//===-- ARMISelDAGToDAG.cpp - A dag to dag inst selector for ARM ----------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file defines an instruction selector for the ARM target. // //===----------------------------------------------------------------------===// #include "ARM.h" #include "ARMAddressingModes.h" #include "ARMISelLowering.h" #include "ARMTargetMachine.h" #include "llvm/CallingConv.h" #include "llvm/Constants.h" #include "llvm/DerivedTypes.h" #include "llvm/Function.h" #include "llvm/Intrinsics.h" #include "llvm/LLVMContext.h" #include "llvm/CodeGen/MachineFrameInfo.h" #include "llvm/CodeGen/MachineFunction.h" #include "llvm/CodeGen/MachineInstrBuilder.h" #include "llvm/CodeGen/SelectionDAG.h" #include "llvm/CodeGen/SelectionDAGISel.h" #include "llvm/Target/TargetLowering.h" #include "llvm/Target/TargetOptions.h" #include "llvm/Support/Compiler.h" #include "llvm/Support/Debug.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/raw_ostream.h" using namespace llvm; //===--------------------------------------------------------------------===// /// ARMDAGToDAGISel - ARM specific code to select ARM machine /// instructions for SelectionDAG operations. /// namespace { class ARMDAGToDAGISel : public SelectionDAGISel { ARMBaseTargetMachine &TM; /// Subtarget - Keep a pointer to the ARMSubtarget around so that we can /// make the right decision when generating code for different targets. const ARMSubtarget *Subtarget; public: explicit ARMDAGToDAGISel(ARMBaseTargetMachine &tm, CodeGenOpt::Level OptLevel) : SelectionDAGISel(tm, OptLevel), TM(tm), Subtarget(&TM.getSubtarget()) { } virtual const char *getPassName() const { return "ARM Instruction Selection"; } /// getI32Imm - Return a target constant of type i32 with the specified /// value. inline SDValue getI32Imm(unsigned Imm) { return CurDAG->getTargetConstant(Imm, MVT::i32); } SDNode *Select(SDNode *N); virtual void InstructionSelect(); bool SelectShifterOperandReg(SDNode *Op, SDValue N, SDValue &A, SDValue &B, SDValue &C); bool SelectAddrMode2(SDNode *Op, SDValue N, SDValue &Base, SDValue &Offset, SDValue &Opc); bool SelectAddrMode2Offset(SDNode *Op, SDValue N, SDValue &Offset, SDValue &Opc); bool SelectAddrMode3(SDNode *Op, SDValue N, SDValue &Base, SDValue &Offset, SDValue &Opc); bool SelectAddrMode3Offset(SDNode *Op, SDValue N, SDValue &Offset, SDValue &Opc); bool SelectAddrMode4(SDNode *Op, SDValue N, SDValue &Addr, SDValue &Mode); bool SelectAddrMode5(SDNode *Op, SDValue N, SDValue &Base, SDValue &Offset); bool SelectAddrMode6(SDNode *Op, SDValue N, SDValue &Addr, SDValue &Update, SDValue &Opc, SDValue &Align); bool SelectAddrModePC(SDNode *Op, SDValue N, SDValue &Offset, SDValue &Label); bool SelectThumbAddrModeRR(SDNode *Op, SDValue N, SDValue &Base, SDValue &Offset); bool SelectThumbAddrModeRI5(SDNode *Op, SDValue N, unsigned Scale, SDValue &Base, SDValue &OffImm, SDValue &Offset); bool SelectThumbAddrModeS1(SDNode *Op, SDValue N, SDValue &Base, SDValue &OffImm, SDValue &Offset); bool SelectThumbAddrModeS2(SDNode *Op, SDValue N, SDValue &Base, SDValue &OffImm, SDValue &Offset); bool SelectThumbAddrModeS4(SDNode *Op, SDValue N, SDValue &Base, SDValue &OffImm, SDValue &Offset); bool SelectThumbAddrModeSP(SDNode *Op, SDValue N, SDValue &Base, SDValue &OffImm); bool SelectT2ShifterOperandReg(SDNode *Op, SDValue N, SDValue &BaseReg, SDValue &Opc); bool SelectT2AddrModeImm12(SDNode *Op, SDValue N, SDValue &Base, SDValue &OffImm); bool SelectT2AddrModeImm8(SDNode *Op, SDValue N, SDValue &Base, SDValue &OffImm); bool SelectT2AddrModeImm8Offset(SDNode *Op, SDValue N, SDValue &OffImm); bool SelectT2AddrModeImm8s4(SDNode *Op, SDValue N, SDValue &Base, SDValue &OffImm); bool SelectT2AddrModeSoReg(SDNode *Op, SDValue N, SDValue &Base, SDValue &OffReg, SDValue &ShImm); // Include the pieces autogenerated from the target description. #include "ARMGenDAGISel.inc" private: /// SelectARMIndexedLoad - Indexed (pre/post inc/dec) load matching code for /// ARM. SDNode *SelectARMIndexedLoad(SDNode *N); SDNode *SelectT2IndexedLoad(SDNode *N); /// SelectDYN_ALLOC - Select dynamic alloc for Thumb. SDNode *SelectDYN_ALLOC(SDNode *N); /// SelectVLD - Select NEON load intrinsics. NumVecs should /// be 2, 3 or 4. The opcode arrays specify the instructions used for /// loads of D registers and even subregs and odd subregs of Q registers. /// For NumVecs == 2, QOpcodes1 is not used. SDNode *SelectVLD(SDNode *N, unsigned NumVecs, unsigned *DOpcodes, unsigned *QOpcodes0, unsigned *QOpcodes1); /// SelectVST - Select NEON store intrinsics. NumVecs should /// be 2, 3 or 4. The opcode arrays specify the instructions used for /// stores of D registers and even subregs and odd subregs of Q registers. /// For NumVecs == 2, QOpcodes1 is not used. SDNode *SelectVST(SDNode *N, unsigned NumVecs, unsigned *DOpcodes, unsigned *QOpcodes0, unsigned *QOpcodes1); /// SelectVLDSTLane - Select NEON load/store lane intrinsics. NumVecs should /// be 2, 3 or 4. The opcode arrays specify the instructions used for /// load/store of D registers and even subregs and odd subregs of Q registers. SDNode *SelectVLDSTLane(SDNode *N, bool IsLoad, unsigned NumVecs, unsigned *DOpcodes, unsigned *QOpcodes0, unsigned *QOpcodes1); /// SelectV6T2BitfieldExtractOp - Select SBFX/UBFX instructions for ARM. SDNode *SelectV6T2BitfieldExtractOp(SDNode *N, unsigned Opc); /// SelectCMOVOp - Select CMOV instructions for ARM. SDNode *SelectCMOVOp(SDNode *N); SDNode *SelectT2CMOVShiftOp(SDNode *N, SDValue FalseVal, SDValue TrueVal, ARMCC::CondCodes CCVal, SDValue CCR, SDValue InFlag); SDNode *SelectARMCMOVShiftOp(SDNode *N, SDValue FalseVal, SDValue TrueVal, ARMCC::CondCodes CCVal, SDValue CCR, SDValue InFlag); SDNode *SelectT2CMOVSoImmOp(SDNode *N, SDValue FalseVal, SDValue TrueVal, ARMCC::CondCodes CCVal, SDValue CCR, SDValue InFlag); SDNode *SelectARMCMOVSoImmOp(SDNode *N, SDValue FalseVal, SDValue TrueVal, ARMCC::CondCodes CCVal, SDValue CCR, SDValue InFlag); /// SelectInlineAsmMemoryOperand - Implement addressing mode selection for /// inline asm expressions. virtual bool SelectInlineAsmMemoryOperand(const SDValue &Op, char ConstraintCode, std::vector &OutOps); /// PairDRegs - Insert a pair of double registers into an implicit def to /// form a quad register. SDNode *PairDRegs(EVT VT, SDValue V0, SDValue V1); }; } /// isInt32Immediate - This method tests to see if the node is a 32-bit constant /// operand. If so Imm will receive the 32-bit value. static bool isInt32Immediate(SDNode *N, unsigned &Imm) { if (N->getOpcode() == ISD::Constant && N->getValueType(0) == MVT::i32) { Imm = cast(N)->getZExtValue(); return true; } return false; } // isInt32Immediate - This method tests to see if a constant operand. // If so Imm will receive the 32 bit value. static bool isInt32Immediate(SDValue N, unsigned &Imm) { return isInt32Immediate(N.getNode(), Imm); } // isOpcWithIntImmediate - This method tests to see if the node is a specific // opcode and that it has a immediate integer right operand. // If so Imm will receive the 32 bit value. static bool isOpcWithIntImmediate(SDNode *N, unsigned Opc, unsigned& Imm) { return N->getOpcode() == Opc && isInt32Immediate(N->getOperand(1).getNode(), Imm); } void ARMDAGToDAGISel::InstructionSelect() { SelectRoot(*CurDAG); CurDAG->RemoveDeadNodes(); } bool ARMDAGToDAGISel::SelectShifterOperandReg(SDNode *Op, SDValue N, SDValue &BaseReg, SDValue &ShReg, SDValue &Opc) { ARM_AM::ShiftOpc ShOpcVal = ARM_AM::getShiftOpcForNode(N); // Don't match base register only case. That is matched to a separate // lower complexity pattern with explicit register