//===-- X86AsmParser.cpp - Parse X86 assembly to MCInst instructions ------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// #include "X86.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/Twine.h" #include "llvm/MC/MCAsmLexer.h" #include "llvm/MC/MCAsmParser.h" #include "llvm/MC/MCStreamer.h" #include "llvm/MC/MCExpr.h" #include "llvm/MC/MCInst.h" #include "llvm/Support/SourceMgr.h" #include "llvm/Target/TargetRegistry.h" #include "llvm/Target/TargetAsmParser.h" using namespace llvm; namespace { struct X86Operand; class X86ATTAsmParser : public TargetAsmParser { MCAsmParser &Parser; private: MCAsmParser &getParser() const { return Parser; } MCAsmLexer &getLexer() const { return Parser.getLexer(); } void Warning(SMLoc L, const Twine &Msg) { Parser.Warning(L, Msg); } bool Error(SMLoc L, const Twine &Msg) { return Parser.Error(L, Msg); } bool ParseRegister(X86Operand &Op); bool ParseOperand(X86Operand &Op); bool ParseMemOperand(X86Operand &Op); bool ParseDirectiveWord(unsigned Size, SMLoc L); /// @name Auto-generated Match Functions /// { bool MatchInstruction(SmallVectorImpl &Operands, MCInst &Inst); /// MatchRegisterName - Match the given string to a register name, or 0 if /// there is no match. unsigned MatchRegisterName(const StringRef &Name); /// } public: X86ATTAsmParser(const Target &T, MCAsmParser &_Parser) : TargetAsmParser(T), Parser(_Parser) {} virtual bool ParseInstruction(const StringRef &Name, MCInst &Inst); virtual bool ParseDirective(AsmToken DirectiveID); }; } // end anonymous namespace namespace { /// X86Operand - Instances of this class represent a parsed X86 machine /// instruction. struct X86Operand { enum { Token, Register, Immediate, Memory } Kind; union { struct { const char *Data; unsigned Length; } Tok; struct { unsigned RegNo; } Reg; struct { const MCExpr *Val; } Imm; struct { unsigned SegReg; const MCExpr *Disp; unsigned BaseReg; unsigned IndexReg; unsigned Scale; } Mem; }; StringRef getToken() const { assert(Kind == Token && "Invalid access!"); return StringRef(Tok.Data, Tok.Length); } unsigned getReg() const { assert(Kind == Register && "Invalid access!"); return Reg.RegNo; } const MCExpr *getImm() const { assert(Kind == Immediate && "Invalid access!"); return Imm.Val; } const MCExpr *getMemDisp() const { assert(Kind == Memory && "Invalid access!"); return Mem.Disp; } unsigned getMemSegReg() const { assert(Kind == Memory && "Invalid access!"); return Mem.SegReg; } unsigned getMemBaseReg() const { assert(Kind == Memory && "Invalid access!"); return Mem.BaseReg; } unsigned getMemIndexReg() const { assert(Kind == Memory && "Invalid access!"); return Mem.IndexReg; } unsigned getMemScale() const { assert(Kind == Memory && "Invalid access!"); return Mem.Scale; } bool isToken() const {return Kind == Token; } bool isImm() const { return Kind == Immediate; } bool isImmSExt8() const { // Accept immediates which fit in 8 bits when sign extended, and // non-absolute immediates. if (!isImm()) return false; if (const MCConstantExpr *CE = dyn_cast(getImm())) { int64_t Value = CE->getValue(); return Value == (int64_t) (int8_t) Value; } return true; } bool isMem() const { return Kind == Memory; } bool isReg() const { return Kind == Register; } void addRegOperands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); Inst.addOperand(MCOperand::CreateReg(getReg())); } void addImmOperands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); Inst.addOperand(MCOperand::CreateExpr(getImm())); } void addImmSExt8Operands(MCInst &Inst, unsigned N) const { // FIXME: Support user customization of the render method. assert(N == 1 && "Invalid number of operands!"); Inst.addOperand(MCOperand::CreateExpr(getImm())); } void addMemOperands(MCInst &Inst, unsigned N) const { assert((N == 4 || N == 5) && "Invalid number of operands!"); Inst.addOperand(MCOperand::CreateReg(getMemBaseReg())); Inst.addOperand(MCOperand::CreateImm(getMemScale())); Inst.addOperand(MCOperand::CreateReg(getMemIndexReg())); Inst.addOperand(MCOperand::CreateExpr(getMemDisp())); // FIXME: What a hack. if (N == 5) Inst.addOperand(MCOperand::CreateReg(getMemSegReg())); } static X86Operand CreateToken(StringRef Str) { X86Operand Res; Res.Kind = Token; Res.Tok.Data = Str.data(); Res.Tok.Length = Str.size(); return Res; } static X86Operand CreateReg(unsigned RegNo) { X86Operand Res; Res.Kind = Register; Res.Reg.RegNo = RegNo; return Res; } static X86Operand CreateImm(const MCExpr *Val) { X86Operand Res; Res.Kind = Immediate; Res.Imm.Val = Val; return Res; } static X86Operand CreateMem(unsigned SegReg, const MCExpr *Disp, unsigned BaseReg, unsigned IndexReg, unsigned Scale) { // We should never just have a displacement, that would be an immediate. assert((SegReg || BaseReg || IndexReg) && "Invalid memory operand!"); // The scale should always be one of {1,2,4,8}. assert(((Scale == 1 || Scale == 2 || Scale == 4 || Scale == 8)) && "Invalid scale!"); X86Operand Res; Res.Kind = Memory; Res.Mem.SegReg = SegReg; Res.Mem.Disp = Disp; Res.Mem.BaseReg = BaseReg; Res.Mem.IndexReg = IndexReg; Res.Mem.Scale = Scale; return Res; } }; } // end anonymous namespace. bool X86ATTAsmParser::ParseRegister(X86Operand &Op) { const AsmToken &TokPercent = getLexer().getTok(); (void)TokPercent; // Avoid warning when assertions are disabled. assert(TokPercent.is(AsmToken::Percent) && "Invalid token kind!"); getLexer().Lex(); // Eat percent token. const AsmToken &Tok = getLexer().getTok(); if (Tok.isNot(AsmToken::Identifier)) return Error(Tok.getLoc(), "invalid register name"); // FIXME: Validate register for the current architecture; we have to do // validation later, so maybe there is no need for this here. unsigned RegNo; RegNo = MatchRegisterName(Tok.getString()); if (RegNo == 0) return Error(Tok.getLoc(), "invalid register name"); Op = X86Operand::CreateReg(RegNo); getLexer().Lex(); // Eat identifier token. return false; } bool X86ATTAsmParser::ParseOperand(X86Operand &Op) { switch (getLexer().getKind()) { default: return ParseMemOperand(Op); case AsmToken::Percent: // FIXME: if a segment register, this could either be just the seg reg, or // the start of a memory operand. return ParseRegister(Op); case AsmToken::Dollar: { // $42 -> immediate. getLexer().Lex(); const MCExpr *Val; if (getParser().ParseExpression(Val)) return true; Op = X86Operand::CreateImm(Val); return false; } } } /// ParseMemOperand: segment: disp(basereg, indexreg, scale) bool X86ATTAsmParser::ParseMemOperand(X86Operand &Op) { // FIXME: If SegReg ':' (e.g. %gs:), eat and remember. unsigned SegReg = 0; // We have to disambiguate a parenthesized expression "(4+5)" from the start // of a memory operand with a missing displacement "(%ebx)" or "(,%eax)". The // only way to do this without lookahead is to eat the ( and see what is after // it. const MCExpr *Disp = MCConstantExpr::Create(0, getParser().getContext()); if (getLexer().isNot(AsmToken::LParen)) { if (getParser().ParseExpression(Disp)) return true; // After parsing the base expression we could either have a parenthesized // memory address or not. If not, return now. If so, eat the (. if (getLexer().isNot(AsmToken::LParen)) { // Unless we have a segment register, treat this as an immediate. if (SegReg) Op = X86Operand::CreateMem(SegReg, Disp, 0, 0, 1); else Op = X86Operand::CreateImm(Disp); return false; } // Eat the '('. getLexer().Lex(); } else { // Okay, we have a '('. We don't know if this is an expression or not, but // so we have to eat the ( to see beyond it. getLexer().Lex(); // Eat the '('. if (getLexer().is(AsmToken::Percent) || getLexer().is(AsmToken::Comma)) { // Nothing to do here, fall into the code below with the '(' part of the // memory operand consumed. } else { // It must be an parenthesized expression, parse it now. if (getParser().ParseParenExpression(Disp)) return true; // After parsing the base expression we could either have a parenthesized // memory address or not. If not, return now. If so, eat the (. if (getLexer().isNot(AsmToken::LParen)) { // Unless we have a segment register, treat this as an immediate. if (SegReg) Op = X86Operand::CreateMem(SegReg, Disp, 0, 0, 1); else Op = X86Operand::CreateImm(Disp); return false; } // Eat the '('. getLexer().Lex(); } } // If we reached here, then we just ate the ( of the memory operand. Process // the rest of the memory operand. unsigned BaseReg = 0, IndexReg = 0, Scale = 1; if (getLexer().is(AsmToken::Percent)) { if (ParseRegister(Op)) return true; BaseReg = Op.getReg(); } if (getLexer().is(AsmToken::Comma)) { getLexer().Lex(); // Eat the comma. // Following the comma we should have either an index register, or a scale // value. We don't support the later form, but we want to parse it // correctly. // // Not that even though it would be completely consistent to support syntax // like "1(%eax,,1)", the assembler doesn't. if (getLexer().is(AsmToken::Percent)) { if (ParseRegister(Op)) return true; IndexReg = Op.getReg(); if (getLexer().isNot(AsmToken::RParen)) { // Parse the scale amount: // ::= ',' [scale-expression] if (getLexer().isNot(AsmToken::Comma)) return true; getLexer().Lex(); // Eat the comma. if (getLexer().isNot(AsmToken::RParen)) { SMLoc Loc = getLexer().getTok().getLoc(); int64_t ScaleVal; if (getParser().ParseAbsoluteExpression(ScaleVal)) return true; // Validate the scale amount. if (ScaleVal != 1 && ScaleVal != 2 && ScaleVal != 4 && ScaleVal != 8) return Error(Loc, "scale factor in address must be 1, 2, 4 or 8"); Scale = (unsigned)ScaleVal; } } } else if (getLexer().isNot(AsmToken::RParen)) { // Otherwise we have the unsupported form of a scale amount without an // index. SMLoc Loc = getLexer().getTok().getLoc(); int64_t Value; if (getParser().ParseAbsoluteExpression(Value)) return true; return Error(Loc, "cannot have scale factor without index register"); } } // Ok, we've eaten the memory operand, verify we have a ')' and eat it too. if (getLexer().isNot(AsmToken::RParen)) return Error(getLexer().getTok().getLoc(), "unexpected token in memory operand"); getLexer().Lex(); // Eat the ')'. Op = X86Operand::CreateMem(SegReg, Disp, BaseReg, IndexReg, Scale); return false; } bool X86ATTAsmParser::ParseInstruction(const StringRef &Name, MCInst &Inst) { SmallVector Operands; Operands.push_back(X86Operand::CreateToken(Name)); SMLoc Loc = getLexer().getTok().getLoc(); if (getLexer().isNot(AsmToken::EndOfStatement)) { // Parse '*' modifier. if (getLexer().is(AsmToken::Star)) { getLexer().Lex(); // Eat the star. Operands.push_back(X86Operand::CreateToken("*")); } // Read the first operand. Operands.push_back(X86Operand()); if (ParseOperand(Operands.back())) return true; while (getLexer().is(AsmToken::Comma)) { getLexer().Lex(); // Eat the comma. // Parse and remember the operand. Operands.push_back(X86Operand()); if (ParseOperand(Operands.back())) return true; } } if (!MatchInstruction(Operands, Inst)) return false; // FIXME: We should give nicer diagnostics about the exact failure. Error(Loc, "unrecognized instruction"); return true; } bool X86ATTAsmParser::ParseDirective(AsmToken DirectiveID) { StringRef IDVal = DirectiveID.getIdentifier(); if (IDVal == ".word") return ParseDirectiveWord(2, DirectiveID.getLoc()); return true; } /// ParseDirectiveWord /// ::= .word [ expression (, expression)* ] bool X86ATTAsmParser::ParseDirectiveWord(unsigned Size, SMLoc L) { if (getLexer().isNot(AsmToken::EndOfStatement)) { for (;;) { const MCExpr *Value; if (getParser().ParseExpression(Value)) return true; getParser().getStreamer().EmitValue(Value, Size); if (getLexer().is(AsmToken::EndOfStatement)) break; // FIXME: Improve diagnostic. if (getLexer().isNot(AsmToken::Comma)) return Error(L, "unexpected token in directive"); getLexer().Lex(); } } getLexer().Lex(); return false; } // Force static initialization. extern "C" void LLVMInitializeX86AsmParser() { RegisterAsmParser X(TheX86_32Target); RegisterAsmParser Y(TheX86_64Target); } #include "X86GenAsmMatcher.inc"