//===-- X86/X86CodeEmitter.cpp - Convert X86 code to machine code ---------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file contains the pass that transforms the X86 machine instructions into // relocatable machine code. // //===----------------------------------------------------------------------===// #define DEBUG_TYPE "x86-emitter" #include "X86InstrInfo.h" #include "X86JITInfo.h" #include "X86Subtarget.h" #include "X86TargetMachine.h" #include "X86Relocations.h" #include "X86.h" #include "llvm/PassManager.h" #include "llvm/CodeGen/MachineCodeEmitter.h" #include "llvm/CodeGen/MachineFunctionPass.h" #include "llvm/CodeGen/MachineInstr.h" #include "llvm/CodeGen/MachineModuleInfo.h" #include "llvm/CodeGen/Passes.h" #include "llvm/Function.h" #include "llvm/ADT/Statistic.h" #include "llvm/Support/Compiler.h" #include "llvm/Support/Debug.h" #include "llvm/Target/TargetOptions.h" using namespace llvm; STATISTIC(NumEmitted, "Number of machine instructions emitted"); namespace { class VISIBILITY_HIDDEN Emitter : public MachineFunctionPass { const X86InstrInfo *II; const TargetData *TD; X86TargetMachine &TM; MachineCodeEmitter &MCE; intptr_t PICBaseOffset; bool Is64BitMode; bool IsPIC; public: static char ID; explicit Emitter(X86TargetMachine &tm, MachineCodeEmitter &mce) : MachineFunctionPass(&ID), II(0), TD(0), TM(tm), MCE(mce), PICBaseOffset(0), Is64BitMode(false), IsPIC(TM.getRelocationModel() == Reloc::PIC_) {} Emitter(X86TargetMachine &tm, MachineCodeEmitter &mce, const X86InstrInfo &ii, const TargetData &td, bool is64) : MachineFunctionPass(&ID), II(&ii), TD(&td), TM(tm), MCE(mce), PICBaseOffset(0), Is64BitMode(is64), IsPIC(TM.getRelocationModel() == Reloc::PIC_) {} bool runOnMachineFunction(MachineFunction &MF); virtual const char *getPassName() const { return "X86 Machine Code Emitter"; } void emitInstruction(const MachineInstr &MI, const TargetInstrDesc *Desc); void getAnalysisUsage(AnalysisUsage &AU) const { AU.addRequired(); MachineFunctionPass::getAnalysisUsage(AU); } private: void emitPCRelativeBlockAddress(MachineBasicBlock *MBB); void emitGlobalAddress(GlobalValue *GV, unsigned Reloc, int Disp = 0, intptr_t PCAdj = 0, bool NeedStub = false, bool IsLazy = false); void emitExternalSymbolAddress(const char *ES, unsigned Reloc); void emitConstPoolAddress(unsigned CPI, unsigned Reloc, int Disp = 0, intptr_t PCAdj = 0); void emitJumpTableAddress(unsigned JTI, unsigned Reloc, intptr_t PCAdj = 0); void emitDisplacementField(const MachineOperand *RelocOp, int DispVal, intptr_t PCAdj = 0); void emitRegModRMByte(unsigned ModRMReg, unsigned RegOpcodeField); void emitSIBByte(unsigned SS, unsigned Index, unsigned Base); void emitConstant(uint64_t Val, unsigned Size); void emitMemModRMByte(const MachineInstr &MI, unsigned Op, unsigned RegOpcodeField, intptr_t PCAdj = 0); unsigned getX86RegNum(unsigned RegNo) const; bool gvNeedsLazyPtr(const GlobalValue *GV); }; char Emitter::ID = 0; } /// createX86CodeEmitterPass - Return a pass that emits the collected X86 code /// to the specified MCE object. FunctionPass *llvm::createX86CodeEmitterPass(X86TargetMachine &TM, MachineCodeEmitter &MCE) { return new Emitter(TM, MCE); } bool Emitter::runOnMachineFunction(MachineFunction &MF) { MCE.setModuleInfo(&getAnalysis()); II = TM.getInstrInfo(); TD = TM.getTargetData(); Is64BitMode = TM.getSubtarget().is64Bit(); IsPIC = TM.getRelocationModel() == Reloc::PIC_; do { DOUT << "JITTing function '" << MF.getFunction()->getName() << "'\n"; MCE.startFunction(MF); for (MachineFunction::iterator MBB = MF.begin(), E = MF.end(); MBB != E; ++MBB) { MCE.StartMachineBasicBlock(MBB); for (MachineBasicBlock::const_iterator I = MBB->begin(), E = MBB->end(); I != E; ++I) { const TargetInstrDesc &Desc = I->getDesc(); emitInstruction(*I, &Desc); // MOVPC32r is basically a call plus a pop instruction. if (Desc.getOpcode() == X86::MOVPC32r) emitInstruction(*I, &II->get(X86::POP32r)); NumEmitted++; // Keep track of the # of mi's emitted } } } while (MCE.finishFunction(MF)); return false; } /// emitPCRelativeBlockAddress - This method keeps track of the information /// necessary to resolve the address of this block later and emits a dummy /// value. /// void Emitter::emitPCRelativeBlockAddress(MachineBasicBlock *MBB) { // Remember where this reference was and where it is to so we can // deal with it later. MCE.addRelocation(MachineRelocation::getBB(MCE.getCurrentPCOffset(), X86::reloc_pcrel_word, MBB)); MCE.emitWordLE(0); } /// emitGlobalAddress - Emit the specified address to the code stream assuming /// this is part of a "take the address of a global" instruction. /// void Emitter::emitGlobalAddress(GlobalValue *GV, unsigned Reloc, int Disp /* = 0 */, intptr_t PCAdj /* = 0 */, bool NeedStub /* = false */, bool isLazy /* = false */) { intptr_t RelocCST = 0; if (Reloc == X86::reloc_picrel_word) RelocCST = PICBaseOffset; else if (Reloc == X86::reloc_pcrel_word) RelocCST = PCAdj; MachineRelocation MR = isLazy ? MachineRelocation::getGVLazyPtr(MCE.getCurrentPCOffset(), Reloc, GV, RelocCST, NeedStub) : MachineRelocation::getGV(MCE.getCurrentPCOffset(), Reloc, GV, RelocCST, NeedStub); MCE.addRelocation(MR); if (Reloc == X86::reloc_absolute_dword) MCE.emitWordLE(0); MCE.emitWordLE(Disp); // The relocated value will be added to the displacement } /// emitExternalSymbolAddress - Arrange for the address of an external symbol to /// be emitted to the current location in the function, and allow it to be PC /// relative. void Emitter::emitExternalSymbolAddress(const char *ES, unsigned Reloc) { intptr_t RelocCST = (Reloc == X86::reloc_picrel_word) ? PICBaseOffset : 0; MCE.addRelocation(MachineRelocation::getExtSym(MCE.getCurrentPCOffset(), Reloc, ES, RelocCST)); if (Reloc == X86::reloc_absolute_dword) MCE.emitWordLE(0); MCE.emitWordLE(0); } /// emitConstPoolAddress - Arrange for the address of an constant pool /// to be emitted to the current location in the function, and allow it to be PC /// relative. void Emitter::emitConstPoolAddress(unsigned CPI, unsigned Reloc, int Disp /* = 0 */, intptr_t PCAdj /* = 0 */) { intptr_t RelocCST = 0; if (Reloc == X86::reloc_picrel_word) RelocCST = PICBaseOffset; else if (Reloc == X86::reloc_pcrel_word) RelocCST = PCAdj; MCE.addRelocation(MachineRelocation::getConstPool(MCE.getCurrentPCOffset(), Reloc, CPI, RelocCST)); if (Reloc == X86::reloc_absolute_dword) MCE.emitWordLE(0); MCE.emitWordLE(Disp); // The relocated value will be added to the displacement } /// emitJumpTableAddress - Arrange for the address of a jump table to /// be emitted to the current location in the function, and allow it to be PC /// relative. void Emitter::emitJumpTableAddress(unsigned JTI, unsigned Reloc, intptr_t PCAdj /* = 0 */) { intptr_t RelocCST = 0; if (Reloc == X86::reloc_picrel_word) RelocCST = PICBaseOffset; else if (Reloc == X86::reloc_pcrel_word) RelocCST = PCAdj; MCE.addRelocation(MachineRelocation::getJumpTable(MCE.getCurrentPCOffset(), Reloc, JTI, RelocCST)); if (Reloc == X86::reloc_absolute_dword) MCE.emitWordLE(0); MCE.emitWordLE(0); // The relocated value will be added to the displacement } unsigned Emitter::getX86RegNum(unsigned RegNo) const { return II->getRegisterInfo().getX86RegNum(RegNo); } inline static unsigned char ModRMByte(unsigned Mod, unsigned RegOpcode, unsigned RM) { assert(Mod < 4 && RegOpcode < 8 && RM < 8 && "ModRM Fields out of range!"); return RM | (RegOpcode << 3) | (Mod << 6); } void Emitter::emitRegModRMByte(unsigned ModRMReg, unsigned RegOpcodeFld){ MCE.emitByte(ModRMByte(3, RegOpcodeFld, getX86RegNum(ModRMReg))); } void Emitter::emitSIBByte(unsigned SS, unsigned Index, unsigned Base) { // SIB byte is in the same format as the ModRMByte... MCE.emitByte(ModRMByte(SS, Index, Base)); } void Emitter::emitConstant(uint64_t Val, unsigned Size) { // Output the constant in little endian byte order... for (unsigned i = 0; i != Size; ++i) { MCE.emitByte(Val & 255); Val >>= 8; } } /// isDisp8 - Return true if this signed displacement fits in a 8-bit /// sign-extended field. static bool isDisp8(int Value) { return Value == (signed char)Value; } bool Emitter::gvNeedsLazyPtr(const GlobalValue *GV) { // For Darwin, simulate the linktime GOT by using the same lazy-pointer // mechanism as 32-bit mode. return (!Is64BitMode || TM.getSubtarget().isTargetDarwin()) && TM.getSubtarget().GVRequiresExtraLoad(GV, TM, false); } void Emitter::emitDisplacementField(const MachineOperand *RelocOp, int DispVal, intptr_t PCAdj) { // If this is a simple integer displacement that doesn't require a relocation, // emit it now. if (!RelocOp) { emitConstant(DispVal, 4); return; } // Otherwise, this is something that requires a relocation. Emit it as such // now. if (RelocOp->isGlobal()) { // In 64-bit static small code model, we could potentially emit absolute. // But it's probably not beneficial. // 89 05 00 00 00 00 mov %eax,0(%rip) # PC-relative // 89 04 25 00 00 00 00 mov %eax,0x0 # Absolute unsigned rt = Is64BitMode ? X86::reloc_pcrel_word : (IsPIC ? X86::reloc_picrel_word : X86::reloc_absolute_word); bool NeedStub = isa(RelocOp->getGlobal()); bool isLazy = gvNeedsLazyPtr(RelocOp->getGlobal()); emitGlobalAddress(RelocOp->getGlobal(), rt, RelocOp->getOffset(), PCAdj, NeedStub, isLazy); } else if (RelocOp->isCPI()) { unsigned rt = Is64BitMode ? X86::reloc_pcrel_word : X86::reloc_picrel_word; emitConstPoolAddress(RelocOp->getIndex(), rt, RelocOp->getOffset(), PCAdj); } else