operand. if (ShOpcVal == ARM_AM::no_shift) return false; BaseReg = N.getOperand(0); unsigned ShImmVal = 0; if (ConstantSDNode *RHS = dyn_cast(N.getOperand(1))) { ShReg = CurDAG->getRegister(0, MVT::i32); ShImmVal = RHS->getZExtValue() & 31; } else { ShReg = N.getOperand(1); } Opc = CurDAG->getTargetConstant(ARM_AM::getSORegOpc(ShOpcVal, ShImmVal), MVT::i32); return true; } bool ARMDAGToDAGISel::SelectAddrMode2(SDNode *Op, SDValue N, SDValue &Base, SDValue &Offset, SDValue &Opc) { if (N.getOpcode() == ISD::MUL) { if (ConstantSDNode *RHS = dyn_cast(N.getOperand(1))) { // X * [3,5,9] -> X + X * [2,4,8] etc. int RHSC = (int)RHS->getZExtValue(); if (RHSC & 1) { RHSC = RHSC & ~1; ARM_AM::AddrOpc AddSub = ARM_AM::add; if (RHSC < 0) { AddSub = ARM_AM::sub; RHSC = - RHSC; } if (isPowerOf2_32(RHSC)) { unsigned ShAmt = Log2_32(RHSC); Base = Offset = N.getOperand(0); Opc = CurDAG->getTargetConstant(ARM_AM::getAM2Opc(AddSub, ShAmt, ARM_AM::lsl), MVT::i32); return true; } } } } if (N.getOpcode() != ISD::ADD && N.getOpcode() != ISD::SUB) { Base = N; if (N.getOpcode() == ISD::FrameIndex) { int FI = cast(N)->getIndex(); Base = CurDAG->getTargetFrameIndex(FI, TLI.getPointerTy()); } else if (N.getOpcode() == ARMISD::Wrapper && !(Subtarget->useMovt() && N.getOperand(0).getOpcode() == ISD::TargetGlobalAddress)) { Base = N.getOperand(0); } Offset = CurDAG->getRegister(0, MVT::i32); Opc = CurDAG->getTargetConstant(ARM_AM::getAM2Opc(ARM_AM::add, 0, ARM_AM::no_shift), MVT::i32); return true; } // Match simple R +/- imm12 operands. if (N.getOpcode() == ISD::ADD) if (ConstantSDNode *RHS = dyn_cast(N.getOperand(1))) { int RHSC = (int)RHS->getZExtValue(); if ((RHSC >= 0 && RHSC < 0x1000) || (RHSC < 0 && RHSC > -0x1000)) { // 12 bits. Base = N.getOperand(0); if (Base.getOpcode() == ISD::FrameIndex) { int FI = cast(Base)->getIndex(); Base = CurDAG->getTargetFrameIndex(FI, TLI.getPointerTy()); } Offset = CurDAG->getRegister(0, MVT::i32); ARM_AM::AddrOpc AddSub = ARM_AM::add; if (RHSC < 0) { AddSub = ARM_AM::sub; RHSC = - RHSC; } Opc = CurDAG->getTargetConstant(ARM_AM::getAM2Opc(AddSub, RHSC, ARM_AM::no_shift), MVT::i32); return true; } } // Otherwise this is R +/- [possibly shifted] R. ARM_AM::AddrOpc AddSub = N.getOpcode() == ISD::ADD ? ARM_AM::add:ARM_AM::sub; ARM_AM::ShiftOpc ShOpcVal = ARM_AM::getShiftOpcForNode(N.getOperand(1)); unsigned ShAmt = 0; Base = N.getOperand(0); Offset = N.getOperand(1); if (ShOpcVal != ARM_AM::no_shift) { // Check to see if the RHS of the shift is a constant, if not, we can't fold // it. if (ConstantSDNode *Sh = dyn_cast(N.getOperand(1).getOperand(1))) { ShAmt = Sh->getZExtValue(); Offset = N.getOperand(1).getOperand(0); } else { ShOpcVal = ARM_AM::no_shift; } } // Try matching (R shl C) + (R). if (N.getOpcode() == ISD::ADD && ShOpcVal == ARM_AM::no_shift) { ShOpcVal = ARM_AM::getShiftOpcForNode(N.getOperand(0)); if (ShOpcVal != ARM_AM::no_shift) { // Check to see if the RHS of the shift is a constant, if not, we can't // fold it. if (ConstantSDNode *Sh = dyn_cast(N.getOperand(0).getOperand(1))) { ShAmt = Sh->getZExtValue(); Offset = N.getOperand(0).getOperand(0); Base = N.getOperand(1); } else { ShOpcVal = ARM_AM::no_shift; } } } Opc = CurDAG->getTargetConstant(ARM_AM::getAM2Opc(AddSub, ShAmt, ShOpcVal), MVT::i32); return true; } bool ARMDAGToDAGISel::SelectAddrMode2Offset(SDNode *Op, SDValue N, SDValue &Offset, SDValue &Opc) { unsigned Opcode = Op->getOpcode(); ISD::MemIndexedMode AM = (Opcode == ISD::LOAD) ? cast(Op)->getAddressingMode() : cast(Op)->getAddressingMode(); ARM_AM::AddrOpc AddSub = (AM == ISD::PRE_INC || AM == ISD::POST_INC) ? ARM_AM::add : ARM_AM::sub; if (ConstantSDNode *C = dyn_cast(N)) { int Val = (int)C->getZExtValue(); if (Val >= 0 && Val < 0x1000) { // 12 bits. Offset = CurDAG->getRegister(0, MVT::i32); Opc = CurDAG->getTargetConstant(ARM_AM::getAM2Opc(AddSub, Val, ARM_AM::no_shift), MVT::i32); return true; } } Offset = N; ARM_AM::ShiftOpc ShOpcVal = ARM_AM::getShiftOpcForNode(N); unsigned ShAmt = 0; if (ShOpcVal != ARM_AM::no_shift) { // Check to see if the RHS of the shift is a constant, if not, we can't fold // it. if (ConstantSDNode *Sh = dyn_cast(N.getOperand(1))) { ShAmt = Sh->getZExtValue(); Offset = N.getOperand(0); } else { ShOpcVal = ARM_AM::no_shift; } } Opc = CurDAG->getTargetConstant(ARM_AM::getAM2Opc(AddSub, ShAmt, ShOpcVal), MVT::i32); return true; } bool ARMDAGToDAGISel::SelectAddrMode3(SDNode *Op, SDValue N, SDValue &Base, SDValue &Offset, SDValue &Opc) { if (N.getOpcode() == ISD::SUB) { // X - C is canonicalize to X + -C, no need to handle it here. Base = N.getOperand(0); Offset = N.getOperand(1); Opc = CurDAG->getTargetConstant(ARM_AM::getAM3Opc(ARM_AM::sub, 0),MVT::i32); return true; } if (N.getOpcode() != ISD::ADD) { Base = N; if (N.getOpcode() == ISD::FrameIndex) { int FI = cast(N)->getIndex(); Base = CurDAG->getTargetFrameIndex(FI, TLI.getPointerTy()); } Offset = CurDAG->getRegister(0, MVT::i32); Opc = CurDAG->getTargetConstant(ARM_AM::getAM3Opc(ARM_AM::add, 0),MVT::i32); return true; } // If the RHS is +/- imm8, fold into addr mode. if (ConstantSDNode *RHS = dyn_cast(N.getOperand(1))) { int RHSC = (int)RHS->getZExtValue(); if ((RHSC >= 0 && RHSC < 256) || (RHSC < 0 && RHSC > -256)) { // note -256 itself isn't allowed. Base = N.getOperand(0); if (Base.getOpcode() == ISD::FrameIndex) { int FI = cast(Base)->getIndex(); Base = CurDAG->getTargetFrameIndex(FI, TLI.getPointerTy()); } Offset = CurDAG->getRegister(0, MVT::i32); ARM_AM::AddrOpc AddSub = ARM_AM::add; if (RHSC < 0) { AddSub = ARM_AM::sub; RHSC = - RHSC; } Opc = CurDAG->getTargetConstant(ARM_AM::getAM3Opc(AddSub, RHSC),MVT::i32); return true; } } Base = N.getOperand(0); Offset = N.getOperand(1); Opc = CurDAG->getTargetConstant(ARM_AM::getAM3Opc(ARM_AM::add, 0), MVT::i32); return true; } bool ARMDAGToDAGISel::SelectAddrMode3Offset(SDNode *Op, SDValue N, SDValue &Offset, SDValue &Opc) { unsigned Opcode = Op->getOpcode(); ISD::MemIndexedMode AM = (Opcode == ISD::LOAD) ? cast(Op)->getAddressingMode() : cast(Op)->getAddressingMode(); ARM_AM::AddrOpc AddSub = (AM == ISD::PRE_INC || AM == ISD::POST_INC) ? ARM_AM::add : ARM_AM::sub; if (ConstantSDNode *C = dyn_cast(N)) { int Val = (int)C->getZExtValue(); if (Val >= 0 && Val < 256) { Offset = CurDAG->getRegister(0, MVT::i32); Opc = CurDAG->getTargetConstant(ARM_AM::getAM3Opc(AddSub, Val), MVT::i32); return true; } } Offset = N; Opc = CurDAG->getTargetConstant(ARM_AM::getAM3Opc(AddSub, 0), MVT::i32); return true; } bool ARMDAGToDAGISel::SelectAddrMode4(SDNode *Op, SDValue N, SDValue &Addr, SDValue &Mode) { Addr = N; Mode = CurDAG->getTargetConstant(0, MVT::i32); return true; } bool ARMDAGToDAGISel::SelectAddrMode5(SDNode *Op, SDValue N, SDValue &Base, SDValue &Offset) { if (N.getOpcode() != ISD::ADD) { Base = N; if (N.getOpcode() == ISD::FrameIndex) { int FI = cast(N)->getIndex(); Base = CurDAG->getTargetFrameIndex(FI, TLI.getPointerTy()); } else if (N.getOpcode() == ARMISD::Wrapper && !