStages > 1) StageTable += "-" + itostr(StageCount + NStages - 1); StageTable += "\n"; // Record Itin class number. ItinStageMap[ItinStageString] = FindStage = StageCount; StageCount += NStages; } } // Check to see if operand cycle already exists and create if it doesn't unsigned FindOperandCycle = 0; if (NOperandCycles > 0) { std::string ItinOperandString = ItinOperandCycleString+ItinBypassString; FindOperandCycle = ItinOperandMap[ItinOperandString]; if (FindOperandCycle == 0) { // Emit as cycle, // index OperandCycleTable += ItinOperandCycleString + ", // "; std::string OperandIdxComment = itostr(OperandCycleCount); if (NOperandCycles > 1) OperandIdxComment += "-" + itostr(OperandCycleCount + NOperandCycles - 1); OperandCycleTable += OperandIdxComment + "\n"; // Record Itin class number. ItinOperandMap[ItinOperandCycleString] = FindOperandCycle = OperandCycleCount; // Emit as bypass, // index BypassTable += ItinBypassString + ", // " + OperandIdxComment + "\n"; OperandCycleCount += NOperandCycles; } } // Set up itinerary as location and location + stage count int NumUOps = ItinData ? ItinData->getValueAsInt("NumMicroOps") : 0; InstrItinerary Intinerary = { NumUOps, FindStage, FindStage + NStages, FindOperandCycle, FindOperandCycle + NOperandCycles}; // Inject - empty slots will be 0, 0 ItinList[SchedClassIdx] = Intinerary; } } // Closing stage StageTable += " { 0, 0, 0, llvm::InstrStage::Required } // End stages\n"; StageTable += "};\n"; // Closing operand cycles OperandCycleTable += " 0 // End operand cycles\n"; OperandCycleTable += "};\n"; BypassTable += " 0 // End bypass tables\n"; BypassTable += "};\n"; // Emit tables. OS << StageTable; OS << OperandCycleTable; OS << BypassTable; } // // EmitProcessorData - Generate data for processor itineraries that were // computed during EmitStageAndOperandCycleData(). ProcItinLists lists all // Itineraries for each processor. The Itinerary lists are indexed on // CodeGenSchedClass::Index. // void SubtargetEmitter:: EmitItineraries(raw_ostream &OS, std::vector > &ProcItinLists) { // Multiple processor models may share an itinerary record. Emit it once. SmallPtrSet ItinsDefSet; // For each processor's machine model std::vector >::iterator ProcItinListsIter = ProcItinLists.begin(); for (CodeGenSchedModels::ProcIter PI = SchedModels.procModelBegin(), PE = SchedModels.procModelEnd(); PI != PE; ++PI, ++ProcItinListsIter) { Record *ItinsDef = PI->ItinsDef; if (!ItinsDefSet.insert(ItinsDef)) continue; // Get processor itinerary name const std::string &Name = ItinsDef->getName(); // Get the itinerary list for the processor. assert(ProcItinListsIter != ProcItinLists.end() && "bad iterator"); std::vector &ItinList = *ProcItinListsIter; OS << "\n"; OS << "static const llvm::InstrItinerary "; if (ItinList.empty()) { OS << '*' << Name << " = nullptr;\n"; continue; } // Begin processor itinerary table OS << Name << "[] = {\n"; // For each itinerary class in CodeGenSchedClass::Index order. for (unsigned j = 0, M = ItinList.size(); j < M; ++j) { InstrItinerary &Intinerary = ItinList[j]; // Emit Itinerary in the form of // { firstStage, lastStage, firstCycle, lastCycle } // index OS << " { " << Intinerary.NumMicroOps << ", " << Intinerary.FirstStage << ", " << Intinerary.LastStage << ", " << Intinerary.FirstOperandCycle << ", " << Intinerary.LastOperandCycle << " }" << ", // " << j << " " << SchedModels.getSchedClass(j).Name << "\n"; } // End processor itinerary table OS << " { 0, ~0U, ~0U, ~0U, ~0U } // end marker\n"; OS << "};\n"; } } // Emit either the value defined in the TableGen Record, or the default // value defined in the C++ header. The Record is null if the processor does not // define a model. void SubtargetEmitter::EmitProcessorProp(raw_ostream &OS, const Record *R, const char *Name, char Separator) { OS << " "; int V = R ? R->getValueAsInt(Name) : -1; if (V >= 0) OS << V << Separator << " // " << Name; else OS << "MCSchedModel::Default" << Name << Separator; OS << '\n'; } void SubtargetEmitter::EmitProcessorResources(const CodeGenProcModel &ProcModel, raw_ostream &OS) { char Sep = ProcModel.ProcResourceDefs.empty() ? ' ' : ','; OS << "\n// {Name, NumUnits, SuperIdx, IsBuffered}\n"; OS << "static const llvm::MCProcResourceDesc " << ProcModel.ModelName << "ProcResources" << "[] = {\n" << " {DBGFIELD(\"InvalidUnit\") 0, 0, 0}" << Sep << "\n"; for (unsigned i = 0, e = ProcModel.ProcResourceDefs.size(); i < e; ++i) { Record *PRDef = ProcModel.ProcResourceDefs[i]; Record *SuperDef = nullptr; unsigned SuperIdx = 0; unsigned NumUnits = 0; int BufferSize = PRDef->getValueAsInt("BufferSize"); if (PRDef->isSubClassOf("ProcResGroup")) { RecVec ResUnits = PRDef->getValueAsListOfDefs("Resources"); for (RecIter RUI = ResUnits.begin(), RUE = ResUnits.end(); RUI != RUE; ++RUI) { NumUnits += (*RUI)->getValueAsInt("NumUnits"); } } else { // Find the SuperIdx if (PRDef->getValueInit("Super")->isComplete()) { SuperDef = SchedModels.findProcResUnits( PRDef->getValueAsDef("Super"), ProcModel); SuperIdx = ProcModel.getProcResourceIdx(SuperDef); } NumUnits = PRDef->getValueAsInt("NumUnits"); } // Emit the ProcResourceDesc if (i+1 == e) Sep = ' '; OS << " {DBGFIELD(\"" << PRDef->getName() << "\") "; if (PRDef->getName().size() < 15) OS.indent(15 - PRDef->getName().size()); OS << NumUnits << ", " << SuperIdx << ", " << BufferSize << "}" << Sep << " // #" << i+1; if (SuperDef) OS << ", Super=" << SuperDef->getName(); OS << "\n"; } OS << "};\n"; } // Find the WriteRes Record that defines processor resources for this // SchedWrite. Record *SubtargetEmitter::FindWriteResources( const CodeGenSchedRW &SchedWrite, const CodeGenProcModel &ProcModel) { // Check if the SchedWrite is already subtarget-specific and directly // specifies a set of processor resources. if (SchedWrite.TheDef->isSubClassOf("SchedWriteRes")) return SchedWrite.TheDef; Record *AliasDef = nullptr; for (RecIter AI = SchedWrite.Aliases.begin(), AE = SchedWrite.Aliases.end(); AI != AE; ++AI) { const CodeGenSchedRW &AliasRW = SchedModels.getSchedRW((*AI)->getValueAsDef("AliasRW")); if (AliasRW.TheDef->getValueInit("SchedModel")->isComplete()) { Record *ModelDef = AliasRW.TheDef->getValueAsDef("SchedModel"); if (&SchedModels.getProcModel(ModelDef) != &ProcModel) continue; } if (AliasDef) PrintFatalError(AliasRW.TheDef->getLoc(), "Multiple aliases " "defined for processor " + ProcModel.ModelName + " Ensure only one SchedAlias exists per RW."); AliasDef = AliasRW.TheDef; } if (AliasDef && AliasDef->isSubClassOf("SchedWriteRes")) return AliasDef; // Check this processor's list of write resources. Record *ResDef = nullptr; for (RecIter WRI = ProcModel.WriteResDefs.begin(), WRE = ProcModel.WriteResDefs.end(); WRI != WRE; ++WRI) { if (!(*WRI)->isSubClassOf("WriteRes")) continue; if (AliasDef == (*WRI)->getValueAsDef("WriteType") || SchedWrite.TheDef == (*WRI)->getValueAsDef("WriteType")) { if (ResDef) { PrintFatalError((*WRI)->getLoc(), "Resources are defined for both " "SchedWrite and its alias on processor " + ProcModel.ModelName); } ResDef = *WRI; } } // TODO: If ProcModel has a base model (previous generation processor), // then call FindWriteResources recursively with that model here. if (!ResDef) { PrintFatalError(ProcModel.ModelDef->getLoc(), std::string("Processor does not define resources for ") + SchedWrite.TheDef->getName()); } return ResDef; } /// Find the ReadAdvance record for the given SchedRead on this processor or /// return NULL. Record *SubtargetEmitter::FindReadAdvance(const CodeGenSchedRW &SchedRead, const CodeGenProcModel &ProcModel) { // Check for SchedReads that directly specify a ReadAdvance. if (SchedRead.TheDef->isSubClassOf("SchedReadAdvance")) return SchedRead.TheDef; // Check this processor's list of aliases for SchedRead. Record *AliasDef = nullptr; for (RecIter AI = SchedRead.Aliases.begin(), AE = SchedRead.Aliases.end(); AI != AE; ++AI) { const CodeGenSchedRW &AliasRW = SchedModels.getSchedRW((*AI)->getValueAsDef("AliasRW")); if (AliasRW.TheDef->getValueInit("SchedModel")->isComplete()) { Record *ModelDef = AliasRW.TheDef->getValueAsDef("SchedModel"); if (&SchedModels.getProcModel(ModelDef) != &ProcModel) continue; } if (AliasDef) PrintFatalError(AliasRW.TheDef->getLoc(), "Multiple aliases " "defined for processor " + ProcModel.ModelName + " Ensure only one SchedAlias exists per RW."); AliasDef = AliasRW.TheDef; } if (AliasDef && AliasDef->isSubClassOf("SchedReadAdvance")) return AliasDef; // Check this processor's ReadAdvanceList. Record *ResDef = nullptr; for (RecIter RAI = ProcModel.ReadAdvanceDefs.begin(), RAE = ProcModel.ReadAdvanceDefs.end(); RAI != RAE; ++RAI) { if (!