//===- DCE.cpp - Code to perform dead code elimination --------------------===// // // This file implements dead code elimination and basic block merging. // // Specifically, this: // * removes definitions with no uses (including unused constants) // * removes basic blocks with no predecessors // * merges a basic block into its predecessor if there is only one and the // predecessor only has one successor. // * Eliminates PHI nodes for basic blocks with a single predecessor // * Eliminates a basic block that only contains an unconditional branch // // TODO: This should REALLY be worklist driven instead of iterative. Right now, // we scan linearly through values, removing unused ones as we go. The problem // is that this may cause other earlier values to become unused. To make sure // that we get them all, we iterate until things stop changing. Instead, when // removing a value, recheck all of its operands to see if they are now unused. // Piece of cake, and more efficient as well. // // Note, this is not trivial, because we have to worry about invalidating // iterators. :( // //===----------------------------------------------------------------------===// #include "llvm/Optimizations/DCE.h" #include "llvm/Support/STLExtras.h" #include "llvm/Module.h" #include "llvm/Method.h" #include "llvm/BasicBlock.h" #include "llvm/iTerminators.h" #include "llvm/iOther.h" #include "llvm/Assembly/Writer.h" #include "llvm/CFG.h" #include using namespace cfg; struct ConstPoolDCE { enum { EndOffs = 0 }; static bool isDCEable(const ConstPoolVal *CPV) { // TODO: The bytecode writer requires that all used types are in the // constant pool for the current method. This is messy and is really // irritating. FIXME return CPV->getType() != Type::TypeTy; // Don't DCE Type plane constants! } }; struct BasicBlockDCE { enum { EndOffs = 1 }; static bool isDCEable(const Instruction *I) { return !I->hasSideEffects(); } }; template static bool RemoveUnusedDefs(Container &Vals, DCEController DCEControl) { bool Changed = false; int Offset = DCEController::EndOffs; for (typename Container::iterator DI = Vals.begin(); DI != Vals.end()-Offset; ) { // Look for un"used" definitions... if ((*DI)->use_empty() && DCEController::isDCEable(*DI)) { // Bye bye //cerr << "Removing: " << *DI; delete Vals.remove(DI); Changed = true; } else { ++DI; } } return Changed; } // RemoveSingularPHIs - This removes PHI nodes from basic blocks that have only // a single predecessor. This means that the PHI node must only have a single // RHS value and can be eliminated. // // This routine is very simple because we know that PHI nodes must be the first // things in a basic block, if they are present. // static bool RemoveSingularPHIs(BasicBlock *BB) { pred_iterator PI(pred_begin(BB)); if (PI == pred_end(BB) || ++PI != pred_end(BB)) return false; // More than one predecessor... Instruction *I = BB->front(); if (!I->isPHINode()) return false; // No PHI nodes //cerr << "Killing PHIs from " << BB; //cerr << "Pred #0 = " << *pred_begin(BB); //cerr << "Method == " << BB->getParent(); do { PHINode *PN = (PHINode*)I; assert(PN->getNumOperands() == 2 && "PHI node should only have one value!"); Value *V = PN->getOperand(0); PN->replaceAllUsesWith(V); // Replace PHI node with its single value. delete BB->getInstList().remove(BB->begin()); I = BB->front(); } while (I->isPHINode()); return true; // Yes, we nuked at least one phi node } bool opt::DoRemoveUnusedConstants(SymTabValue *S) { bool Changed = false; ConstantPool &CP = S->getConstantPool(); for (ConstantPool::plane_iterator PI = CP.begin(); PI != CP.end(); ++PI) Changed |= RemoveUnusedDefs(**PI, ConstPoolDCE()); return Changed; } static void ReplaceUsesWithConstant(Instruction *I) { // Get the method level constant pool ConstantPool &CP = I->getParent()->getParent()->getConstantPool(); ConstPoolVal *CPV = 0; ConstantPool::PlaneType *P; if (!CP.getPlane(I->getType(), P)) { // Does plane exist? // Yes, is it empty? if (!P->empty()) CPV = P->front(); } if (CPV == 0) { // We don't have an existing constant to reuse. Just add one. CPV = ConstPoolVal::getNullConstant(I->getType()); // Create a new constant // Add the new value to the constant pool... CP.insert(CPV); } // Make all users of this instruction reference the constant instead I->replaceAllUsesWith(CPV); } // PropogatePredecessors - This gets "Succ" ready to have the predecessors from // "BB". This is a little tricky because "Succ" has PHI nodes, which need to // have extra slots added to them to hold the merge edges from BB's // predecessors. // // Assumption: BB is the single predecessor of Succ. // static void PropogatePredecessorsForPHIs(BasicBlock *BB, BasicBlock *Succ) { assert(Succ->front()->isPHINode() && "Only works on PHId BBs!"); // If there is more than one predecessor, and there are PHI nodes in // the successor, then we need to add incoming edges for the PHI nodes // const vector BBPreds(pred_begin(BB), pred_end(BB)); BasicBlock::iterator I = Succ->begin(); do { // Loop over all of the PHI nodes in the successor BB PHINode *PN = (PHINode*)*I; Value *OldVal = PN->removeIncomingValue(BB); assert(OldVal && "No entry in PHI for Pred BB!"); for (vector::const_iterator PredI = BBPreds.begin(), End = BBPreds.end(); PredI != End; ++PredI) { // Add an incoming value for each of the new incoming values... PN->addIncoming(OldVal, *PredI); } ++I; } while ((*I)->isPHINode()); } // SimplifyCFG - This function is used to do simplification of a CFG. For // example, it adjusts branches to branches to eliminate the extra hop, it // eliminates unreachable basic blocks, and does other "peephole" optimization // of the CFG. It returns true if a modification was made, and returns an // iterator that designates the first element remaining after the block that // was deleted. // // WARNING: The entry node of a method may not be simplified. // bool opt::SimplifyCFG(Method::iterator &BBIt) { assert(*BBIt && (*BBIt)->getParent() && "Block not embedded in method!"); BasicBlock *BB = *BBIt; Method *M = BB->getParent(); assert(BB->getTerminator() && "Degenerate basic block encountered!"); assert(BB->getParent()->front() != BB && "Can't Simplify entry block!"); // Remove basic blocks that have no predecessors... which are unreachable. if (pred_begin(BB) == pred_end(BB) && !BB->hasConstantPoolReferences()) { //cerr << "Removing BB: \n" << BB; // Loop through all of our successors and make sure they know that one // of their predecessors is going away. for_each(succ_begin(BB), succ_end(BB), std::bind2nd(std::mem_fun(&BasicBlock::removePredecessor), BB)); while (!BB->empty()) { Instruction *I = BB->back(); // If this instruction is used, replace uses with an arbitrary // constant value. Because control flow can't get here, we don't care // what we replace the value with. Note that since this block is // unreachable, and all values contained within it must dominate their // uses, that all uses will eventually be removed. if (!I->use_empty()) ReplaceUsesWithConstant(I); // Remove the instruction from the basic block delete BB->getInstList().pop_back(); } delete M->getBasicBlocks().remove(BBIt); return true; } // Check to see if this block has no instructions and only a single // successor. If so, replace block references with successor. succ_iterator SI(succ_begin(BB)); if (SI != succ_end(BB) && ++SI == succ_end(BB)) { // One succ? Instruction *I = BB->front(); if (I->isTerminator()) { // Terminator is the only instruction! BasicBlock *Succ = *succ_begin(BB); // There is exactly one successor //cerr << "Killing Trivial BB: \n" << BB; if (Succ != BB) { // Arg, don't hurt infinite loops! if (Succ->front()->isPHINode()) { // If our successor has PHI nodes, then we need to update them to // include entries for BB's predecessors, not for BB itself. // PropogatePredecessorsForPHIs(BB, Succ); } BB->replaceAllUsesWith(Succ); BB = M->getBasicBlocks().remove(BBIt); if (BB->hasName() && !Succ->hasName()) // Transfer name if we can Succ->setName(BB->getName()); delete BB; // Delete basic block //cerr << "Method after removal: \n" << M; return true; } } } // Merge basic blocks into their predecessor if there is only one pred, // and if there is only one successor of the predecessor. pred_iterator PI(pred_begin(BB)); if (PI != pred_end(BB) && *PI != BB && // Not empty? Not same BB? ++PI == pred_end(BB) && !BB->hasConstantPoolReferences()) { BasicBlock *Pred = *pred_begin(BB); TerminatorInst *Term = Pred->getTerminator(); assert(Term != 0 && "malformed basic block without terminator!"); // Does the predecessor block only have a single successor? succ_iterator SI(succ_begin(Pred)); if (++SI == succ_end(Pred)) { //cerr << "Merging: " << BB << "into: " << Pred; // Delete the unconditianal branch from the predecessor... BasicBlock::iterator DI = Pred->end(); assert(Pred->getTerminator() && "Degenerate basic block encountered!"); // Empty bb??? delete Pred->getInstList().remove(--DI); // Destroy uncond branch // Move all definitions in the succecessor to the predecessor... while (!BB->empty()) { DI = BB->begin(); Instruction *Def = BB->getInstList().remove(DI); // Remove from front Pred->getInstList().push_back(Def); // Add to end... } // Remove basic block from the method... and advance iterator to the // next valid block... BB = M->getBasicBlocks().remove(BBIt); // Make all PHI nodes that refered to BB now refer to Pred as their // source... BB->replaceAllUsesWith(Pred); // Inherit predecessors name if it exists... if (BB->hasName() && !Pred->hasName()) Pred->setName(BB->getName()); delete BB; // You ARE the weakest link... goodbye return true; } } return false; } static bool DoDCEPass(Method *M) { Method::iterator BBIt, BBEnd = M->end(); if (M->begin() == BBEnd) return false; // Nothing to do bool Changed = false; // Loop through now and remove instructions that have no uses... for (BBIt = M->begin(); BBIt != BBEnd; ++BBIt) { Changed |= RemoveUnusedDefs((*BBIt)->getInstList(), BasicBlockDCE()); Changed |= RemoveSingularPHIs(*BBIt); } // Loop over all of the basic blocks (except the first one) and remove them // if they are unneeded... // for (BBIt = M->begin(), ++BBIt; BBIt != M->end(); ) { if (opt::SimplifyCFG(BBIt)) { Changed = true; } else { ++BBIt; } } // Remove unused constants return Changed | opt::DoRemoveUnusedConstants(M); } // It is possible that we may require multiple passes over the code to fully // eliminate dead code. Iterate until we are done. // bool opt::DoDeadCodeElimination(Method *M) { bool Changed = false; while (DoDCEPass(M)) Changed = true; return Changed; } bool opt::DoDeadCodeElimination(Module *C) { bool Val = C->reduceApply(DoDeadCodeElimination); while (DoRemoveUnusedConstants(C)) Val = true; return Val; }