//===-- SchedPriorities.h - Encapsulate scheduling heuristics -------------===// // // The LLVM Compiler Infrastructure // // This file was developed by the LLVM research group and is distributed under // the University of Illinois Open Source License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // Strategy: // Priority ordering rules: // (1) Max delay, which is the order of the heap S.candsAsHeap. // (2) Instruction that frees up a register. // (3) Instruction that has the maximum number of dependent instructions. // Note that rules 2 and 3 are only used if issue conflicts prevent // choosing a higher priority instruction by rule 1. // //===----------------------------------------------------------------------===// #include "SchedPriorities.h" #include "../../Target/SparcV9/LiveVar/FunctionLiveVarInfo.h" #include "llvm/CodeGen/MachineBasicBlock.h" #include "llvm/Support/CFG.h" #include "Support/PostOrderIterator.h" namespace llvm { std::ostream &operator<<(std::ostream &os, const NodeDelayPair* nd) { return os << "Delay for node " << nd->node->getNodeId() << " = " << (long)nd->delay << "\n"; } SchedPriorities::SchedPriorities(const Function *, const SchedGraph *G, FunctionLiveVarInfo &LVI) : curTime(0), graph(G), methodLiveVarInfo(LVI), nodeDelayVec(G->getNumNodes(), INVALID_LATENCY), // make errors obvious earliestReadyTimeForNode(G->getNumNodes(), 0), earliestReadyTime(0), nextToTry(candsAsHeap.begin()) { computeDelays(graph); } void SchedPriorities::initialize() { initializeReadyHeap(graph); } void SchedPriorities::computeDelays(const SchedGraph* graph) { po_iterator poIter = po_begin(graph), poEnd =po_end(graph); for ( ; poIter != poEnd; ++poIter) { const SchedGraphNode* node = *poIter; cycles_t nodeDelay; if (node->beginOutEdges() == node->endOutEdges()) nodeDelay = node->getLatency(); else { // Iterate over the out-edges of the node to compute delay nodeDelay = 0; for (SchedGraphNode::const_iterator E=node->beginOutEdges(); E != node->endOutEdges(); ++E) { cycles_t sinkDelay = getNodeDelay((SchedGraphNode*)(*E)->getSink()); nodeDelay = std::max(nodeDelay, sinkDelay + (*E)->getMinDelay()); } } getNodeDelayRef(node) = nodeDelay; } } void SchedPriorities::initializeReadyHeap(const SchedGraph* graph) { const SchedGraphNode* graphRoot = (const SchedGraphNode*)graph->getRoot(); assert(graphRoot->getMachineInstr() == NULL && "Expect dummy root"); // Insert immediate successors of dummy root, which are the actual roots sg_succ_const_iterator SEnd = succ_end(graphRoot); for (sg_succ_const_iterator S = succ_begin(graphRoot); S != SEnd; ++S) this->insertReady(*S); #undef TEST_HEAP_CONVERSION #ifdef TEST_HEAP_CONVERSION std::cerr << "Before heap conversion:\n"; copy(candsAsHeap.begin(), candsAsHeap.end(), ostream_iterator(std::cerr,"\n")); #endif candsAsHeap.makeHeap(); nextToTry = candsAsHeap.begin(); #ifdef TEST_HEAP_CONVERSION std::cerr << "After heap conversion:\n"; copy(candsAsHeap.begin(), candsAsHeap.end(), ostream_iterator(std::cerr,"\n")); #endif } void SchedPriorities::insertReady(const SchedGraphNode* node) { candsAsHeap.insert(node, nodeDelayVec[node->getNodeId()]); candsAsSet.insert(node); mcands.clear(); // ensure reset choices is called before any more choices earliestReadyTime = std::min(earliestReadyTime, getEarliestReadyTimeForNode(node)); if (SchedDebugLevel >= Sched_PrintSchedTrace) { std::cerr << " Node " << node->getNodeId() << " will be ready in Cycle " << getEarliestReadyTimeForNode(node) << "; " << " Delay = " <<(long)getNodeDelay(node) << "; Instruction: \n" << " " << *node->getMachineInstr() << "\n"; } } void SchedPriorities::issuedReadyNodeAt(cycles_t curTime, const SchedGraphNode* node) { candsAsHeap.removeNode(node); candsAsSet.erase(node); mcands.clear(); // ensure reset choices is called before any more choices if (earliestReadyTime == getEarliestReadyTimeForNode(node)) { // earliestReadyTime may have been due to this node, so recompute it earliestReadyTime = HUGE_LATENCY; for (NodeHeap::const_iterator I=candsAsHeap.begin(); I != candsAsHeap.end(); ++I) if (candsAsHeap.getNode(I)) { earliestReadyTime = std::min(earliestReadyTime, getEarliestReadyTimeForNode(candsAsHeap.getNode(I))); } } // Now