(*RAI)->isSubClassOf("ReadAdvance")) continue; if (AliasDef == (*RAI)->getValueAsDef("ReadType") || SchedRead.TheDef == (*RAI)->getValueAsDef("ReadType")) { if (ResDef) { PrintFatalError((*RAI)->getLoc(), "Resources are defined for both " "SchedRead and its alias on processor " + ProcModel.ModelName); } ResDef = *RAI; } } // TODO: If ProcModel has a base model (previous generation processor), // then call FindReadAdvance recursively with that model here. if (!ResDef && SchedRead.TheDef->getName() != "ReadDefault") { PrintFatalError(ProcModel.ModelDef->getLoc(), std::string("Processor does not define resources for ") + SchedRead.TheDef->getName()); } return ResDef; } // Expand an explicit list of processor resources into a full list of implied // resource groups and super resources that cover them. void SubtargetEmitter::ExpandProcResources(RecVec &PRVec, std::vector &Cycles, const CodeGenProcModel &PM) { // Default to 1 resource cycle. Cycles.resize(PRVec.size(), 1); for (unsigned i = 0, e = PRVec.size(); i != e; ++i) { Record *PRDef = PRVec[i]; RecVec SubResources; if (PRDef->isSubClassOf("ProcResGroup")) SubResources = PRDef->getValueAsListOfDefs("Resources"); else { SubResources.push_back(PRDef); PRDef = SchedModels.findProcResUnits(PRVec[i], PM); for (Record *SubDef = PRDef; SubDef->getValueInit("Super")->isComplete();) { if (SubDef->isSubClassOf("ProcResGroup")) { // Disallow this for simplicitly. PrintFatalError(SubDef->getLoc(), "Processor resource group " " cannot be a super resources."); } Record *SuperDef = SchedModels.findProcResUnits(SubDef->getValueAsDef("Super"), PM); PRVec.push_back(SuperDef); Cycles.push_back(Cycles[i]); SubDef = SuperDef; } } for (RecIter PRI = PM.ProcResourceDefs.begin(), PRE = PM.ProcResourceDefs.end(); PRI != PRE; ++PRI) { if (*PRI == PRDef || !(*PRI)->isSubClassOf("ProcResGroup")) continue; RecVec SuperResources = (*PRI)->getValueAsListOfDefs("Resources"); RecIter SubI = SubResources.begin(), SubE = SubResources.end(); for( ; SubI != SubE; ++SubI) { if (std::find(SuperResources.begin(), SuperResources.end(), *SubI) == SuperResources.end()) { break; } } if (SubI == SubE) { PRVec.push_back(*PRI); Cycles.push_back(Cycles[i]); } } } } // Generate the SchedClass table for this processor and update global // tables. Must be called for each processor in order. void SubtargetEmitter::GenSchedClassTables(const CodeGenProcModel &ProcModel, SchedClassTables &SchedTables) { SchedTables.ProcSchedClasses.resize(SchedTables.ProcSchedClasses.size() + 1); if (!ProcModel.hasInstrSchedModel()) return; std::vector &SCTab = SchedTables.ProcSchedClasses.back(); for (CodeGenSchedModels::SchedClassIter SCI = SchedModels.schedClassBegin(), SCE = SchedModels.schedClassEnd(); SCI != SCE; ++SCI) { DEBUG(SCI->dump(&SchedModels)); SCTab.resize(SCTab.size() + 1); MCSchedClassDesc &SCDesc = SCTab.back(); // SCDesc.Name is guarded by NDEBUG SCDesc.NumMicroOps = 0; SCDesc.BeginGroup = false; SCDesc.EndGroup = false; SCDesc.WriteProcResIdx = 0; SCDesc.WriteLatencyIdx = 0; SCDesc.ReadAdvanceIdx = 0; // A Variant SchedClass has no resources of its own. bool HasVariants = false; for (std::vector::const_iterator TI = SCI->Transitions.begin(), TE = SCI->Transitions.end(); TI != TE; ++TI) { if (TI->ProcIndices[0] == 0) { HasVariants = true; break; } IdxIter PIPos = std::find(TI->ProcIndices.begin(), TI->ProcIndices.end(), ProcModel.Index); if (PIPos != TI->ProcIndices.end()) { HasVariants = true; break; } } if (HasVariants) { SCDesc.NumMicroOps = MCSchedClassDesc::VariantNumMicroOps; continue; } // Determine if the SchedClass is actually reachable on this processor. If // not don't try to locate the processor resources, it will fail. // If ProcIndices contains 0, this class applies to all processors. assert(!SCI->ProcIndices.empty() && "expect at least one procidx"); if (SCI->ProcIndices[0] != 0) { IdxIter PIPos = std::find(SCI->ProcIndices.begin(), SCI->ProcIndices.end(), ProcModel.Index); if (PIPos == SCI->ProcIndices.end()) continue; } IdxVec Writes = SCI->Writes; IdxVec Reads = SCI->Reads; if (!SCI->InstRWs.empty()) { // This class has a default ReadWrite list which can be overriden by // InstRW definitions. Record *RWDef = nullptr; for (RecIter RWI = SCI->InstRWs.begin(), RWE = SCI->InstRWs.end(); RWI != RWE; ++RWI) { Record *RWModelDef = (*RWI)->getValueAsDef("SchedModel"); if (&ProcModel == &SchedModels.getProcModel(RWModelDef)) { RWDef = *RWI; break; } } if (RWDef) { Writes.clear(); Reads.clear(); SchedModels.findRWs(RWDef->getValueAsListOfDefs("OperandReadWrites"), Writes, Reads); } } if (Writes.empty()) { // Check this processor's itinerary class resources. for (RecIter II = ProcModel.ItinRWDefs.begin(), IE = ProcModel.ItinRWDefs.end(); II != IE; ++II) { RecVec Matched = (*II)->getValueAsListOfDefs("MatchedItinClasses"); if (std::find(Matched.begin(), Matched.end(), SCI->ItinClassDef) != Matched.end()) { SchedModels.findRWs((*II)->getValueAsListOfDefs("OperandReadWrites"), Writes, Reads); break; } } if (Writes.empty()) { DEBUG(dbgs() << ProcModel.ModelName << " does not have resources for class " << SCI->Name << '\n'); } } // Sum resources across all operand writes. std::vector WriteProcResources; std::vector WriteLatencies; std::vector WriterNames; std::vector ReadAdvanceEntries; for (IdxIter WI = Writes.begin(), WE = Writes.end(); WI != WE; ++WI) { IdxVec WriteSeq; SchedModels.expandRWSeqForProc(*WI, WriteSeq, /*IsRead=*/false, ProcModel); // For each operand, create a latency entry. MCWriteLatencyEntry WLEntry; WLEntry.Cycles = 0; unsigned WriteID = WriteSeq.back(); WriterNames.push_back(SchedModels.getSchedWrite(WriteID).Name); // If this Write is not referenced by a ReadAdvance, don't distinguish it // from other WriteLatency entries. if (!SchedModels.hasReadOfWrite( SchedModels.getSchedWrite(WriteID).TheDef)) { WriteID = 0; } WLEntry.WriteResourceID = WriteID; for (IdxIter WSI = WriteSeq.begin(), WSE = WriteSeq.end(); WSI != WSE; ++WSI) { Record *WriteRes = FindWriteResources(SchedModels.getSchedWrite(*WSI), ProcModel); // Mark the parent class as invalid for unsupported write types. if (WriteRes->getValueAsBit("Unsupported")) { SCDesc.NumMicroOps = MCSchedClassDesc::InvalidNumMicroOps; break; } WLEntry.Cycles += WriteRes->getValueAsInt("Latency"); SCDesc.NumMicroOps += WriteRes->getValueAsInt("NumMicroOps"); SCDesc.BeginGroup |= WriteRes->getValueAsBit("BeginGroup"); SCDesc.EndGroup |= WriteRes->getValueAsBit("EndGroup"); // Create an entry for each ProcResource listed in WriteRes. RecVec PRVec = WriteRes->getValueAsListOfDefs("ProcResources"); std::vector Cycles = WriteRes->getValueAsListOfInts("ResourceCycles"); ExpandProcResources(PRVec, Cycles, ProcModel); for (unsigned PRIdx = 0, PREnd = PRVec.size(); PRIdx != PREnd; ++PRIdx) { MCWriteProcResEntry WPREntry; WPREntry.ProcResourceIdx = ProcModel.getProcResourceIdx(PRVec[PRIdx]); assert(WPREntry.ProcResourceIdx && "Bad ProcResourceIdx"); WPREntry.Cycles = Cycles[PRIdx]; // If this resource is already used in this sequence, add the current // entry's cycles so that the same resource appears to be used // serially, rather than multiple parallel uses. This is important for // in-order machine where the resource consumption is a hazard. unsigned WPRIdx = 0, WPREnd = WriteProcResources.size(); for( ; WPRIdx != WPREnd; ++WPRIdx) { if (WriteProcResources[WPRIdx].ProcResourceIdx == WPREntry.ProcResourceIdx) { WriteProcResources[WPRIdx].Cycles += WPREntry.Cycles; break; } } if (WPRIdx == WPREnd) WriteProcResources.push_back(WPREntry); } } WriteLatencies.push_back(WLEntry); } // Create an entry for each operand Read in this SchedClass. // Entries must be sorted first by UseIdx then by WriteResourceID. for (unsigned UseIdx = 0, EndIdx = Reads.size(); UseIdx != EndIdx; ++UseIdx) { Record *ReadAdvance = FindReadAdvance(SchedModels.getSchedRead(Reads[UseIdx]), ProcModel); if (!ReadAdvance) continue; // Mark the parent class as invalid for unsupported write types. if (ReadAdvance->getValueAsBit("Unsupported")) { SCDesc.NumMicroOps = MCSchedClassDesc::InvalidNumMicroOps; break; } RecVec ValidWrites = ReadAdvance->getValueAsListOfDefs("ValidWrites"); IdxVec WriteIDs; if (ValidWrites.empty()) WriteIDs.push_back(0); else { for (RecIter VWI = ValidWrites.begin(), VWE = ValidWrites.end(); VWI != VWE; ++VWI) { WriteIDs.push_back(SchedModels.getSchedRWIdx(*VWI, /*IsRead=*/false)); } } std::sort(WriteIDs.begin(), WriteIDs.end()); for(IdxIter WI = WriteIDs.begin(), WE = WriteIDs.end(); WI != WE; ++WI) { MCReadAdvanceEntry RAEntry; RAEntry.UseIdx = UseIdx; RAEntry.WriteResourceID = *WI; RAEntry.Cycles = ReadAdvance->getValueAsInt("Cycles"); ReadAdvanceEntries.push_back(RAEntry); } } if (SCDesc.NumMicroOps == MCSchedClassDesc::InvalidNumMicroOps) { WriteProcResources.clear(); WriteLatencies.clear(); ReadAdvanceEntries.clear(); } // Add the information for this SchedClass to the global tables using basic // compression. // // WritePrecRes entries are sorted by ProcResIdx. std::sort(WriteProcResources.begin(), WriteProcResources.end(), LessWriteProcResources()); SCDesc.NumWriteProcResEntries = WriteProcResources.size(); std::vector::iterator WPRPos = std::search(SchedTables.WriteProcResources.begin(), SchedTables.WriteProcResources.end(), WriteProcResources.begin(), WriteProcResources.end()); if (WPRPos != SchedTables.WriteProcResources.end()) SCDesc.WriteProcResIdx = WPRPos - SchedTables.WriteProcResources.begin(); else { SCDesc.WriteProcResIdx = SchedTables.WriteProcResources.size(); SchedTables.WriteProcResources.insert(WPRPos, WriteProcResources.begin(), WriteProcResources.end()); } // Latency entries must remain in operand order. SCDesc.NumWriteLatencyEntries = WriteLatencies.size(); std::vector::iterator WLPos = std::search(SchedTables.WriteLatencies.begin(), SchedTables.WriteLatencies.end(), WriteLatencies.begin(), WriteLatencies.end()); if (WLPos != SchedTables.WriteLatencies.end()) { unsigned idx = WLPos - SchedTables.WriteLatencies.begin(); SCDesc.WriteLatencyIdx = idx; for (unsigned i = 0, e = WriteLatencies.size(); i < e; ++i) if (SchedTables.WriterNames[idx + i].find(WriterNames[i]) == std::string::npos) { SchedTables.WriterNames[idx + i] += std::string("_") + WriterNames[i]; } } else { SCDesc.WriteLatencyIdx = SchedTables.WriteLatencies.size(); SchedTables.WriteLatencies.insert(SchedTables.WriteLatencies.end(), WriteLatencies.begin(), WriteLatencies.end()); SchedTables.WriterNames.insert(SchedTables.WriterNames.end(), WriterNames.begin(), WriterNames.end()); } // ReadAdvanceEntries must remain in operand order. SCDesc.NumReadAdvanceEntries = ReadAdvanceEntries.size(); std::vector::iterator RAPos = std::search(SchedTables.ReadAdvanceEntries.begin(), SchedTables.ReadAdvanceEntries.end(), ReadAdvanceEntries.begin(), ReadAdvanceEntries.end()); if (RAPos != SchedTables.ReadAdvanceEntries.end()) SCDesc.ReadAdvanceIdx = RAPos - SchedTables.ReadAdvanceEntries.begin(); else { SCDesc.ReadAdvanceIdx = SchedTables.ReadAdvanceEntries.size(); SchedTables.ReadAdvanceEntries.insert(RAPos, ReadAdvanceEntries.begin(), ReadAdvanceEntries.end()); } } } // Emit SchedClass tables for all processors and associated global tables. void SubtargetEmitter::EmitSchedClassTables(SchedClassTables &SchedTables, raw_ostream &OS) { // Emit global WriteProcResTable. OS << "\n// {ProcResourceIdx, Cycles}\n" << "extern const llvm::MCWriteProcResEntry " << Target << "WriteProcResTable[] = {\n" << " { 0, 0}, // Invalid\n"; for (unsigned WPRIdx = 1, WPREnd = SchedTables.WriteProcResources.size(); WPRIdx != WPREnd; ++WPRIdx) { MCWriteProcResEntry &WPREntry = SchedTables.WriteProcResources[WPRIdx]; OS << " {" << format("%2d", WPREntry.ProcResourceIdx) << ", " << format("%2d", WPREntry.Cycles) << "}"; if (WPRIdx + 1 < WPREnd) OS << ','; OS << " // #" << WPRIdx << '\n'; } OS << "}; // " << Target << "WriteProcResTable\n"; // Emit global WriteLatencyTable. OS << "\n// {Cycles, WriteResourceID}\n" << "extern const llvm::MCWriteLatencyEntry " << Target << "WriteLatencyTable[] = {\n" << " { 0, 0}, // Invalid\n"; for (unsigned WLIdx = 1, WLEnd = SchedTables.WriteLatencies.size(); WLIdx != WLEnd; ++WLIdx) { MCWriteLatencyEntry &WLEntry = SchedTables.WriteLatencies[WLIdx]; OS << " {" << format("%2d", WLEntry.Cycles) << ", " << format("%2d", WLEntry.WriteResourceID) << "}"; if (WLIdx + 1 < WLEnd) OS << ','; OS << " // #" << WLIdx << " " << SchedTables.WriterNames[WLIdx] << '\n'; } OS << "}; // " << Target << "WriteLatencyTable\n"; // Emit global ReadAdvanceTable. OS << "\n// {UseIdx, WriteResourceID, Cycles}\n" << "extern const llvm::MCReadAdvanceEntry " << Target << "ReadAdvanceTable[] = {\n" << " {0, 0, 0}, // Invalid\n"; for (unsigned RAIdx = 1, RAEnd = SchedTables.ReadAdvanceEntries.size(); RAIdx != RAEnd; ++RAIdx) { MCReadAdvanceEntry &RAEntry = SchedTables.ReadAdvanceEntries[RAIdx]; OS << " {" << RAEntry.UseIdx << ", " << format("%2d", RAEntry.WriteResourceID) << ", " << format("%2d", RAEntry.Cycles) << "}"; if (RAIdx + 1 < RAEnd) OS << ','; OS << " // #" << RAIdx << '\n'; } OS << "}; // " << Target << "ReadAdvanceTable\n"; // Emit a SchedClass table for each processor. for (CodeGenSchedModels::ProcIter PI = SchedModels.procModelBegin(), PE = SchedModels.procModelEnd(); PI != PE; ++PI) { if (!PI->hasInstrSchedModel()) continue; std::vector &SCTab = SchedTables.ProcSchedClasses[1 + (PI - SchedModels.procModelBegin())]; OS << "\n// {Name, NumMicroOps, BeginGroup, EndGroup," << " WriteProcResIdx,#, WriteLatencyIdx,#, ReadAdvanceIdx,#}\n"; OS << "static const llvm::MCSchedClassDesc " << PI->ModelName << "SchedClasses[] = {\n"; // The first class is always invalid. We no way to distinguish it except by // name and position. assert(SchedModels.getSchedClass(0).Name == "NoInstrModel" && "invalid class not first"); OS << " {DBGFIELD(\"InvalidSchedClass\") " << MCSchedClassDesc::InvalidNumMicroOps << ", 0, 0, 0, 0, 0, 0, 0, 0},\n"; for (unsigned SCIdx = 1, SCEnd = SCTab.size(); SCIdx != SCEnd; ++SCIdx) { MCSchedClassDesc &MCDesc = SCTab[SCIdx]; const CodeGenSchedClass &SchedClass = SchedModels.getSchedClass(SCIdx); OS << " {DBGFIELD(\"" << SchedClass.Name << "\") "; if (SchedClass.Name.size() < 18) OS.indent(18 - SchedClass.Name.size()); OS << MCDesc.NumMicroOps << ", " << MCDesc.BeginGroup << ", " << MCDesc.EndGroup << ", " << format("%2d", MCDesc.WriteProcResIdx) << ", " << MCDesc.NumWriteProcResEntries << ", " << format("%2d", MCDesc.WriteLatencyIdx) << ", " << MCDesc.NumWriteLatencyEntries << ", " << format("%2d", MCDesc.ReadAdvanceIdx) << ", " << MCDesc.NumReadAdvanceEntries << "}"; if (SCIdx + 1 < SCEnd) OS << ','; OS << " // #" << SCIdx << '\n'; } OS << "}; // " << PI->ModelName << "SchedClasses\n"; } } void SubtargetEmitter::EmitProcessorModels(raw_ostream &OS) { // For each processor model. for (CodeGenSchedModels::ProcIter PI = SchedModels.procModelBegin(), PE = SchedModels.procModelEnd(); PI != PE; ++PI) { // Emit processor resource table. if (PI->hasInstrSchedModel()) EmitProcessorResources(*PI, OS); else if(!PI->ProcResourceDefs.empty()) PrintFatalError(PI->ModelDef->getLoc(), "SchedMachineModel defines " "ProcResources without defining WriteRes SchedWriteRes"); // Begin processor itinerary properties OS << "\n"; OS << "static const llvm::MCSchedModel " << PI->ModelName << "(\n"; EmitProcessorProp(OS, PI->ModelDef, "IssueWidth", ','); EmitProcessorProp(OS, PI->ModelDef, "MicroOpBufferSize", ','); EmitProcessorProp(OS, PI->ModelDef, "LoadLatency", ','); EmitProcessorProp(OS, PI->ModelDef, "HighLatency", ','); EmitProcessorProp(OS, PI->ModelDef, "MispredictPenalty", ','); OS << " " << (bool)(PI->ModelDef ? PI->ModelDef->getValueAsBit("CompleteModel") : 0) << ", // " << "CompleteModel\n"; OS << " " << PI->Index << ", // Processor ID\n"; if (PI->hasInstrSchedModel()) OS << " " << PI->ModelName << "ProcResources" << ",\n" << " " << PI->ModelName << "SchedClasses" << ",\n" << " " << PI->ProcResourceDefs.size()+1 << ",\n" << " " << (SchedModels.schedClassEnd() - SchedModels.schedClassBegin()) << ",\n"; else OS << " 0, 0, 0, 0, // No instruction-level machine model.\n"; if (SchedModels.hasItineraries()) OS << " " << PI->ItinsDef->getName() << ");\n"; else OS << " 0); // No Itinerary\n"; } } // // EmitProcessorLookup - generate cpu name to itinerary lookup table. // void SubtargetEmitter::EmitProcessorLookup(raw_ostream &OS) { // Gather and sort processor information std::vector ProcessorList = Records.getAllDerivedDefinitions("Processor"); std::sort(ProcessorList.begin(), ProcessorList.end(), LessRecordFieldName()); // Begin processor table OS << "\n"; OS << "// Sorted (by key) array of itineraries for CPU subtype.\n" << "extern const llvm::SubtargetInfoKV " << Target << "ProcSchedKV[] = {\n"; // For each processor for (unsigned i = 0, N = ProcessorList.size(); i < N;) { // Next processor Record *Processor = ProcessorList[i]; const std::string &Name = Processor->getValueAsString("Name"); const std::string &ProcModelName = SchedModels.getModelForProc(Processor).ModelName; // Emit as { "cpu", procinit }, OS << " { \"" << Name << "\", (const void *)&" << ProcModelName << " }"; // Depending on ''if more in the list'' emit comma if (++i < N) OS << ","; OS << "\n"; } // End processor table OS << "};\n"; } // // EmitSchedModel - Emits all scheduling model tables, folding common patterns. // void SubtargetEmitter::EmitSchedModel(raw_ostream &OS) { OS << "#ifdef DBGFIELD\n" << "#error \"GenSubtargetInfo.inc requires a DBGFIELD macro\"\n" << "#endif\n" << "#ifndef NDEBUG\n" << "#define DBGFIELD(x) x,\n" << "#else\n" << "#define DBGFIELD(x)\n" << "#endif\n"; if (SchedModels.hasItineraries()) { std::vector > ProcItinLists; // Emit the stage data EmitStageAndOperandCycleData(OS, ProcItinLists); EmitItineraries(OS, ProcItinLists); } OS << "\n// ===============================================================\n" << "// Data tables for the new per-operand machine model.