(Subtarget->useMovt() && N.getOperand(0).getOpcode() == ISD::TargetGlobalAddress)) { Base = N.getOperand(0); } Offset = CurDAG->getTargetConstant(ARM_AM::getAM5Opc(ARM_AM::add, 0), MVT::i32); return true; } // If the RHS is +/- imm8, fold into addr mode. if (ConstantSDNode *RHS = dyn_cast(N.getOperand(1))) { int RHSC = (int)RHS->getZExtValue(); if ((RHSC & 3) == 0) { // The constant is implicitly multiplied by 4. RHSC >>= 2; if ((RHSC >= 0 && RHSC < 256) || (RHSC < 0 && RHSC > -256)) { // note -256 itself isn't allowed. Base = N.getOperand(0); if (Base.getOpcode() == ISD::FrameIndex) { int FI = cast(Base)->getIndex(); Base = CurDAG->getTargetFrameIndex(FI, TLI.getPointerTy()); } ARM_AM::AddrOpc AddSub = ARM_AM::add; if (RHSC < 0) { AddSub = ARM_AM::sub; RHSC = - RHSC; } Offset = CurDAG->getTargetConstant(ARM_AM::getAM5Opc(AddSub, RHSC), MVT::i32); return true; } } } Base = N; Offset = CurDAG->getTargetConstant(ARM_AM::getAM5Opc(ARM_AM::add, 0), MVT::i32); return true; } bool ARMDAGToDAGISel::SelectAddrMode6(SDNode *Op, SDValue N, SDValue &Addr, SDValue &Update, SDValue &Opc, SDValue &Align) { Addr = N; // Default to no writeback. Update = CurDAG->getRegister(0, MVT::i32); Opc = CurDAG->getTargetConstant(ARM_AM::getAM6Opc(false), MVT::i32); // Default to no alignment. Align = CurDAG->getTargetConstant(0, MVT::i32); return true; } bool ARMDAGToDAGISel::SelectAddrModePC(SDNode *Op, SDValue N, SDValue &Offset, SDValue &Label) { if (N.getOpcode() == ARMISD::PIC_ADD && N.hasOneUse()) { Offset = N.getOperand(0); SDValue N1 = N.getOperand(1); Label = CurDAG->getTargetConstant(cast(N1)->getZExtValue(), MVT::i32); return true; } return false; } bool ARMDAGToDAGISel::SelectThumbAddrModeRR(SDNode *Op, SDValue N, SDValue &Base, SDValue &Offset){ // FIXME dl should come from the parent load or store, not the address DebugLoc dl = Op->getDebugLoc(); if (N.getOpcode() != ISD::ADD) { ConstantSDNode *NC = dyn_cast(N); if (!NC || NC->getZExtValue() != 0) return false; Base = Offset = N; return true; } Base = N.getOperand(0); Offset = N.getOperand(1); return true; } bool ARMDAGToDAGISel::SelectThumbAddrModeRI5(SDNode *Op, SDValue N, unsigned Scale, SDValue &Base, SDValue &OffImm, SDValue &Offset) { if (Scale == 4) { SDValue TmpBase, TmpOffImm; if (SelectThumbAddrModeSP(Op, N, TmpBase, TmpOffImm)) return false; // We want to select tLDRspi / tSTRspi instead. if (N.getOpcode() == ARMISD::Wrapper && N.getOperand(0).getOpcode() == ISD::TargetConstantPool) return false; // We want to select tLDRpci instead. } if (N.getOpcode() != ISD::ADD) { if (N.getOpcode() == ARMISD::Wrapper && !(Subtarget->useMovt() && N.getOperand(0).getOpcode() == ISD::TargetGlobalAddress)) { Base = N.getOperand(0); } else Base = N; Offset = CurDAG->getRegister(0, MVT::i32); OffImm = CurDAG->getTargetConstant(0, MVT::i32); return true; } // Thumb does not have [sp, r] address mode. RegisterSDNode *LHSR = dyn_cast(N.getOperand(0)); RegisterSDNode *RHSR = dyn_cast(N.getOperand(1)); if ((LHSR && LHSR->getReg() == ARM::SP) || (RHSR && RHSR->getReg() == ARM::SP)) { Base = N; Offset = CurDAG->getRegister(0, MVT::i32); OffImm = CurDAG->getTargetConstant(0, MVT::i32); return true; } // If the RHS is + imm5 * scale, fold into addr mode. if (ConstantSDNode *RHS = dyn_cast(N.getOperand(1))) { int RHSC = (int)RHS->getZExtValue(); if ((RHSC & (Scale-1)) == 0) { // The constant is implicitly multiplied. RHSC /= Scale; if (RHSC >= 0 && RHSC < 32) { Base = N.getOperand(0); Offset = CurDAG->getRegister(0, MVT::i32); OffImm = CurDAG->getTargetConstant(RHSC, MVT::i32); return true; } } } Base = N.getOperand(0); Offset = N.getOperand(1); OffImm = CurDAG->getTargetConstant(0, MVT::i32); return true; } bool ARMDAGToDAGISel::SelectThumbAddrModeS1(SDNode *Op, SDValue N, SDValue &Base, SDValue &OffImm, SDValue &Offset) { return SelectThumbAddrModeRI5(Op, N, 1, Base, OffImm, Offset); } bool ARMDAGToDAGISel::SelectThumbAddrModeS2(SDNode *Op, SDValue N, SDValue &Base, SDValue &OffImm, SDValue &Offset) { return SelectThumbAddrModeRI5(Op, N, 2, Base, OffImm, Offset); } bool ARMDAGToDAGISel::SelectThumbAddrModeS4(SDNode *Op, SDValue N, SDValue &Base, SDValue &OffImm, SDValue &Offset) { return SelectThumbAddrModeRI5(Op, N, 4, Base, OffImm, Offset); } bool ARMDAGToDAGISel::SelectThumbAddrModeSP(SDNode *Op, SDValue N, SDValue &Base, SDValue &OffImm) { if (N.getOpcode() == ISD::FrameIndex) { int FI = cast(N)->getIndex(); Base = CurDAG->getTargetFrameIndex(FI, TLI.getPointerTy()); OffImm = CurDAG->getTargetConstant(0, MVT::i32); return true; } if (N.getOpcode() != ISD::ADD) return false; RegisterSDNode *LHSR = dyn_cast(N.getOperand(0)); if (N.getOperand(0).getOpcode() == ISD::FrameIndex || (LHSR && LHSR->getReg() == ARM::SP)) { // If the RHS is + imm8 * scale, fold into addr mode. if (ConstantSDNode *RHS = dyn_cast(N.getOperand(1))) { int RHSC = (int)RHS->getZExtValue(); if ((RHSC & 3) == 0) { // The constant is implicitly multiplied. RHSC >>= 2; if (RHSC >= 0 && RHSC < 256) { Base = N.getOperand(0); if (Base.getOpcode() == ISD::FrameIndex) { int FI = cast(Base)->getIndex(); Base = CurDAG->getTargetFrameIndex(FI, TLI.getPointerTy()); } OffImm = CurDAG->getTargetConstant(RHSC, MVT::i32); return true; } } } } return false; } bool ARMDAGToDAGISel::SelectT2ShifterOperandReg(SDNode *Op, SDValue N, SDValue &BaseReg, SDValue &Opc) { ARM_AM::ShiftOpc ShOpcVal = ARM_AM::getShiftOpcForNode(N); // Don't match base register only case. That is matched to a separate // lower complexity pattern with explicit register operand. if (ShOpcVal == ARM_AM::no_shift) return false; BaseReg = N.getOperand(0); unsigned ShImmVal = 0; if (ConstantSDNode *RHS = dyn_cast(N.getOperand(1))) { ShImmVal = RHS->getZExtValue() & 31; Opc = getI32Imm(ARM_AM::getSORegOpc(ShOpcVal, ShImmVal)); return true; } return false; } bool ARMDAGToDAGISel::SelectT2AddrModeImm12(SDNode *Op, SDValue N, SDValue &Base, SDValue &OffImm) { // Match simple R + imm12 operands. // Base only. if (N.getOpcode() != ISD::ADD && N.getOpcode() != ISD::SUB) { if (N.getOpcode() == ISD::FrameIndex) { // Match frame index... int FI = cast(N)->getIndex(); Base = CurDAG->getTargetFrameIndex(FI, TLI.getPointerTy()); OffImm = CurDAG->getTargetConstant(0, MVT::i32); return true; } else if (N.getOpcode() == ARMISD::Wrapper && !(Subtarget->useMovt() && N.getOperand(0).getOpcode() == ISD::TargetGlobalAddress)) { Base = N.getOperand(0); if (Base.getOpcode() == ISD::TargetConstantPool) return false; // We want to select t2LDRpci instead. } else Base = N; OffImm = CurDAG->getTargetConstant(0, MVT::i32); return true; } if (ConstantSDNode *RHS = dyn_cast(N.getOperand(1))) { if (SelectT2AddrModeImm8(Op, N, Base, OffImm)) // Let t2LDRi8 handle (R - imm8). return false; int RHSC = (int)RHS->getZExtValue(); if (N.getOpcode() == ISD::SUB) RHSC = -RHSC; if (RHSC >= 0 && RHSC < 0x1000) { // 12 bits (unsigned) Base = N.getOperand(0); if (Base.getOpcode() == ISD::FrameIndex) { int FI = cast(Base)->getIndex(); Base = CurDAG->getTargetFrameIndex(FI, TLI.getPointerTy()); } OffImm = CurDAG->getTargetConstant(RHSC, MVT::i32); return true; } } // Base only. Base = N; OffImm = CurDAG->getTargetConstant(0, MVT::i32); return true; } bool ARMDAGToDAGISel::SelectT2AddrModeImm8(SDNode *Op, SDValue N, SDValue &Base, SDValue &OffImm) { // Match simple R - imm8 operands. if (N.getOpcode() == ISD::ADD || N.getOpcode() == ISD::SUB) { if (ConstantSDNode *RHS = dyn_cast(N.getOperand(1))) { int RHSC = (int)RHS->getSExtValue(); if (N.getOpcode() == ISD::SUB) RHSC = -RHSC; if ((RHSC >= -255) && (RHSC < 0)) { // 8 bits (always negative) Base = N.getOperand(0); if (Base.getOpcode() == ISD::FrameIndex) { int FI = cast(Base)->getIndex(); Base = CurDAG->getTargetFrameIndex(FI, TLI.getPointerTy()); } OffImm = CurDAG->getTargetConstant(RHSC, MVT::i32); return true; } } } return false; } bool ARMDAGToDAGISel::SelectT2AddrModeImm8Offset(SDNode *Op, SDValue N, SDValue &OffImm){ unsigned Opcode = Op->getOpcode(); ISD::MemIndexedMode AM = (Opcode == ISD::LOAD) ? cast(Op)->getAddressingMode() : cast(Op)->getAddressingMode(); if (ConstantSDNode *RHS = dyn_cast(N)) { int RHSC = (int)RHS->getZExtValue(); if (RHSC >= 0 && RHSC < 0x100) { // 8 bits. OffImm = ((AM == ISD::PRE_INC) || (AM == ISD::POST_INC)) ? CurDAG->getTargetConstant(RHSC, MVT::i32) : CurDAG->getTargetConstant(-RHSC, MVT::i32); return true; } } return false; } bool ARMDAGToDAGISel::SelectT2AddrModeImm8s4(SDNode *Op, SDValue N, SDValue &Base, SDValue &OffImm) { if (N.getOpcode() == ISD::ADD) { if (ConstantSDNode *RHS = dyn_cast(N.getOperand(1))) { int RHSC = (int)RHS->getZExtValue(); if (((RHSC & 0x3) == 0) && ((RHSC >= 0 && RHSC < 0x400) || (RHSC < 0 && RHSC > -0x400))) { // 8 bits. Base = N.getOperand(0); OffImm = CurDAG->getTargetConstant(RHSC, MVT::i32); return true; } } } else if (N.getOpcode() == ISD::SUB) { if (ConstantSDNode *RHS = dyn_cast(N.getOperand(1))) { int RHSC = (int)RHS->getZExtValue(); if (((RHSC & 0x3) == 0) && (RHSC >= 0 && RHSC < 0x400)) { // 8 bits. Base = N.getOperand(0); OffImm = CurDAG->getTargetConstant(-RHSC, MVT::i32); return true; } } } return false; } bool ARMDAGToDAGISel::SelectT2AddrModeSoReg(SDNode *Op, SDValue N, SDValue &Base, SDValue &OffReg, SDValue &ShImm) { // (R - imm8) should be handled by t2LDRi8. The rest are handled by t2LDRi12. if (N.getOpcode() != ISD::ADD) return false; // Leave (R + imm12) for t2LDRi12, (R - imm8) for t2LDRi8. if (ConstantSDNode *RHS = dyn_cast(N.getOperand(1))) { int RHSC = (int)RHS->getZExtValue(); if (RHSC >= 0 && RHSC < 0x1000) // 12 bits (unsigned) return false; else if (RHSC < 0 && RHSC >= -255) // 8 bits return false; } // Look for (R + R) or (R + (R << [1,2,3])). unsigned ShAmt = 0; Base = N.getOperand(0); OffReg = N.getOperand(1); // Swap if it is ((R << c) + R). ARM_AM::ShiftOpc ShOpcVal = ARM_AM::getShiftOpcForNode(OffReg); if (ShOpcVal != ARM_AM::lsl) { ShOpcVal = ARM_AM::getShiftOpcForNode(Base); if (ShOpcVal == ARM_AM::lsl) std::swap(Base, OffReg); } if (ShOpcVal == ARM_AM::lsl) { // Check to see if the RHS of the shift is a constant, if not, we can't fold // it. if (ConstantSDNode *Sh = dyn_cast(OffReg.getOperand(1))) { ShAmt = Sh->getZExtValue(); if (ShAmt >= 4) { ShAmt = 0; ShOpcVal = ARM_AM::no_shift; } else OffReg = OffReg.getOperand(0); } else { ShOpcVal = ARM_AM::no_shift; } } ShImm = CurDAG->getTargetConstant(ShAmt, MVT::i32); return true; } //===--------------------------------------------------------------------===// /// getAL - Returns a ARMCC::AL immediate node. static inline SDValue getAL(SelectionDAG *CurDAG) { return CurDAG->getTargetConstant((uint64_t)ARMCC::AL, MVT::i32); } SDNode *ARMDAGToDAGISel::SelectARMIndexedLoad(SDNode *N) { LoadSDNode *LD = cast(N); ISD::MemIndexedMode AM = LD->getAddressingMode(); if (AM == ISD::UNINDEXED) return NULL; EVT LoadedVT = LD->getMemoryVT(); SDValue Offset, AMOpc; bool isPre = (AM == ISD::PRE_INC) || (AM == ISD::PRE_DEC); unsigned Opcode = 0; bool Match = false; if (LoadedVT == MVT::i32 && SelectAddrMode2Offset(N, LD->getOffset(), Offset, AMOpc)) { Opcode = isPre ? ARM::LDR_PRE : ARM::LDR_POST; Match = true; } else if (LoadedVT == MVT::i16 && SelectAddrMode3Offset(N, LD->getOffset(), Offset, AMOpc)) { Match = true; Opcode = (LD->getExtensionType() == ISD::SEXTLOAD) ? (isPre ? ARM::LDRSH_PRE : ARM::LDRSH_POST) : (isPre ? ARM::LDRH_PRE : ARM::LDRH_POST); } else if (LoadedVT == MVT::i8 || LoadedVT == MVT::i1) { if (LD->getExtensionType() == ISD::SEXTLOAD) { if (SelectAddrMode3Offset(N, LD->getOffset(), Offset, AMOpc)) { Match = true; Opcode = isPre ? ARM::LDRSB_PRE : ARM::LDRSB_POST; } } else { if (SelectAddrMode2Offset(N, LD->getOffset(), Offset, AMOpc)) { Match = true; Opcode = isPre ? ARM::LDRB_PRE : ARM::LDRB_POST; } } } if (Match) { SDValue Chain = LD->getChain(); SDValue Base = LD->getBasePtr(); SDValue Ops[]= { Base, Offset, AMOpc, getAL(CurDAG), CurDAG->getRegister(0, MVT::i32), Chain }; return CurDAG->getMachineNode(Opcode, N->getDebugLoc(), MVT::i32, MVT::i32, MVT::Other, Ops, 6); } return NULL; } SDNode *ARMDAGToDAGISel::SelectT2IndexedLoad(SDNode *N) { LoadSDNode *LD = cast(N); ISD::MemIndexedMode AM = LD->getAddressingMode(); if (AM == ISD::UNINDEXED) return NULL; EVT LoadedVT = LD->getMemoryVT(); bool isSExtLd = LD->getExtensionType() == ISD::SEXTLOAD; SDValue Offset; bool isPre = (AM == ISD::PRE_INC) || (AM == ISD::PRE_DEC); unsigned Opcode = 0; bool Match = false; if (SelectT2AddrModeImm8Offset(N, LD->getOffset(), Offset)) { switch (LoadedVT.getSimpleVT().SimpleTy) { case MVT::i32: Opcode = isPre ? ARM::t2LDR_PRE : ARM::t2LDR_POST; break; case MVT::i16: if (isSExtLd) Opcode = isPre ? ARM::t2LDRSH_PRE : ARM::t2LDRSH_POST; else Opcode = isPre ? ARM::t2LDRH_PRE : ARM::t2LDRH_POST; break; case MVT::i8: case MVT::i1: if (isSExtLd) Opcode = isPre ? ARM::t2LDRSB_PRE : ARM::t2LDRSB_POST; else Opcode = isPre ? ARM::t2LDRB_PRE : ARM::t2LDRB_POST; break; default: return NULL; } Match = true; } if (Match) { SDValue Chain = LD->getChain(); SDValue Base = LD->getBasePtr(); SDValue Ops[]= { Base, Offset, getAL(CurDAG), CurDAG->getRegister(0, MVT::i32), Chain }; return CurDAG->getMachineNode(Opcode, N->getDebugLoc(), MVT::i32, MVT::i32, MVT::Other, Ops, 5); } return NULL; } SDNode *ARMDAGToDAGISel::SelectDYN_ALLOC(SDNode *N) { DebugLoc dl = N->getDebugLoc(); EVT VT = N->getValueType(0); SDValue Chain = N->getOperand(0); SDValue Size = N->getOperand(1); SDValue Align = N->getOperand(2); SDValue SP = CurDAG->getRegister(ARM::SP, MVT::i32); int32_t AlignVal = cast(Align)->getSExtValue(); if (AlignVal < 0) // We need to align the stack. Use Thumb1 tAND which is the only thumb // instruction that can read and write SP. This matches to a pseudo // instruction that has a chain to ensure the result is written back to // the stack pointer. SP = SDValue(CurDAG->getMachineNode(ARM::tANDsp, dl, VT, SP, Align), 0); bool isC = isa(Size); uint32_t C = isC ? cast(Size)->getZExtValue() : ~0UL; // Handle the most common case for both Thumb1 and Thumb2: // tSUBspi - immediate is between 0 ... 508 inclusive. if (C <= 508 && ((C & 3) == 0)) // FIXME: tSUBspi encode scale 4 implicitly. return CurDAG->SelectNodeTo(N, ARM::tSUBspi_, VT, MVT::Other, SP, CurDAG->getTargetConstant(C/4, MVT::i32), Chain); if (Subtarget->isThumb1Only()) { // Use tADDspr since Thumb1 does not have a sub r, sp, r. ARMISelLowering // should have negated the size operand already. FIXME: We can't insert // new target independent node at this stage so we are forced to negate // it earlier. Is there a better solution? return CurDAG->SelectNodeTo(N, ARM::tADDspr_, VT, MVT::Other, SP, Size, Chain); } else if (Subtarget->isThumb2()) { if (isC && Predicate_t2_so_imm(Size.getNode())) { // t2SUBrSPi SDValue Ops[] = { SP, CurDAG->getTargetConstant(C, MVT::i32), Chain }; return CurDAG->SelectNodeTo(N, ARM::t2SUBrSPi_, VT, MVT::Other, Ops, 3); } else if (isC && Predicate_imm0_4095(Size.getNode())) { // t2SUBrSPi12 SDValue Ops[] = { SP, CurDAG->getTargetConstant(C, MVT::i32), Chain }; return CurDAG->SelectNodeTo(N, ARM::t2SUBrSPi12_, VT, MVT::Other, Ops, 3); } else { // t2SUBrSPs SDValue Ops[] = { SP, Size, getI32Imm(ARM_AM::getSORegOpc(ARM_AM::lsl,0)), Chain }; return CurDAG->SelectNodeTo(N, ARM::t2SUBrSPs_, VT, MVT::Other, Ops, 4); } } // FIXME: Add ADD / SUB sp instructions for ARM. return 0; } /// PairDRegs - Insert a pair of double registers into an implicit def to /// form a quad register. SDNode *ARMDAGToDAGISel::PairDRegs(EVT VT, SDValue V0, SDValue V1) { DebugLoc dl = V0.getNode()->getDebugLoc(); SDValue Undef = SDValue(CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF, dl, VT), 0); SDValue SubReg0 = CurDAG->getTargetConstant(ARM::DSUBREG_0, MVT::i32); SDValue SubReg1 = CurDAG->getTargetConstant(ARM::DSUBREG_1, MVT::i32); SDNode *Pair = CurDAG->getMachineNode(TargetOpcode::INSERT_SUBREG, dl, VT, Undef, V0, SubReg0); return