update ready times for successors for (SchedGraphNode::const_iterator E=node->beginOutEdges(); E != node->endOutEdges(); ++E) { cycles_t& etime = getEarliestReadyTimeForNodeRef((SchedGraphNode*)(*E)->getSink()); etime = std::max(etime, curTime + (*E)->getMinDelay()); } } //---------------------------------------------------------------------- // Priority ordering rules: // (1) Max delay, which is the order of the heap S.candsAsHeap. // (2) Instruction that frees up a register. // (3) Instruction that has the maximum number of dependent instructions. // Note that rules 2 and 3 are only used if issue conflicts prevent // choosing a higher priority instruction by rule 1. //---------------------------------------------------------------------- inline int SchedPriorities::chooseByRule1(std::vector& mcands) { return (mcands.size() == 1)? 0 // only one choice exists so take it : -1; // -1 indicates multiple choices } inline int SchedPriorities::chooseByRule2(std::vector& mcands) { assert(mcands.size() >= 1 && "Should have at least one candidate here."); for (unsigned i=0, N = mcands.size(); i < N; i++) if (instructionHasLastUse(methodLiveVarInfo, candsAsHeap.getNode(mcands[i]))) return i; return -1; } inline int SchedPriorities::chooseByRule3(std::vector& mcands) { assert(mcands.size() >= 1 && "Should have at least one candidate here."); int maxUses = candsAsHeap.getNode(mcands[0])->getNumOutEdges(); int indexWithMaxUses = 0; for (unsigned i=1, N = mcands.size(); i < N; i++) { int numUses = candsAsHeap.getNode(mcands[i])->getNumOutEdges(); if (numUses > maxUses) { maxUses = numUses; indexWithMaxUses = i; } } return indexWithMaxUses; } const SchedGraphNode* SchedPriorities::getNextHighest(const SchedulingManager& S, cycles_t curTime) { int nextIdx = -1; const SchedGraphNode* nextChoice = NULL; if (mcands.size() == 0) findSetWithMaxDelay(mcands, S); while (nextIdx < 0 && mcands.size() > 0) { nextIdx = chooseByRule1(mcands); // rule 1 if (nextIdx == -1) nextIdx = chooseByRule2(mcands); // rule 2 if (nextIdx == -1) nextIdx = chooseByRule3(mcands); // rule 3 if (nextIdx == -1) nextIdx = 0; // default to first choice by delays // We have found the next best candidate. Check if it ready in // the current cycle, and if it is feasible. // If not, remove it from mcands and continue. Refill mcands if // it becomes empty. nextChoice = candsAsHeap.getNode(mcands[nextIdx]); if (getEarliestReadyTimeForNode(nextChoice) > curTime || ! instrIsFeasible(S, nextChoice->getMachineInstr()->getOpcode())) { mcands.erase(mcands.begin() + nextIdx); nextIdx = -1; if (mcands.size() == 0) findSetWithMaxDelay(mcands, S); } } if (nextIdx >= 0) { mcands.erase(mcands.begin() + nextIdx); return nextChoice; } else return NULL; } void SchedPriorities::findSetWithMaxDelay(std::vector& mcands, const SchedulingManager& S) { if (mcands.size() == 0 && nextToTry != candsAsHeap.end()) { // out of choices at current maximum delay; // put nodes with next highest delay in mcands candIndex next = nextToTry; cycles_t maxDelay = candsAsHeap.getDelay(next); for (; next != candsAsHeap.end() && candsAsHeap.getDelay(next) == maxDelay; ++next) mcands.push_back(next); nextToTry = next; if (SchedDebugLevel >= Sched_PrintSchedTrace) { std::cerr << " Cycle " << (long)getTime() << ": " << "Next highest delay = " << (long)maxDelay << " : " << mcands.size() << " Nodes with this delay: "; for (unsigned i=0; i < mcands.size(); i++) std::cerr << candsAsHeap.getNode(mcands[i])->getNodeId() << ", "; std::cerr << "\n"; } } } bool SchedPriorities::instructionHasLastUse(FunctionLiveVarInfo &LVI, const SchedGraphNode* graphNode) { const MachineInstr *MI = graphNode->getMachineInstr(); hash_map::const_iterator ui = lastUseMap.find(MI); if (ui != lastUseMap.end()) return ui->second; // else check if instruction is a last use and save it in the hash_map bool hasLastUse = false; const BasicBlock* bb = graphNode->getMachineBasicBlock().getBasicBlock(); const ValueSet &LVs = LVI.getLiveVarSetBeforeMInst(MI, bb); for (MachineInstr::const_val_op_iterator OI = MI->begin(), OE = MI->end(); OI != OE; ++OI) if (!LVs.count(*OI)) { hasLastUse = true; break; } return lastUseMap[MI] = hasLastUse; } } // End llvm namespace