if (RelocOp->isJTI()) { unsigned rt = Is64BitMode ? X86::reloc_pcrel_word : X86::reloc_picrel_word; emitJumpTableAddress(RelocOp->getIndex(), rt, PCAdj); } else { assert(0 && "Unknown value to relocate!"); } } void Emitter::emitMemModRMByte(const MachineInstr &MI, unsigned Op, unsigned RegOpcodeField, intptr_t PCAdj) { const MachineOperand &Op3 = MI.getOperand(Op+3); int DispVal = 0; const MachineOperand *DispForReloc = 0; // Figure out what sort of displacement we have to handle here. if (Op3.isGlobal()) { DispForReloc = &Op3; } else if (Op3.isCPI()) { if (Is64BitMode || IsPIC) { DispForReloc = &Op3; } else { DispVal += MCE.getConstantPoolEntryAddress(Op3.getIndex()); DispVal += Op3.getOffset(); } } else if (Op3.isJTI()) { if (Is64BitMode || IsPIC) { DispForReloc = &Op3; } else { DispVal += MCE.getJumpTableEntryAddress(Op3.getIndex()); } } else { DispVal = Op3.getImm(); } const MachineOperand &Base = MI.getOperand(Op); const MachineOperand &Scale = MI.getOperand(Op+1); const MachineOperand &IndexReg = MI.getOperand(Op+2); unsigned BaseReg = Base.getReg(); // Is a SIB byte needed? if (IndexReg.getReg() == 0 && (BaseReg == 0 || getX86RegNum(BaseReg) != N86::ESP)) { if (BaseReg == 0) { // Just a displacement? // Emit special case [disp32] encoding MCE.emitByte(ModRMByte(0, RegOpcodeField, 5)); emitDisplacementField(DispForReloc, DispVal, PCAdj); } else { unsigned BaseRegNo = getX86RegNum(BaseReg); if (!DispForReloc && DispVal == 0 && BaseRegNo != N86::EBP) { // Emit simple indirect register encoding... [EAX] f.e. MCE.emitByte(ModRMByte(0, RegOpcodeField, BaseRegNo)); } else if (!DispForReloc && isDisp8(DispVal)) { // Emit the disp8 encoding... [REG+disp8] MCE.emitByte(ModRMByte(1, RegOpcodeField, BaseRegNo)); emitConstant(DispVal, 1); } else { // Emit the most general non-SIB encoding: [REG+disp32] MCE.emitByte(ModRMByte(2, RegOpcodeField, BaseRegNo)); emitDisplacementField(DispForReloc, DispVal, PCAdj); } } } else { // We need a SIB byte, so start by outputting the ModR/M byte first assert(IndexReg.getReg() != X86::ESP && IndexReg.getReg() != X86::RSP && "Cannot use ESP as index reg!"); bool ForceDisp32 = false; bool ForceDisp8 = false; if (BaseReg == 0) { // If there is no base register, we emit the special case SIB byte with // MOD=0, BASE=5, to JUST get the index, scale, and displacement. MCE.emitByte(ModRMByte(0, RegOpcodeField, 4)); ForceDisp32 = true; } else if (DispForReloc) { // Emit the normal disp32 encoding. MCE.emitByte(ModRMByte(2, RegOpcodeField, 4)); ForceDisp32 = true; } else if (DispVal == 0 && getX86RegNum(BaseReg) != N86::EBP) { // Emit no displacement ModR/M byte MCE.emitByte(ModRMByte(0, RegOpcodeField, 4)); } else if (isDisp8(DispVal)) { // Emit the disp8 encoding... MCE.emitByte(ModRMByte(1, RegOpcodeField, 4)); ForceDisp8 = true; // Make sure to force 8 bit disp if Base=EBP } else { // Emit the normal disp32 encoding... MCE.emitByte(ModRMByte(2, RegOpcodeField, 4)); } // Calculate what the SS field value should be... static const unsigned SSTable[] = { ~0, 0, 1, ~0, 2, ~0, ~0, ~0, 3 }; unsigned SS = SSTable[Scale.getImm()]; if (BaseReg == 