CurDAG->getMachineNode(TargetOpcode::INSERT_SUBREG, dl, VT, SDValue(Pair, 0), V1, SubReg1); } /// GetNEONSubregVT - Given a type for a 128-bit NEON vector, return the type /// for a 64-bit subregister of the vector. static EVT GetNEONSubregVT(EVT VT) { switch (VT.getSimpleVT().SimpleTy) { default: llvm_unreachable("unhandled NEON type"); case MVT::v16i8: return MVT::v8i8; case MVT::v8i16: return MVT::v4i16; case MVT::v4f32: return MVT::v2f32; case MVT::v4i32: return MVT::v2i32; case MVT::v2i64: return MVT::v1i64; } } SDNode *ARMDAGToDAGISel::SelectVLD(SDNode *N, unsigned NumVecs, unsigned *DOpcodes, unsigned *QOpcodes0, unsigned *QOpcodes1) { assert(NumVecs >=2 && NumVecs <= 4 && "VLD NumVecs out-of-range"); DebugLoc dl = N->getDebugLoc(); SDValue MemAddr, MemUpdate, MemOpc, Align; if (!SelectAddrMode6(N, N->getOperand(2), MemAddr, MemUpdate, MemOpc, Align)) return NULL; SDValue Chain = N->getOperand(0); EVT VT = N->getValueType(0); bool is64BitVector = VT.is64BitVector(); unsigned OpcodeIndex; switch (VT.getSimpleVT().SimpleTy) { default: llvm_unreachable("unhandled vld type"); // Double-register operations: case MVT::v8i8: OpcodeIndex = 0; break; case MVT::v4i16: OpcodeIndex = 1; break; case MVT::v2f32: case MVT::v2i32: OpcodeIndex = 2; break; case MVT::v1i64: OpcodeIndex = 3; break; // Quad-register operations: case MVT::v16i8: OpcodeIndex = 0; break; case MVT::v8i16: OpcodeIndex = 1; break; case MVT::v4f32: case MVT::v4i32: OpcodeIndex = 2; break; } SDValue Pred = CurDAG->getTargetConstant(14, MVT::i32); SDValue PredReg = CurDAG->getRegister(0, MVT::i32); if (is64BitVector) { unsigned Opc = DOpcodes[OpcodeIndex]; const SDValue Ops[] = { MemAddr, MemUpdate, MemOpc, Align, Pred, PredReg, Chain }; std::vector ResTys(NumVecs, VT); ResTys.push_back(MVT::Other); return CurDAG->getMachineNode(Opc, dl, ResTys, Ops, 7); } EVT RegVT = GetNEONSubregVT(VT); if (NumVecs == 2) { // Quad registers are directly supported for VLD2, // loading 2 pairs of D regs. unsigned Opc = QOpcodes0[OpcodeIndex]; const SDValue Ops[] = { MemAddr, MemUpdate, MemOpc, Align, Pred, PredReg, Chain }; std::vector ResTys(4, VT); ResTys.push_back(MVT::Other); SDNode *VLd = CurDAG->getMachineNode(Opc, dl, ResTys, Ops, 7); Chain = SDValue(VLd, 4); // Combine the even and odd subregs to produce the result. for (unsigned Vec = 0; Vec < NumVecs; ++Vec) { SDNode *Q = PairDRegs(VT, SDValue(VLd, 2*Vec), SDValue(VLd, 2*Vec+1)); ReplaceUses(SDValue(N, Vec), SDValue(Q, 0)); } } else { // Otherwise, quad registers are loaded with two separate instructions, // where one loads the even registers and the other loads the odd registers. // Enable writeback to the address register. MemOpc = CurDAG->getTargetConstant(ARM_AM::getAM6Opc(true), MVT::i32); std::vector ResTys(NumVecs, RegVT); ResTys.push_back(MemAddr.getValueType()); ResTys.push_back(MVT::Other); // Load the even subregs. unsigned Opc = QOpcodes0[OpcodeIndex]; const SDValue OpsA[] = { MemAddr, MemUpdate, MemOpc, Align, Pred, PredReg, Chain }; SDNode *VLdA = CurDAG->getMachineNode(Opc, dl, ResTys, OpsA, 7); Chain = SDValue(VLdA, NumVecs+1); // Load the odd subregs. Opc = QOpcodes1[OpcodeIndex]; const SDValue OpsB[] = { SDValue(VLdA, NumVecs), MemUpdate, MemOpc, Align, Pred, PredReg, Chain }; SDNode *VLdB = CurDAG->getMachineNode(Opc, dl, ResTys, OpsB, 7); Chain = SDValue(VLdB, NumVecs+1); // Combine the even and odd subregs to produce the result. for (unsigned Vec = 0; Vec < NumVecs; ++Vec) { SDNode *Q = PairDRegs(VT, SDValue(VLdA, Vec), SDValue(VLdB, Vec)); ReplaceUses(SDValue(N, Vec), SDValue(Q, 0)); } } ReplaceUses(SDValue(N, NumVecs), Chain); return NULL; } SDNode *ARMDAGToDAGISel::SelectVST(SDNode *N, unsigned NumVecs, unsigned *DOpcodes, unsigned *QOpcodes0, unsigned *QOpcodes1) { assert(NumVecs >=2 && NumVecs <= 4 && "VST NumVecs out-of-range"); DebugLoc dl = N->getDebugLoc(); SDValue MemAddr, MemUpdate, MemOpc, Align; if (!SelectAddrMode6(N, N->getOperand(2), MemAddr, MemUpdate, MemOpc, Align)) return NULL; SDValue Chain = N->getOperand(0); EVT VT = N->getOperand(3).getValueType(); bool is64BitVector = VT.is64BitVector(); unsigned OpcodeIndex; switch (VT.getSimpleVT().SimpleTy) { default: llvm_unreachable("unhandled vst type"); // Double-register operations: case MVT::v8i8: OpcodeIndex = 0; break; case MVT::v4i16: OpcodeIndex = 1; break; case MVT::v2f32: case MVT::v2i32: OpcodeIndex = 2; break; case MVT::v1i64: OpcodeIndex = 3; break; // Quad-register operations: case MVT::v16i8: OpcodeIndex = 0; break; case MVT::v8i16: OpcodeIndex = 1; break; case MVT::v4f32: case MVT::v4i32: OpcodeIndex = 2; break; } SDValue Pred = CurDAG->getTargetConstant(14, MVT::i32); SDValue PredReg = CurDAG->getRegister(0, MVT::i32); SmallVector Ops; Ops.push_back(MemAddr); Ops.push_back(MemUpdate); Ops.push_back(MemOpc); Ops.push_back(Align); if (is64BitVector) { unsigned Opc = DOpcodes[OpcodeIndex]; for (unsigned Vec = 0; Vec < NumVecs; ++Vec) Ops.push_back(N->getOperand(Vec+3)); Ops.push_back(Pred); Ops.push_back(PredReg); Ops.push_back(Chain); return CurDAG->getMachineNode(Opc, dl, MVT::Other, Ops.data(), NumVecs+7); } EVT RegVT = GetNEONSubregVT(VT); if (NumVecs == 2) { // Quad registers are directly supported for VST2, // storing 2 pairs of D regs. unsigned Opc = QOpcodes0[OpcodeIndex]; for (unsigned Vec = 0; Vec < NumVecs; ++Vec) { Ops.push_back(CurDAG->getTargetExtractSubreg(ARM::DSUBREG_0, dl, RegVT, N->getOperand(Vec+3))); Ops.push_back(CurDAG->getTargetExtractSubreg(ARM::DSUBREG_1, dl, RegVT, N->getOperand(Vec+3))); } Ops.push_back(Pred); Ops.push_back(PredReg); Ops.push_back(Chain); return CurDAG->getMachineNode(Opc, dl, MVT::Other, Ops.data(), 11); } // Otherwise, quad registers are stored with two separate instructions, // where one stores the even registers and the other stores the odd registers. // Enable writeback to the address register. MemOpc = CurDAG->getTargetConstant(ARM_AM::getAM6Opc(true), MVT::i32); // Store the even subregs. for (unsigned Vec = 0; Vec < NumVecs; ++Vec) Ops.push_back(CurDAG->getTargetExtractSubreg(ARM::DSUBREG_0, dl, RegVT, N->getOperand(Vec+3))); Ops.push_back(Pred); Ops.push_back(PredReg); Ops.push_back(Chain); unsigned Opc = QOpcodes0[OpcodeIndex]; SDNode *VStA = CurDAG->getMachineNode(Opc, dl, MemAddr.getValueType(), MVT::Other, Ops.data(), NumVecs+7); Chain = SDValue(VStA, 1); // Store the odd subregs. Ops[0] = SDValue(VStA, 0); // MemAddr for (unsigned Vec = 0; Vec < NumVecs; ++Vec) Ops[Vec+4] = CurDAG->getTargetExtractSubreg(ARM::DSUBREG_1, dl, RegVT, N->getOperand(Vec+3)); Ops[NumVecs+4] = Pred; Ops[NumVecs+5] = PredReg; Ops[NumVecs+6] = Chain; Opc = QOpcodes1[OpcodeIndex]; SDNode *VStB = CurDAG->getMachineNode(Opc, dl, MemAddr.getValueType(), MVT::Other, Ops.data(), NumVecs+7); Chain = SDValue(VStB, 1); ReplaceUses(SDValue(N, 0), Chain); return NULL; } SDNode *ARMDAGToDAGISel::SelectVLDSTLane(SDNode *N, bool IsLoad, unsigned NumVecs, unsigned *DOpcodes, unsigned *QOpcodes0, unsigned *QOpcodes1) { assert(NumVecs >=2 && NumVecs <= 4 && "VLDSTLane NumVecs out-of-range"); DebugLoc dl = N->getDebugLoc(); SDValue MemAddr, MemUpdate, MemOpc, Align; if (!SelectAddrMode6(N, N->getOperand(2), MemAddr, MemUpdate, MemOpc, Align)) return NULL; SDValue Chain = N->getOperand(0); unsigned Lane = cast(N->getOperand(NumVecs+3))->getZExtValue(); EVT VT = IsLoad ? N->getValueType(0) : N->getOperand(3).getValueType(); bool is64BitVector = VT.is64BitVector(); // Quad registers are handled by load/store of subregs. Find the subreg info. unsigned NumElts = 0; int SubregIdx = 0; EVT RegVT = VT; if (!is64BitVector) { RegVT = GetNEONSubregVT(VT); NumElts = RegVT.getVectorNumElements(); SubregIdx = (Lane < NumElts) ? ARM::DSUBREG_0 : ARM::DSUBREG_1; } unsigned OpcodeIndex; switch (VT.getSimpleVT().SimpleTy) { default: llvm_unreachable("unhandled vld/vst lane type"); // Double-register operations: case MVT::v8i8: OpcodeIndex = 0; break; case MVT::v4i16: OpcodeIndex = 1; break; case MVT::v2f32: case MVT::v2i32: OpcodeIndex = 2; break; // Quad-register operations: case MVT::v8i16: OpcodeIndex = 0; break; case MVT::v4f32: case MVT::v4i32: OpcodeIndex = 1; break; } SDValue Pred = CurDAG->getTargetConstant(14, MVT::i32); SDValue PredReg = CurDAG->getRegister(0, MVT::i32); SmallVector Ops; Ops.push_back(MemAddr); Ops.push_back(MemUpdate); Ops.push_back(MemOpc); Ops.push_back(Align); unsigned Opc = 0; if (is64BitVector) { Opc = DOpcodes[OpcodeIndex]; for (unsigned Vec = 0; Vec < NumVecs; ++Vec) Ops.push_back(N->getOperand(Vec+3)); } else { // Check if this is loading the even or odd subreg of a Q register. if (Lane < NumElts) { Opc = QOpcodes0[OpcodeIndex]; } else { Lane -= NumElts; Opc = QOpcodes1[OpcodeIndex]; } // Extract the subregs of the input vector. for (unsigned Vec = 0; Vec < NumVecs; ++Vec) Ops.push_back(CurDAG->getTargetExtractSubreg(SubregIdx, dl, RegVT, N->getOperand(Vec+3))); } Ops.push_back(getI32Imm(Lane)); Ops.push_back(Pred); Ops.push_back(PredReg); Ops.push_back(Chain); if (!IsLoad) return CurDAG->getMachineNode(Opc, dl, MVT::Other, Ops.data(), NumVecs+8); std::vector ResTys(NumVecs, RegVT); ResTys.push_back(MVT::Other); SDNode *VLdLn = CurDAG->getMachineNode(Opc, dl, ResTys, Ops.data(), NumVecs+8); // For a 64-bit vector load to D registers, nothing more needs to be done. if (is64BitVector) return VLdLn; // For 128-bit vectors, take the 64-bit results of the load and insert them // as subregs into the result. for (unsigned Vec = 0; Vec < NumVecs; ++Vec) { SDValue QuadVec = CurDAG->getTargetInsertSubreg(SubregIdx, dl, VT, N->getOperand(Vec+3), SDValue(VLdLn, Vec)); ReplaceUses(SDValue(N, Vec), QuadVec); } Chain = SDValue(VLdLn, NumVecs); ReplaceUses(SDValue(N, NumVecs), Chain); return NULL; } SDNode *ARMDAGToDAGISel::SelectV6T2BitfieldExtractOp(SDNode *N, unsigned Opc) { if (!Subtarget->hasV6T2Ops()) return NULL; unsigned Shl_imm = 0; if (isOpcWithIntImmediate(N->getOperand(0).getNode(), ISD::SHL, Shl_imm)) { assert(Shl_imm > 0 && Shl_imm < 32 && "bad amount in shift node!"); unsigned Srl_imm = 0; if (isInt32Immediate(N->getOperand(1), Srl_imm)) { assert(Srl_imm > 0 && Srl_imm < 32 && "bad amount in shift node!"); unsigned Width = 32 - Srl_imm; int LSB = Srl_imm - Shl_imm; if (LSB < 0) return NULL; SDValue Reg0 = CurDAG->getRegister(0, MVT::i32); SDValue Ops[] = { N->getOperand(0).getOperand(0), CurDAG->getTargetConstant(LSB, MVT::i32), CurDAG->getTargetConstant(Width, MVT::i32), getAL(CurDAG), Reg0 }; return CurDAG->SelectNodeTo(N, Opc, MVT::i32, Ops, 5); } } return NULL; } SDNode *ARMDAGToDAGISel:: SelectT2CMOVShiftOp(SDNode *N, SDValue FalseVal, SDValue TrueVal, ARMCC::CondCodes CCVal, SDValue CCR, SDValue InFlag) { SDValue CPTmp0; SDValue CPTmp1; if (SelectT2ShifterOperandReg(N, TrueVal, CPTmp0, CPTmp1)) { unsigned SOVal = cast(CPTmp1)->getZExtValue(); unsigned SOShOp = ARM_AM::getSORegShOp(SOVal); unsigned Opc = 0; switch (SOShOp) { case ARM_AM::lsl: Opc = ARM::t2MOVCClsl; break; case ARM_AM::lsr: Opc = ARM::t2MOVCClsr; break; case ARM_AM::asr: Opc = ARM::t2MOVCCasr; break; case ARM_AM::ror: Opc = ARM::t2MOVCCror; break; default: llvm_unreachable("Unknown so_reg opcode!"); break; } SDValue SOShImm = CurDAG->getTargetConstant(ARM_AM::getSORegOffset(SOVal), MVT::i32); SDValue CC = CurDAG->getTargetConstant(CCVal, MVT::i32); SDValue Ops[] = { FalseVal, CPTmp0, SOShImm, CC, CCR, InFlag }; return CurDAG->SelectNodeTo(N, Opc, MVT::i32,Ops, 6); } return 0; } SDNode *ARMDAGToDAGISel:: SelectARMCMOVShiftOp(SDNode *N, SDValue FalseVal, SDValue TrueVal, ARMCC::CondCodes CCVal, SDValue CCR, SDValue InFlag) { SDValue CPTmp0; SDValue CPTmp1; SDValue CPTmp2; if (SelectShifterOperandReg(N, TrueVal, CPTmp0, CPTmp1, CPTmp2)) { SDValue CC = CurDAG->getTargetConstant(CCVal, MVT::i32); SDValue Ops[] = { FalseVal, CPTmp0, CPTmp1, CPTmp2, CC, CCR, InFlag }; return CurDAG->SelectNodeTo(N, ARM::MOVCCs, MVT::i32, Ops, 7); } return 0; } SDNode *ARMDAGToDAGISel:: SelectT2CMOVSoImmOp(SDNode *N, SDValue FalseVal, SDValue TrueVal, ARMCC::CondCodes CCVal, SDValue CCR, SDValue InFlag) { ConstantSDNode *T = dyn_cast(TrueVal); if (!T) return 0; if (Predicate_t2_so_imm(TrueVal.getNode())) { SDValue True = CurDAG->getTargetConstant(T->getZExtValue(), MVT::i32); SDValue CC = CurDAG->getTargetConstant(CCVal, MVT::i32); SDValue Ops[] = { FalseVal, True, CC, CCR, InFlag }; return CurDAG->SelectNodeTo(N, ARM::t2MOVCCi, MVT::i32, Ops, 5); } return 0; } SDNode *ARMDAGToDAGISel:: SelectARMCMOVSoImmOp(SDNode *N, SDValue FalseVal, SDValue TrueVal, ARMCC::CondCodes CCVal, SDValue CCR, SDValue InFlag) { ConstantSDNode *T = dyn_cast(TrueVal); if (!T) return 0; if (Predicate_so_imm(TrueVal.getNode())) { SDValue True = CurDAG->getTargetConstant(T->getZExtValue(), MVT::i32); SDValue CC = CurDAG->getTargetConstant(CCVal, MVT::i32); SDValue Ops[] = { FalseVal, True, CC, CCR, InFlag }; return CurDAG->SelectNodeTo(N, ARM::MOVCCi, MVT::i32, Ops, 5); } return 0; } SDNode *ARMDAGToDAGISel::SelectCMOVOp(SDNode *N) { EVT VT = N->getValueType(0); SDValue FalseVal = N->getOperand(0); SDValue TrueVal = N->getOperand(1); SDValue CC = N->getOperand(2); SDValue CCR = N->getOperand(3); SDValue InFlag = N->getOperand(4); assert(CC.getOpcode() == ISD::Constant); assert(CCR.getOpcode() == ISD::Register); ARMCC::CondCodes CCVal = (ARMCC::CondCodes)cast(CC)->getZExtValue(); if (!Subtarget->isThumb1Only() && VT == MVT::i32) { // Pattern: (ARMcmov:i32 GPR:i32:$false, so_reg:i32:$true, (imm:i32):$cc) // Emits: (MOVCCs:i32 GPR:i32:$false, so_reg:i32:$true, (imm:i32):$cc) // Pattern complexity = 18 cost = 1 size = 0 SDValue CPTmp0; SDValue CPTmp1; SDValue CPTmp2; if (Subtarget->isThumb()) { SDNode *Res = SelectT2CMOVShiftOp(N, FalseVal, TrueVal, CCVal, CCR, InFlag); if (!Res) Res = SelectT2CMOVShiftOp(N, TrueVal, FalseVal, ARMCC::getOppositeCondition(CCVal), CCR, InFlag); if (Res) return Res; } else { SDNode *Res = SelectARMCMOVShiftOp(N, FalseVal, TrueVal, CCVal, CCR, InFlag); if (!Res) Res = SelectARMCMOVShiftOp(N, TrueVal, FalseVal, ARMCC::getOppositeCondition(CCVal), CCR, InFlag); if (Res) return Res; } // Pattern: (ARMcmov:i32 GPR:i32:$false, // (imm:i32)<>:$true, // (imm:i32):$cc) // Emits: (MOVCCi:i32 GPR:i32:$false, // (so_imm:i32 (imm:i32):$true), (imm:i32):$cc) // Pattern complexity = 10 cost = 1 size = 0 if (Subtarget->isThumb()) { SDNode *Res = SelectT2CMOVSoImmOp(N, FalseVal, TrueVal, CCVal, CCR, InFlag); if (!Res) Res = SelectT2CMOVSoImmOp(N, TrueVal, FalseVal, ARMCC::getOppositeCondition(CCVal), CCR, InFlag); if (Res) return Res; } else { SDNode *Res = SelectARMCMOVSoImmOp(N, FalseVal, TrueVal, CCVal, CCR, InFlag); if (!Res) Res = SelectARMCMOVSoImmOp(N, TrueVal, FalseVal, ARMCC::getOppositeCondition(CCVal), CCR, InFlag); if (Res) return Res; } } // Pattern: (ARMcmov:i32 GPR:i32:$false, GPR:i32:$true, (imm:i32):$cc) // Emits: (MOVCCr:i32 GPR:i32:$false, GPR:i32:$true, (imm:i32):$cc) // Pattern complexity = 6 cost = 1 size = 0 // // Pattern: (ARMcmov:i32 GPR:i32:$false, GPR:i32:$true, (imm:i32):$cc) // Emits: (tMOVCCr:i32 GPR:i32:$false, GPR:i32:$true, (imm:i32):$cc) // Pattern complexity = 6 cost = 11 size = 0 // // Also FCPYScc and FCPYDcc. SDValue Tmp2 = CurDAG->getTargetConstant(CCVal, MVT::i32); SDValue Ops[] = { FalseVal, TrueVal, Tmp2, CCR, InFlag }; unsigned Opc = 0; switch (VT.getSimpleVT().SimpleTy) { default: assert(false && "Illegal conditional move type!"); break; case MVT::i32: Opc = Subtarget->isThumb() ? (Subtarget->hasThumb2() ? ARM::t2MOVCCr : ARM::tMOVCCr_pseudo) : ARM::MOVCCr; break; case MVT::f32: Opc = ARM::VMOVScc; break; case MVT::f64: Opc = ARM::VMOVDcc; break; } return CurDAG->SelectNodeTo(N, Opc, VT, Ops, 5); } SDNode *ARMDAGToDAGISel::Select(SDNode *N) { DebugLoc dl = N->getDebugLoc(); if (N->isMachineOpcode()) return NULL; // Already selected. switch (N->getOpcode()) { default: break; case ISD::Constant: { unsigned Val = cast(N)->getZExtValue(); bool UseCP = true; if (Subtarget->hasThumb2()) // Thumb2-aware targets have the MOVT instruction, so all immediates can // be done with MOV + MOVT, at worst. UseCP = 0; else { if (Subtarget->isThumb()) { UseCP = (Val > 255 && // MOV ~Val > 255 && // MOV + MVN !ARM_AM::isThumbImmShiftedVal(Val)); // MOV + LSL } else UseCP = (ARM_AM::getSOImmVal(Val) == -1 && // MOV ARM_AM::getSOImmVal(~Val) == -1 && // MVN !ARM_AM::isSOImmTwoPartVal(Val)); // two instrs. } if (UseCP) { SDValue CPIdx = CurDAG->getTargetConstantPool(ConstantInt::get( Type::getInt32Ty(*CurDAG->getContext()), Val), TLI.getPointerTy()); SDNode *ResNode; if (Subtarget->isThumb1Only()) { SDValue Pred = CurDAG->getTargetConstant(14, MVT::i32); SDValue PredReg = CurDAG->getRegister(0, MVT::i32); SDValue Ops[] = { CPIdx, Pred, PredReg, CurDAG->getEntryNode() }; ResNode = CurDAG->getMachineNode(ARM::tLDRcp, dl, MVT::i32, MVT::Other, Ops, 4); } else { SDValue Ops[] = { CPIdx, CurDAG->getRegister(0, MVT::i32), CurDAG->getTargetConstant(0, MVT::i32), getAL(CurDAG), CurDAG->getRegister(0, MVT::i32), CurDAG->getEntryNode() }; ResNode=CurDAG->getMachineNode(ARM::LDRcp, dl, MVT::i32, MVT::Other, Ops, 6); } ReplaceUses(SDValue(N, 0), SDValue(ResNode, 0)); return NULL; } // Other cases are autogenerated. break; } case ISD::FrameIndex: { // Selects to ADDri FI, 0 which in turn will become ADDri SP, imm. int FI = cast(N)->getIndex(); SDValue TFI = CurDAG->getTargetFrameIndex(FI, TLI.getPointerTy()); if (Subtarget->isThumb1Only()) { return CurDAG->SelectNodeTo(N, ARM::tADDrSPi, MVT::i32, TFI, CurDAG->getTargetConstant(0, MVT::i32)); } else { unsigned Opc = ((Subtarget->isThumb() && Subtarget->hasThumb2()) ? ARM::t2ADDri : ARM::ADDri); SDValue Ops[] = { TFI, CurDAG->getTargetConstant(0, MVT::i32), getAL(CurDAG), CurDAG->getRegister(0, MVT::i32), CurDAG->getRegister(0, MVT::i32) }; return CurDAG->SelectNodeTo(N, Opc, MVT::i32, Ops, 5); } } case ARMISD::DYN_ALLOC: return SelectDYN_ALLOC(N); case ISD::SRL: if (SDNode *I = SelectV6T2BitfieldExtractOp(N, Subtarget->isThumb() ? ARM::t2UBFX : ARM::UBFX)) return I; break; case ISD::SRA: if (SDNode *I = SelectV6T2BitfieldExtractOp(N, Subtarget->isThumb() ? ARM::t2SBFX : ARM::SBFX)) return I; break; case ISD::MUL: if (Subtarget->isThumb1Only()) break; if (ConstantSDNode *C = dyn_cast(N->getOperand(1))) { unsigned RHSV = C->getZExtValue(); if (!RHSV) break; if (isPowerOf2_32(RHSV-1)) { // 2^n+1? unsigned ShImm = Log2_32(RHSV-1); if (ShImm >= 32) break; SDValue V = N->getOperand(0); ShImm = ARM_AM::getSORegOpc(ARM_AM::lsl, ShImm); SDValue ShImmOp = CurDAG->getTargetConstant(ShImm, MVT::i32); SDValue Reg0 = CurDAG->getRegister(0, MVT::i32); if (Subtarget->isThumb()) { SDValue Ops[] = { V, V, ShImmOp, getAL(CurDAG), Reg0, Reg0 }; return CurDAG->SelectNodeTo(N, ARM::t2ADDrs, MVT::i32, Ops, 6); } else { SDValue Ops[] = { V, V, Reg0, ShImmOp, getAL(CurDAG), Reg0, Reg0 }; return CurDAG->SelectNodeTo(N, ARM::ADDrs, MVT::i32, Ops, 7); } } if (isPowerOf2_32(RHSV+1)) { // 2^n-1? unsigned ShImm = Log2_32(RHSV+1); if (ShImm >= 32) break; SDValue V = N->getOperand(0); ShImm = ARM_AM::getSORegOpc(ARM_AM::lsl, ShImm); SDValue ShImmOp = CurDAG->getTargetConstant(ShImm, MVT::i32); SDValue Reg0 = CurDAG->getRegister(0, MVT::i32); if (Subtarget->isThumb()) { SDValue Ops[] = { V, V, ShImmOp, getAL(CurDAG), Reg0 }; return CurDAG->SelectNodeTo(N, ARM::t2RSBrs, MVT::i32, Ops, 5); } else { SDValue Ops[] = { V, V, Reg0, ShImmOp, getAL(CurDAG), Reg0, Reg0 }; return CurDAG->SelectNodeTo(N, ARM::RSBrs, MVT::i32, Ops, 7); } } } break; case ISD::AND: { // (and (or x, c2), c1) and top 16-bits of c1 and c2 match, lower 16-bits // of c1 are 0xffff, and lower 16-bit of c2 are 0. That is, the top 16-bits // are entirely contributed by c2 and lower 16-bits are entirely contributed // by x. That's equal to (or (and x, 0xffff), (and c1, 0xffff0000)). // Select it to: "movt x, ((c1 & 0xffff) >> 16) EVT VT = N->getValueType(0); if (VT != MVT::i32) break; unsigned Opc = (Subtarget->isThumb() && Subtarget->hasThumb2()) ? ARM::t2MOVTi16 : (Subtarget->hasV6T2Ops() ? ARM::MOVTi16 : 0); if (!Opc) break; SDValue N0 = N->getOperand(0), N1 = N->getOperand(1); ConstantSDNode *N1C = dyn_cast(N1); if (!N1C) break; if (N0.getOpcode() == ISD::OR && N0.getNode()->hasOneUse()) { SDValue N2 = N0.getOperand(1); ConstantSDNode *N2C = dyn_cast(N2); if (!N2C) break; unsigned N1CVal = N1C->getZExtValue(); unsigned N2CVal = N2C->getZExtValue(); if ((N1CVal & 0xffff0000U) == (N2CVal & 0xffff0000U) && (N1CVal & 0xffffU) == 0xffffU && (N2CVal & 0xffffU) == 0x0U) { SDValue Imm16 = CurDAG->getTargetConstant((N2CVal & 0xFFFF0000U) >> 16, MVT::i32); SDValue Ops[] = { N0.getOperand(0), Imm16, getAL(CurDAG), CurDAG->getRegister(0, MVT::i32) }; return CurDAG->getMachineNode(Opc, dl, VT, Ops, 4); } } break; } case ARMISD::VMOVRRD: return CurDAG->getMachineNode(ARM::VMOVRRD, dl, MVT::i32, MVT::i32, N->getOperand(0), getAL(CurDAG), CurDAG->getRegister(0, MVT::i32)); case ISD::UMUL_LOHI: { if (Subtarget->isThumb1Only()) break; if (Subtarget->isThumb()) { SDValue Ops[] = { N->getOperand(0), N->getOperand(1), getAL(CurDAG), CurDAG->getRegister(0, MVT::i32), CurDAG->getRegister(0, MVT::i32) }; return CurDAG->getMachineNode(ARM::t2UMULL, dl, MVT::i32, MVT::i32, Ops,4); } else { SDValue Ops[] = { N->getOperand(0), N->getOperand(1), getAL(CurDAG), CurDAG->getRegister(0, MVT::i32), CurDAG->getRegister(0, MVT::i32) }; return CurDAG->getMachineNode(ARM::UMULL, dl, MVT::i32, MVT::i32, Ops, 5); } } case ISD::SMUL_LOHI: { if (Subtarget->isThumb1Only()) break; if (Subtarget->isThumb()) { SDValue Ops[] = { N->getOperand(0), N->getOperand(1), getAL(CurDAG), CurDAG->getRegister(0, MVT::i32) }; return CurDAG->getMachineNode(ARM::t2SMULL, dl, MVT::i32, MVT::i32, Ops,4); } else { SDValue Ops[] = { N->getOperand(0), N->getOperand(1), getAL(CurDAG), CurDAG->getRegister(0, MVT::i32), CurDAG->getRegister(0, MVT::i32) }; return CurDAG->getMachineNode(ARM::SMULL, dl, MVT::i32, MVT::i32, Ops, 5); } } case ISD::LOAD: { SDNode *ResNode = 0; if (Subtarget->isThumb() && Subtarget->hasThumb2()) ResNode = SelectT2IndexedLoad(N); else ResNode = SelectARMIndexedLoad(N); if (ResNode) return ResNode; // Other cases are autogenerated. break; } case ARMISD::BRCOND: { // Pattern: (ARMbrcond:void (bb:Other):$dst, (imm:i32):$cc) // Emits: (Bcc:void (bb:Other):$dst, (imm:i32):$cc) // Pattern complexity = 6 cost = 1 size = 0 // Pattern: (ARMbrcond:void (bb:Other):$dst, (imm:i32):$cc) // Emits: (tBcc:void (bb:Other):$dst, (imm:i32):$cc) // Pattern complexity = 6 cost = 1 size = 0 // Pattern: (ARMbrcond:void (bb:Other):$dst, (imm:i32):$cc) // Emits: (t2Bcc:void (bb:Other):$dst, (imm:i32):$cc) // Pattern complexity = 6 cost = 1 size = 0 unsigned Opc = Subtarget->isThumb() ? ((Subtarget->hasThumb2()) ? ARM::t2Bcc : ARM::tBcc) : ARM::Bcc; SDValue Chain = N->getOperand(0); SDValue N1 = N->getOperand(1); SDValue N2 = N->getOperand(2); SDValue N3 = N->getOperand(3); SDValue InFlag = N->getOperand(4); assert(N1.getOpcode() == ISD::BasicBlock); assert(N2.getOpcode() == ISD::Constant); assert(N3.getOpcode() == ISD::Register); SDValue Tmp2 = CurDAG->getTargetConstant(((unsigned) cast(N2)->getZExtValue()), MVT::i32); SDValue Ops[] = { N1, Tmp2, N3, Chain, InFlag }; SDNode *ResNode = CurDAG->getMachineNode(Opc, dl, MVT::Other, MVT::Flag, Ops, 5); Chain = SDValue(ResNode, 0); if (N->getNumValues() == 2) { InFlag = SDValue(ResNode, 1); ReplaceUses(SDValue(N, 1), InFlag); } ReplaceUses(SDValue(N, 0), SDValue(Chain.getNode(), Chain.getResNo())); return NULL; } case ARMISD::CMOV: return SelectCMOVOp(N); case ARMISD::CNEG: { EVT VT = N->getValueType(0); SDValue N0 = N->getOperand(0); SDValue N1 = N->getOperand(1); SDValue N2 = N->getOperand(2); SDValue N3 = N->getOperand(3); SDValue InFlag = N->getOperand(4); assert(N2.getOpcode() == ISD::Constant); assert(N3.getOpcode() == ISD::Register); SDValue Tmp2 = CurDAG->getTargetConstant(((unsigned) cast(N2)->getZExtValue()), MVT::i32); SDValue Ops[] = { N0, N1, Tmp2, N3, InFlag }; unsigned Opc = 0; switch (VT.getSimpleVT().SimpleTy) { default: assert(false && "Illegal conditional move type!"); break; case MVT::f32: Opc = ARM::VNEGScc; break; case MVT::f64: Opc = ARM::VNEGDcc; break; } return CurDAG->SelectNodeTo(N, Opc, VT, Ops, 5); } case ARMISD::VZIP: { unsigned Opc = 0; EVT VT = N->getValueType(0); switch (VT.getSimpleVT().SimpleTy) { default: return NULL; case MVT::v8i8: Opc = ARM::VZIPd8; break; case MVT::v4i16: Opc = ARM::VZIPd16; break; case MVT::v2f32: case MVT::v2i32: Opc = ARM::VZIPd32; break; case MVT::v16i8: Opc = ARM::VZIPq8; break; case MVT::v8i16: Opc = ARM::VZIPq16; break; case MVT::v4f32: case MVT::v4i32: Opc = ARM::VZIPq32; break; } SDValue Pred = CurDAG->getTargetConstant(14, MVT::i32); SDValue PredReg = CurDAG->getRegister(0, MVT::i32); SDValue Ops[] = { N->getOperand(0), N->getOperand(1), Pred, PredReg }; return CurDAG->getMachineNode(Opc, dl, VT, VT, Ops, 4); } case ARMISD::VUZP: { unsigned Opc = 0; EVT VT = N->getValueType(0); switch (VT.getSimpleVT().SimpleTy) { default: return NULL; case MVT::v8i8: Opc = ARM::VUZPd8; break; case MVT::v4i16: Opc = ARM::VUZPd16; break; case MVT::v2f32: case MVT::v2i32: Opc = ARM::VUZPd32; break; case MVT::v16i8: Opc = ARM::VUZPq8; break; case MVT::v8i16: Opc = ARM::VUZPq16; break; case MVT::v4f32: case MVT::v4i32: Opc = ARM::VUZPq32; break; } SDValue Pred = CurDAG->getTargetConstant(14, MVT::i32); SDValue PredReg = CurDAG->getRegister(0, MVT::i32); SDValue Ops[] = { N->getOperand(0), N->getOperand(1), Pred, PredReg }; return CurDAG->getMachineNode(Opc, dl, VT, VT, Ops, 4); } case ARMISD::VTRN: { unsigned Opc = 0; EVT VT = N->getValueType(0); switch (VT.getSimpleVT().SimpleTy) { default: return NULL; case MVT::v8i8: Opc = ARM::VTRNd8; break; case MVT::v4i16: Opc = ARM::VTRNd16; break; case MVT::v2f32: case MVT::v2i32: Opc = ARM::VTRNd32; break; case MVT::v16i8: Opc = ARM::VTRNq8; break; case MVT::v8i16: Opc = ARM::VTRNq16; break; case MVT::v4f32: case MVT::v4i32: Opc = ARM::VTRNq32; break; } SDValue Pred = CurDAG->getTargetConstant(14, MVT::i32); SDValue PredReg = CurDAG->getRegister(0, MVT::i32); SDValue Ops[] = { N->getOperand(0), N->getOperand(1), Pred, PredReg }; return CurDAG->getMachineNode(Opc, dl, VT, VT, Ops, 4); } case ISD::INTRINSIC_VOID: case ISD::INTRINSIC_W_CHAIN: { unsigned IntNo = cast(N->getOperand(1))->getZExtValue(); switch (IntNo) { default: break; case Intrinsic::arm_neon_vld2: { unsigned DOpcodes[] = { ARM::VLD2d8, ARM::VLD2d16, ARM::VLD2d32, ARM::VLD2d64 }; unsigned QOpcodes[] = { ARM::VLD2q8, ARM::VLD2q16, ARM::VLD2q32 }; return SelectVLD(N, 2, DOpcodes, QOpcodes, 0); } case Intrinsic::arm_neon_vld3: { unsigned DOpcodes[] = { ARM::VLD3d8, ARM::VLD3d16, ARM::VLD3d32, ARM::VLD3d64 }; unsigned QOpcodes0[] = { ARM::VLD3q8a, ARM::VLD3q16a, ARM::VLD3q32a }; unsigned QOpcodes1[] = { ARM::VLD3q8b, ARM::VLD3q16b, ARM::VLD3q32b }; return SelectVLD(N, 3, DOpcodes, QOpcodes0, QOpcodes1); } case Intrinsic::arm_neon_vld4: { unsigned DOpcodes[] = { ARM::VLD4d8, ARM::VLD4d16, ARM::VLD4d32, ARM::VLD4d64 }; unsigned QOpcodes0[] = { ARM::VLD4q8a, ARM::VLD4q16a, ARM::VLD4q32a }; unsigned QOpcodes1[] = { ARM::VLD4q8b, ARM::VLD4q16b, ARM::VLD4q32b }; return SelectVLD(N, 4, DOpcodes, QOpcodes0, QOpcodes1); } case Intrinsic::arm_neon_vld2lane: { unsigned DOpcodes[] = { ARM::VLD2LNd8, ARM::VLD2LNd16, ARM::VLD2LNd32 }; unsigned QOpcodes0[] = { ARM::VLD2LNq16a, ARM::VLD2LNq32a }; unsigned QOpcodes1[] = { ARM::VLD2LNq16b, ARM::VLD2LNq32b }; return SelectVLDSTLane(N, true, 2, DOpcodes, QOpcodes0, QOpcodes1); } case Intrinsic::arm_neon_vld3lane: { unsigned DOpcodes[] = { ARM::VLD3LNd8, ARM::VLD3LNd16, ARM::VLD3LNd32 }; unsigned QOpcodes0[] = { ARM::VLD3LNq16a, ARM::VLD3LNq32a }; unsigned QOpcodes1[] = { ARM::VLD3LNq16b, ARM::VLD3LNq32b }; return SelectVLDSTLane(N, true, 3, DOpcodes, QOpcodes0, QOpcodes1); } case Intrinsic::arm_neon_vld4lane: { unsigned DOpcodes[] = { ARM::VLD4LNd8, ARM::VLD4LNd16, ARM::VLD4LNd32 }; unsigned QOpcodes0[] = { ARM::VLD4LNq16a, ARM::VLD4LNq32a }; unsigned QOpcodes1[] = { ARM::VLD4LNq16b, ARM::VLD4LNq32b }; return SelectVLDSTLane(N, true, 4, DOpcodes, QOpcodes0, QOpcodes1); } case Intrinsic::arm_neon_vst2: { unsigned DOpcodes[] = { ARM::VST2d8, ARM::VST2d16, ARM::VST2d32, ARM::VST2d64 }; unsigned QOpcodes[] = { ARM::VST2q8, ARM::VST2q16, ARM::VST2q32 }; return SelectVST(N, 2, DOpcodes, QOpcodes, 0); } case Intrinsic::arm_neon_vst3: { unsigned DOpcodes[] = { ARM::VST3d8, ARM::VST3d16, ARM::VST3d32, ARM::VST3d64 }; unsigned QOpcodes0[] = { ARM::VST3q8a, ARM::VST3q16a, ARM::VST3q32a }; unsigned QOpcodes1[] = { ARM::VST3q8b, ARM::VST3q16b, ARM::VST3q32b }; return SelectVST(N, 3, DOpcodes, QOpcodes0, QOpcodes1); } case Intrinsic::arm_neon_vst4: { unsigned DOpcodes[] = { ARM::VST4d8, ARM::VST4d16, ARM::VST4d32, ARM::VST4d64 }; unsigned QOpcodes0[] = { ARM::VST4q8a, ARM::VST4q16a, ARM::VST4q32a }; unsigned QOpcodes1[] = { ARM::VST4q8b, ARM::VST4q16b, ARM::VST4q32b }; return SelectVST(N, 4, DOpcodes, QOpcodes0, QOpcodes1); } case Intrinsic::arm_neon_vst2lane: { unsigned DOpcodes[] = { ARM::VST2LNd8, ARM::VST2LNd16, ARM::VST2LNd32 }; unsigned QOpcodes0[] = { ARM::VST2LNq16a, ARM::VST2LNq32a }; unsigned QOpcodes1[] = { ARM::VST2LNq16b, ARM::VST2LNq32b }; return SelectVLDSTLane(N, false, 2, DOpcodes, QOpcodes0, QOpcodes1); } case Intrinsic::arm_neon_vst3lane: { unsigned DOpcodes[] = { ARM::VST3LNd8, ARM::VST3LNd16, ARM::VST3LNd32 }; unsigned QOpcodes0[] = { ARM::VST3LNq16a, ARM::VST3LNq32a }; unsigned QOpcodes1[] = { ARM::VST3LNq16b, ARM::VST3LNq32b }; return SelectVLDSTLane(N, false, 3, DOpcodes, QOpcodes0, QOpcodes1); } case Intrinsic::arm_neon_vst4lane: { unsigned DOpcodes[] = { ARM::VST4LNd8, ARM::VST4LNd16, ARM::VST4LNd32 }; unsigned QOpcodes0[] = { ARM::VST4LNq16a, ARM::VST4LNq32a }; unsigned QOpcodes1[] = { ARM::VST4LNq16b, ARM::VST4LNq32b }; return SelectVLDSTLane(N, false, 4, DOpcodes, QOpcodes0, QOpcodes1); } } } } return SelectCode(N); } bool ARMDAGToDAGISel:: SelectInlineAsmMemoryOperand(const SDValue &Op, char ConstraintCode, std::vector &OutOps) { assert(ConstraintCode == 'm' && "unexpected asm memory constraint"); // Require the address to be in a register. That is safe for all ARM // variants and it is hard to do anything much smarter without knowing // how the operand is used. OutOps.push_back(Op); return false; } /// createARMISelDag - This pass converts a legalized DAG into a /// ARM-specific DAG, ready for instruction scheduling. /// FunctionPass *llvm::createARMISelDag(ARMBaseTargetMachine &TM, CodeGenOpt::Level OptLevel) { return new ARMDAGToDAGISel(TM, OptLevel); }