//==- DominatorInternals.cpp - Dominator Calculation -------------*- C++ -*-==// // // The LLVM Compiler Infrastructure // // This file was developed by Owen Anderson and is distributed under // the University of Illinois Open Source License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// #ifndef LIB_LLVM_ANALYSIS_DOMINATOR_INTERNALS_H #define LIB_LLVM_ANALYSIS_DOMINATOR_INTERNALS_H #include "llvm/Analysis/Dominators.h" #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/SmallPtrSet.h" //===----------------------------------------------------------------------===// // // DominatorTree construction - This pass constructs immediate dominator // information for a flow-graph based on the algorithm described in this // document: // // A Fast Algorithm for Finding Dominators in a Flowgraph // T. Lengauer & R. Tarjan, ACM TOPLAS July 1979, pgs 121-141. // // This implements both the O(n*ack(n)) and the O(n*log(n)) versions of EVAL and // LINK, but it turns out that the theoretically slower O(n*log(n)) // implementation is actually faster than the "efficient" algorithm (even for // large CFGs) because the constant overheads are substantially smaller. The // lower-complexity version can be enabled with the following #define: // #define BALANCE_IDOM_TREE 0 // //===----------------------------------------------------------------------===// namespace llvm { void Compress(DominatorTreeBase& DT, BasicBlock *VIn) { std::vector Work; SmallPtrSet Visited; BasicBlock *VInAncestor = DT.Info[VIn].Ancestor; DominatorTreeBase::InfoRec &VInVAInfo = DT.Info[VInAncestor]; if (VInVAInfo.Ancestor != 0) Work.push_back(VIn); while (!Work.empty()) { BasicBlock *V = Work.back(); DominatorTree::InfoRec &VInfo = DT.Info[V]; BasicBlock *VAncestor = VInfo.Ancestor; DominatorTreeBase::InfoRec &VAInfo = DT.Info[VAncestor]; // Process Ancestor first if (Visited.insert(VAncestor) && VAInfo.Ancestor != 0) { Work.push_back(VAncestor); continue; } Work.pop_back(); // Update VInfo based on Ancestor info if (VAInfo.Ancestor == 0) continue; BasicBlock *VAncestorLabel = VAInfo.Label; BasicBlock *VLabel = VInfo.Label; if (DT.Info[VAncestorLabel].Semi < DT.Info[VLabel].Semi) VInfo.Label = VAncestorLabel; VInfo.Ancestor = VAInfo.Ancestor; } } BasicBlock *Eval(DominatorTreeBase& DT, BasicBlock *V) { DominatorTreeBase::InfoRec &VInfo = DT.Info[V]; #if !BALANCE_IDOM_TREE // Higher-complexity but faster implementation if (VInfo.Ancestor == 0) return V; Compress(DT, V); return VInfo.Label; #else // Lower-complexity but slower implementation if (VInfo.Ancestor == 0) return VInfo.Label; Compress(DT, V); BasicBlock *VLabel = VInfo.Label; BasicBlock *VAncestorLabel = DT.Info[VInfo.Ancestor].Label; if (DT.Info[VAncestorLabel].Semi >= DT.Info[VLabel].Semi) return VLabel; else return VAncestorLabel; #endif } void Link(DominatorTreeBase& DT, BasicBlock *V, BasicBlock *W, DominatorTreeBase::InfoRec &WInfo) { #if !BALANCE_IDOM_TREE // Higher-complexity but faster implementation WInfo.Ancestor = V; #else // Lower-complexity but slower implementation BasicBlock *WLabel = WInfo.Label; unsigned WLabelSemi = DT.Info[WLabel].Semi; BasicBlock *S = W; InfoRec *SInfo = &DT.Info[S]; BasicBlock *SChild = SInfo->Child; InfoRec *SChildInfo = &DT.Info[SChild]; while (WLabelSemi < DT.Info[SChildInfo->Label].Semi) { BasicBlock *SChildChild = SChildInfo->Child; if (SInfo->Size+DT.Info[SChildChild].Size >= 2*SChildInfo->Size) { SChildInfo->Ancestor = S; SInfo->Child = SChild = SChildChild; SChildInfo = &DT.Info[SChild]; } else { SChildInfo->Size = SInfo->Size; S = SInfo->Ancestor = SChild; SInfo = SChildInfo; SChild = SChildChild; SChildInfo = &DT.Info[SChild]; } } DominatorTreeBase::InfoRec &VInfo = DT.Info[V]; SInfo->Label = WLabel; assert(V != W && "The optimization here will not work in this case!"); unsigned WSize = WInfo.Size; unsigned VSize = (VInfo.Size += WSize); if (VSize < 2*WSize) std::swap(S, VInfo.Child); while (S) { SInfo = &DT.Info[S]; SInfo->Ancestor = V; S = SInfo->Child; } #endif } } #endif