0) { // Handle the SIB byte for the case where there is no base. The // displacement has already been output. assert(IndexReg.getReg() && "Index register must be specified!"); emitSIBByte(SS, getX86RegNum(IndexReg.getReg()), 5); } else { unsigned BaseRegNo = getX86RegNum(BaseReg); unsigned IndexRegNo; if (IndexReg.getReg()) IndexRegNo = getX86RegNum(IndexReg.getReg()); else IndexRegNo = 4; // For example [ESP+1*+4] emitSIBByte(SS, IndexRegNo, BaseRegNo); } // Do we need to output a displacement? if (ForceDisp8) { emitConstant(DispVal, 1); } else if (DispVal != 0 || ForceDisp32) { emitDisplacementField(DispForReloc, DispVal, PCAdj); } } } void Emitter::emitInstruction(const MachineInstr &MI, const TargetInstrDesc *Desc) { DOUT << MI; unsigned Opcode = Desc->Opcode; // Emit the lock opcode prefix as needed. if (Desc->TSFlags & X86II::LOCK) MCE.emitByte(0xF0); // Emit the repeat opcode prefix as needed. if ((Desc->TSFlags & X86II::Op0Mask) == X86II::REP) MCE.emitByte(0xF3); // Emit the operand size opcode prefix as needed. if (Desc->TSFlags & X86II::OpSize) MCE.emitByte(0x66); // Emit the address size opcode prefix as needed. if (Desc->TSFlags & X86II::AdSize) MCE.emitByte(0x67); bool Need0FPrefix = false; switch (Desc->TSFlags & X86II::Op0Mask) { case X86II::TB: // Two-byte opcode prefix case X86II::T8: // 0F 38 case X86II::TA: // 0F 3A Need0FPrefix = true; break; case X86II::REP: break; // already handled. case X86II::XS: // F3 0F MCE.emitByte(0xF3); Need0FPrefix = true; break; case X86II::XD: // F2 0F MCE.emitByte(0xF2); Need0FPrefix = true; break; case X86II::D8: case X86II::D9: case X86II::DA: case X86II::DB: case X86II::DC: case X86II::DD: case X86II::DE: case X86II::DF: MCE.emitByte(0xD8+ (((Desc->TSFlags & X86II::Op0Mask)-X86II::D8) >> X86II::Op0Shift)); break; // Two-byte opcode prefix default: assert(0 && "Invalid prefix!"); case 0: break; // No prefix! } if (Is64BitMode) { // REX prefix unsigned REX = X86InstrInfo::determineREX(MI); if (REX) MCE.emitByte(0x40 | REX); } // 0x0F escape code must be emitted just before the opcode. if (Need0FPrefix) MCE.emitByte(0x0F); switch (Desc->TSFlags & X86II::Op0Mask) { case X86II::T8: // 0F 38 MCE.emitByte(0x38); break; case X86II::TA: // 0F 3A MCE.emitByte(0x3A); break; } // If this is a two-address instruction, skip one of the register operands. unsigned NumOps = Desc->getNumOperands(); unsigned CurOp = 0; if (NumOps > 1 && Desc->getOperandConstraint(1, TOI::TIED_TO) != -1) ++CurOp; else if (NumOps > 2 && Desc->getOperandConstraint(NumOps-1, TOI::TIED_TO)== 0) // Skip the last source operand that is tied_to the dest reg. e.g. LXADD32 --NumOps; unsigned char BaseOpcode = II->getBaseOpcodeFor(Desc); switch (Desc->TSFlags & X86II::FormMask) { default: assert(0 && "Unknown FormMask value in X86 MachineCodeEmitter!"); case X86II::Pseudo: // Remember the current PC offset, this is the PIC relocation // base address. switch (Opcode) { default: assert(0 && "psuedo instructions should be removed before code emission"); break; case TargetInstrInfo::INLINEASM: { const char* Value = MI.getOperand(0).getSymbolName(); /* We allow inline assembler nodes with empty bodies - they can implicitly define registers, which is ok for JIT. */ assert((Value[0] == 0) && "JIT does not support inline asm!