\n"; SchedClassTables SchedTables; for (CodeGenSchedModels::ProcIter PI = SchedModels.procModelBegin(), PE = SchedModels.procModelEnd(); PI != PE; ++PI) { GenSchedClassTables(*PI, SchedTables); } EmitSchedClassTables(SchedTables, OS); // Emit the processor machine model EmitProcessorModels(OS); // Emit the processor lookup data EmitProcessorLookup(OS); OS << "#undef DBGFIELD"; } void SubtargetEmitter::EmitSchedModelHelpers(std::string ClassName, raw_ostream &OS) { OS << "unsigned " << ClassName << "\n::resolveSchedClass(unsigned SchedClass, const MachineInstr *MI," << " const TargetSchedModel *SchedModel) const {\n"; std::vector Prologs = Records.getAllDerivedDefinitions("PredicateProlog"); std::sort(Prologs.begin(), Prologs.end(), LessRecord()); for (std::vector::const_iterator PI = Prologs.begin(), PE = Prologs.end(); PI != PE; ++PI) { OS << (*PI)->getValueAsString("Code") << '\n'; } IdxVec VariantClasses; for (CodeGenSchedModels::SchedClassIter SCI = SchedModels.schedClassBegin(), SCE = SchedModels.schedClassEnd(); SCI != SCE; ++SCI) { if (SCI->Transitions.empty()) continue; VariantClasses.push_back(SCI->Index); } if (!VariantClasses.empty()) { OS << " switch (SchedClass) {\n"; for (IdxIter VCI = VariantClasses.begin(), VCE = VariantClasses.end(); VCI != VCE; ++VCI) { const CodeGenSchedClass &SC = SchedModels.getSchedClass(*VCI); OS << " case " << *VCI << ": // " << SC.Name << '\n'; IdxVec ProcIndices; for (std::vector::const_iterator TI = SC.Transitions.begin(), TE = SC.Transitions.end(); TI != TE; ++TI) { IdxVec PI; std::set_union(TI->ProcIndices.begin(), TI->ProcIndices.end(), ProcIndices.begin(), ProcIndices.end(), std::back_inserter(PI)); ProcIndices.swap(PI); } for (IdxIter PI = ProcIndices.begin(), PE = ProcIndices.end(); PI != PE; ++PI) { OS << " "; if (*PI != 0) OS << "if (SchedModel->getProcessorID() == " << *PI << ") "; OS << "{ // " << (SchedModels.procModelBegin() + *PI)->ModelName << '\n'; for (std::vector::const_iterator TI = SC.Transitions.begin(), TE = SC.Transitions.end(); TI != TE; ++TI) { if (*PI != 0 && !std::count(TI->ProcIndices.begin(), TI->ProcIndices.end(), *PI)) { continue; } OS << " if ("; for (RecIter RI = TI->PredTerm.begin(), RE = TI->PredTerm.end(); RI != RE; ++RI) { if (RI != TI->PredTerm.begin()) OS << "\n && "; OS << "(" << (*RI)->getValueAsString("Predicate") << ")"; } OS << ")\n" << " return " << TI->ToClassIdx << "; // " << SchedModels.getSchedClass(TI->ToClassIdx).Name << '\n'; } OS << " }\n"; if (*PI == 0) break; } if (SC.isInferred()) OS << " return " << SC.Index << ";\n"; OS << " break;\n"; } OS << " };\n"; } OS << " report_fatal_error(\"Expected a variant SchedClass\");\n" << "} // " << ClassName << "::resolveSchedClass\n"; } // // ParseFeaturesFunction - Produces a subtarget specific function for parsing // the subtarget features string. // void SubtargetEmitter::ParseFeaturesFunction(raw_ostream &OS, unsigned NumFeatures, unsigned NumProcs) { std::vector Features = Records.getAllDerivedDefinitions("SubtargetFeature"); std::sort(Features.begin(), Features.end(), LessRecord()); OS << "// ParseSubtargetFeatures - Parses features string setting specified\n" << "// subtarget options.\n" << "void llvm::"; OS << Target; OS << "Subtarget::ParseSubtargetFeatures(StringRef CPU, StringRef FS) {\n" << " DEBUG(dbgs() << \"\\nFeatures:\" << FS);\n" << " DEBUG(dbgs() << \"\\nCPU:\" << CPU << \"\\n\\n\");\n"; if (Features.empty()) { OS << "}\n"; return; } OS << " InitMCProcessorInfo(CPU, FS);\n" << " uint64_t Bits = getFeatureBits();\n"; for (unsigned i = 0; i < Features.size(); i++) { // Next record Record *R = Features[i]; const std::string &Instance = R->getName(); const std::string &Value = R->getValueAsString("Value"); const std::string &Attribute = R->getValueAsString("Attribute"); if (Value=="true" || Value=="false") OS << " if ((Bits & " << Target << "::" << Instance << ") != 0) " << Attribute << " = " << Value << ";\n"; else OS << " if ((Bits & " << Target << "::" << Instance << ") != 0 && " << Attribute << " < " << Value << ") " << Attribute << " = " << Value << ";\n"; } OS << "}\n"; } // // SubtargetEmitter::run - Main subtarget enumeration emitter. // void SubtargetEmitter::run(raw_ostream &OS) { emitSourceFileHeader("Subtarget Enumeration Source Fragment", OS); OS << "\n#ifdef GET_SUBTARGETINFO_ENUM\n"; OS << "#undef GET_SUBTARGETINFO_ENUM\n"; OS << "namespace llvm {\n"; Enumeration(OS, "SubtargetFeature", true); OS << "} // End llvm namespace \n"; OS << "#endif // GET_SUBTARGETINFO_ENUM\n\n"; OS << "\n#ifdef GET_SUBTARGETINFO_MC_DESC\n"; OS << "#undef GET_SUBTARGETINFO_MC_DESC\n"; OS << "namespace llvm {\n"; #if 0 OS << "namespace {\n"; #endif unsigned NumFeatures = FeatureKeyValues(OS); OS << "\n"; unsigned NumProcs = CPUKeyValues(OS); OS << "\n"; EmitSchedModel(OS); OS << "\n"; #if 0 OS << "}\n"; #endif // MCInstrInfo initialization routine. OS << "static inline void Init" << Target << "MCSubtargetInfo(MCSubtargetInfo *II, " << "StringRef TT, StringRef CPU, StringRef FS) {\n"; OS << " II->InitMCSubtargetInfo(TT, CPU, FS, "; if (NumFeatures) OS << Target << "FeatureKV, "; else OS << "None, "; if (NumProcs) OS << Target << "SubTypeKV, "; else OS << "None, "; OS << '\n'; OS.indent(22); OS << Target << "ProcSchedKV, " << Target << "WriteProcResTable, " << Target << "WriteLatencyTable, " << Target << "ReadAdvanceTable, "; if (SchedModels.hasItineraries()) { OS << '\n'; OS.indent(22); OS << Target << "Stages, " << Target << "OperandCycles, " << Target << "ForwardingPaths"; } else OS << "0, 0, 0"; OS << ");\n}\n\n"; OS << "} // End llvm namespace \n"; OS << "#endif // GET_SUBTARGETINFO_MC_DESC\n\n"; OS << "\n#ifdef GET_SUBTARGETINFO_TARGET_DESC\n"; OS << "#undef GET_SUBTARGETINFO_TARGET_DESC\n"; OS << "#include \"llvm/Support/Debug.h\"\n"; ParseFeaturesFunction(OS, NumFeatures, NumProcs); OS << "#endif // GET_SUBTARGETINFO_TARGET_DESC\n\n"; // Create a TargetSubtargetInfo subclass to hide the MC layer initialization. OS << "\n#ifdef GET_SUBTARGETINFO_HEADER\n"; OS << "#undef GET_SUBTARGETINFO_HEADER\n"; std::string ClassName = Target + "GenSubtargetInfo"; OS << "namespace llvm {\n"; OS << "class DFAPacketizer;\n"; OS << "struct " << ClassName << " : public TargetSubtargetInfo {\n" << " explicit " << ClassName << "(StringRef TT, StringRef CPU, " << "StringRef FS);\n" << "public:\n" << " unsigned resolveSchedClass(unsigned SchedClass, const MachineInstr *DefMI," << " const TargetSchedModel *SchedModel) const override;\n" << " DFAPacketizer *createDFAPacketizer(const InstrItineraryData *IID)" << " const;\n" << "};\n"; OS << "} // End llvm namespace \n"; OS << "#endif // GET_SUBTARGETINFO_HEADER\n\n"; OS << "\n#ifdef GET_SUBTARGETINFO_CTOR\n"; OS << "#undef GET_SUBTARGETINFO_CTOR\n"; OS << "#include \"llvm/CodeGen/TargetSchedule.h\"\n"; OS << "namespace llvm {\n"; OS << "extern const llvm::SubtargetFeatureKV " << Target << "FeatureKV[];\n"; OS << "extern const llvm::SubtargetFeatureKV " << Target << "SubTypeKV[];\n"; OS << "extern const llvm::SubtargetInfoKV " << Target << "ProcSchedKV[];\n"; OS << "extern const llvm::MCWriteProcResEntry " << Target << "WriteProcResTable[];\n"; OS << "extern const llvm::MCWriteLatencyEntry " << Target << "WriteLatencyTable[];\n"; OS << "extern const llvm::MCReadAdvanceEntry " << Target << "ReadAdvanceTable[];\n"; if (SchedModels.hasItineraries()) { OS << "extern const llvm::InstrStage " << Target << "Stages[];\n"; OS << "extern const unsigned " << Target << "OperandCycles[];\n"; OS << "extern const unsigned " << Target << "ForwardingPaths[];\n"; } OS << ClassName << "::" << ClassName << "(StringRef TT, StringRef CPU, " << "StringRef FS)\n" << " : TargetSubtargetInfo() {\n" << " InitMCSubtargetInfo(TT, CPU, FS, "; if (NumFeatures) OS << "makeArrayRef(" << Target << "FeatureKV, " << NumFeatures << "), "; else OS << "None, "; if (NumProcs) OS << "makeArrayRef(" << Target << "SubTypeKV, " << NumProcs << "), "; else OS << "None, "; OS << '\n'; OS.indent(22); OS << Target << "ProcSchedKV, " << Target << "WriteProcResTable, " << Target << "WriteLatencyTable, " << Target << "ReadAdvanceTable, "; OS << '\n'; OS.indent(22); if (SchedModels.hasItineraries()) { OS << Target << "Stages, " << Target << "OperandCycles, " << Target << "ForwardingPaths"; } else OS << "0, 0, 0"; OS << ");\n}\n\n"; EmitSchedModelHelpers(ClassName, OS); OS << "} // End llvm namespace \n"; OS << "#endif // GET_SUBTARGETINFO_CTOR\n\n"; } namespace llvm { void EmitSubtarget(RecordKeeper &RK, raw_ostream &OS) { CodeGenTarget CGTarget(RK); SubtargetEmitter(RK, CGTarget).run(OS); } } // End llvm namespace