\n"); break; } case TargetInstrInfo::DBG_LABEL: case TargetInstrInfo::EH_LABEL: MCE.emitLabel(MI.getOperand(0).getImm()); break; case TargetInstrInfo::IMPLICIT_DEF: case TargetInstrInfo::DECLARE: case X86::DWARF_LOC: case X86::FP_REG_KILL: break; case X86::MOVPC32r: { // This emits the "call" portion of this pseudo instruction. MCE.emitByte(BaseOpcode); emitConstant(0, X86InstrInfo::sizeOfImm(Desc)); // Remember PIC base. PICBaseOffset = MCE.getCurrentPCOffset(); X86JITInfo *JTI = TM.getJITInfo(); JTI->setPICBase(MCE.getCurrentPCValue()); break; } } CurOp = NumOps; break; case X86II::RawFrm: MCE.emitByte(BaseOpcode); if (CurOp != NumOps) { const MachineOperand &MO = MI.getOperand(CurOp++); DOUT << "RawFrm CurOp " << CurOp << "\n"; DOUT << "isMBB " << MO.isMBB() << "\n"; DOUT << "isGlobal " << MO.isGlobal() << "\n"; DOUT << "isSymbol " << MO.isSymbol() << "\n"; DOUT << "isImm " << MO.isImm() << "\n"; if (MO.isMBB()) { emitPCRelativeBlockAddress(MO.getMBB()); } else if (MO.isGlobal()) { // Assume undefined functions may be outside the Small codespace. bool NeedStub = (Is64BitMode && (TM.getCodeModel() == CodeModel::Large || TM.getSubtarget().isTargetDarwin())) || Opcode == X86::TAILJMPd; emitGlobalAddress(MO.getGlobal(), X86::reloc_pcrel_word, 0, 0, NeedStub); } else if (MO.isSymbol()) { emitExternalSymbolAddress(MO.getSymbolName(), X86::reloc_pcrel_word); } else if (MO.isImm()) { emitConstant(MO.getImm(), X86InstrInfo::sizeOfImm(Desc)); } else { assert(0 && "Unknown RawFrm operand!"); } } break; case X86II::AddRegFrm: MCE.emitByte(BaseOpcode + getX86RegNum(MI.getOperand(CurOp++).getReg())); if (CurOp != NumOps) { const MachineOperand &MO1 = MI.getOperand(CurOp++); unsigned Size = X86InstrInfo::sizeOfImm(Desc); if (MO1.isImm()) emitConstant(MO1.getImm(), Size); else { unsigned rt = Is64BitMode ? X86::reloc_pcrel_word : (IsPIC ? X86::reloc_picrel_word : X86::reloc_absolute_word); // This should not occur on Darwin for relocatable objects. if (Opcode == X86::MOV64ri) rt = X86::reloc_absolute_dword; // FIXME: add X86II flag? if (MO1.isGlobal()) { bool NeedStub = isa(MO1.getGlobal()); bool isLazy = gvNeedsLazyPtr(MO1.getGlobal()); emitGlobalAddress(MO1.getGlobal(), rt, MO1.getOffset(), 0, NeedStub, isLazy); } else if (MO1.isSymbol()) emitExternalSymbolAddress(MO1.getSymbolName(), rt); else if (MO1.isCPI()) emitConstPoolAddress(MO1.getIndex(), rt); else if (MO1.isJTI()) emitJumpTableAddress(MO1.getIndex(), rt); } } break; case X86II::MRMDestReg: { MCE.emitByte(BaseOpcode); emitRegModRMByte(MI.getOperand(CurOp).getReg(), getX86RegNum(MI.getOperand(CurOp+1).getReg())); CurOp += 2; if (CurOp != NumOps) emitConstant(MI.getOperand(CurOp++).getImm(), X86InstrInfo::sizeOfImm(Desc)); break; } case X86II::MRMDestMem: { MCE.emitByte(BaseOpcode); emitMemModRMByte(MI, CurOp, getX86RegNum(MI.getOperand(CurOp+4).getReg())); CurOp += 5; if (CurOp != NumOps) emitConstant(MI.getOperand(CurOp++).getImm(), X86InstrInfo::sizeOfImm(Desc)); break; } case X86II::MRMSrcReg: MCE.emitByte(BaseOpcode); emitRegModRMByte(MI.getOperand(CurOp+1).getReg(), getX86RegNum(MI.getOperand(CurOp).getReg())); CurOp += 2; if (CurOp != NumOps) emitConstant(MI.getOperand(CurOp++).getImm(), X86InstrInfo::sizeOfImm(Desc)); break; case X86II::MRMSrcMem: { intptr_t PCAdj = (CurOp+5 != NumOps) ? X86InstrInfo::sizeOfImm(Desc) : 0; MCE.emitByte(BaseOpcode); emitMemModRMByte(MI, CurOp+1, getX86RegNum(MI.getOperand(CurOp).getReg()), PCAdj); CurOp += 5; if (CurOp != NumOps) emitConstant(MI.getOperand(CurOp++).getImm(), X86InstrInfo::sizeOfImm(Desc)); break; } case X86II::MRM0r: case X86II::MRM1r: case X86II::MRM2r: case X86II::MRM3r: case X86II::MRM4r: case X86II::MRM5r: case X86II::MRM6r: case X86II::MRM7r: MCE.emitByte(BaseOpcode); emitRegModRMByte(MI.getOperand(CurOp++).getReg(), (Desc->TSFlags & X86II::FormMask)-X86II::MRM0r); if (CurOp != NumOps) { const MachineOperand &MO1 = MI.getOperand(CurOp++); unsigned Size = X86InstrInfo::sizeOfImm(Desc); if (MO1.isImm()) emitConstant(MO1.getImm(), Size); else { unsigned rt = Is64BitMode ? X86::reloc_pcrel_word : (IsPIC ? X86::reloc_picrel_word : X86::reloc_absolute_word); if (Opcode == X86::MOV64ri32) rt = X86::reloc_absolute_word; // FIXME: add X86II flag? if (MO1.isGlobal()) { bool NeedStub = isa(MO1.getGlobal()); bool isLazy = gvNeedsLazyPtr(MO1.getGlobal()); emitGlobalAddress(MO1.getGlobal(), rt, MO1.getOffset(), 0, NeedStub, isLazy); } else if (MO1.isSymbol()) emitExternalSymbolAddress(MO1.getSymbolName(), rt); else if (MO1.isCPI()) emitConstPoolAddress(MO1.getIndex(), rt); else if (MO1.isJTI()) emitJumpTableAddress(MO1.getIndex(), rt); } } break; case X86II::MRM0m: case X86II::MRM1m: case X86II::MRM2m: case X86II::MRM3m: case X86II::MRM4m: case X86II::MRM5m: case X86II::MRM6m: case X86II::MRM7m: { intptr_t PCAdj = (CurOp+4 != NumOps) ? (MI.getOperand(CurOp+4).isImm() ? X86InstrInfo::sizeOfImm(Desc) : 4) : 0; MCE.emitByte(BaseOpcode); emitMemModRMByte(MI, CurOp, (Desc->TSFlags & X86II::FormMask)-X86II::MRM0m, PCAdj); CurOp += 4; if (CurOp != NumOps) { const MachineOperand &MO = MI.getOperand(CurOp++); unsigned Size = X86InstrInfo::sizeOfImm(Desc); if (MO.isImm()) emitConstant(MO.getImm(), Size); else { unsigned rt = Is64BitMode ? X86::reloc_pcrel_word : (IsPIC ? X86::reloc_picrel_word : X86::reloc_absolute_word); if (Opcode == X86::MOV64mi32) rt = X86::reloc_absolute_word; // FIXME: add X86II flag? if (MO.isGlobal()) { bool NeedStub = isa(MO.getGlobal()); bool isLazy = gvNeedsLazyPtr(MO.getGlobal()); emitGlobalAddress(MO.getGlobal(), rt, MO.getOffset(), 0, NeedStub, isLazy); } else if (MO.isSymbol()) emitExternalSymbolAddress(MO.getSymbolName(), rt); else if (MO.isCPI()) emitConstPoolAddress(MO.getIndex(), rt); else if (MO.isJTI()) emitJumpTableAddress(MO.getIndex(), rt); } } break; } case X86II::MRMInitReg: MCE.emitByte(BaseOpcode); // Duplicate register, used by things like MOV8r0 (aka xor reg,reg). emitRegModRMByte(MI.getOperand(CurOp).getReg(), getX86RegNum(MI.getOperand(CurOp).getReg())); ++CurOp; break; } if (!Desc->isVariadic() && CurOp != NumOps) { cerr << "Cannot encode: "; MI.dump(); cerr << '\n'; abort(); } }