//===- DCE.cpp - Code to perform dead code elimination --------------------===// // // This file implements dead code elimination and basic block merging. // // Specifically, this: // * removes definitions with no uses (including unused constants) // * removes basic blocks with no predecessors // * merges a basic block into its predecessor if there is only one and the // predecessor only has one successor. // * Eliminates PHI nodes for basic blocks with a single predecessor // * Eliminates a basic block that only contains an unconditional branch // * Eliminates method prototypes that are not referenced // // TODO: This should REALLY be worklist driven instead of iterative. Right now, // we scan linearly through values, removing unused ones as we go. The problem // is that this may cause other earlier values to become unused. To make sure // that we get them all, we iterate until things stop changing. Instead, when // removing a value, recheck all of its operands to see if they are now unused. // Piece of cake, and more efficient as well. // // Note, this is not trivial, because we have to worry about invalidating // iterators. :( // //===----------------------------------------------------------------------===// #include "llvm/Transforms/Scalar/DCE.h" #include "llvm/Module.h" #include "llvm/GlobalVariable.h" #include "llvm/Method.h" #include "llvm/BasicBlock.h" #include "llvm/iTerminators.h" #include "llvm/iPHINode.h" #include "llvm/Assembly/Writer.h" #include "Support/STLExtras.h" #include // dceInstruction - Inspect the instruction at *BBI and figure out if it's // [trivially] dead. If so, remove the instruction and update the iterator // to point to the instruction that immediately succeeded the original // instruction. // bool DeadCodeElimination::dceInstruction(BasicBlock::InstListType &BBIL, BasicBlock::iterator &BBI) { // Look for un"used" definitions... if ((*BBI)->use_empty() && !(*BBI)->hasSideEffects() && !isa(*BBI)) { delete BBIL.remove(BBI); // Bye bye return true; } return false; } static inline bool RemoveUnusedDefs(BasicBlock::InstListType &Vals) { bool Changed = false; for (BasicBlock::InstListType::iterator DI = Vals.begin(); DI != Vals.end(); ) if (DeadCodeElimination::dceInstruction(Vals, DI)) Changed = true; else ++DI; return Changed; } // RemoveSingularPHIs - This removes PHI nodes from basic blocks that have only // a single predecessor. This means that the PHI node must only have a single // RHS value and can be eliminated. // // This routine is very simple because we know that PHI nodes must be the first // things in a basic block, if they are present. // static bool RemoveSingularPHIs(BasicBlock *BB) { BasicBlock::pred_iterator PI(BB->pred_begin()); if (PI == BB->pred_end() || ++PI != BB->pred_end()) return false; // More than one predecessor... Instruction *I = BB->front(); if (!isa(I)) return false; // No PHI nodes //cerr << "Killing PHIs from " << BB; //cerr << "Pred #0 = " << *BB->pred_begin(); //cerr << "Method == " << BB->getParent(); do { PHINode *PN = cast(I); assert(PN->getNumOperands() == 2 && "PHI node should only have one value!"); Value *V = PN->getOperand(0); PN->replaceAllUsesWith(V); // Replace PHI node with its single value. delete BB->getInstList().remove(BB->begin()); I = BB->front(); } while (isa(I)); return true; // Yes, we nuked at least one phi node } static void ReplaceUsesWithConstant(Instruction *I) { Constant *CPV = Constant::getNullConstant(I->getType()); // Make all users of this instruction reference the constant instead I->replaceAllUsesWith(CPV); } // PropogatePredecessors - This gets "Succ" ready to have the predecessors from // "BB". This is a little tricky because "Succ" has PHI nodes, which need to // have extra slots added to them to hold the merge edges from BB's // predecessors. This function returns true (failure) if the Succ BB already // has a predecessor that is a predecessor of BB. // // Assumption: Succ is the single successor for BB. // static bool PropogatePredecessorsForPHIs(BasicBlock *BB, BasicBlock *Succ) { assert(*BB->succ_begin() == Succ && "Succ is not successor of BB!"); assert(isa(Succ->front()) && "Only works on PHId BBs!"); // If there is more than one predecessor, and there are PHI nodes in // the successor, then we need to add incoming edges for the PHI nodes // const std::vector BBPreds(BB->pred_begin(), BB->pred_end()); // Check to see if one of the predecessors of BB is already a predecessor of // Succ. If so, we cannot do the transformation! // for (BasicBlock::pred_iterator PI = Succ->pred_begin(), PE = Succ->pred_end(); PI != PE; ++PI) { if (find(BBPreds.begin(), BBPreds.end(), *PI) != BBPreds.end()) return true; } BasicBlock::iterator I = Succ->begin(); do { // Loop over all of the PHI nodes in the successor BB PHINode *PN = cast(*I); Value *OldVal = PN->removeIncomingValue(BB); assert(OldVal && "No entry in PHI for Pred BB!"); for (std::vector::const_iterator PredI = BBPreds.begin(), End = BBPreds.end(); PredI != End; ++PredI) { // Add an incoming value for each of the new incoming values... PN->addIncoming(OldVal, *PredI); } ++I; } while (isa(*I)); return false; } // SimplifyCFG - This function is used to do simplification of a CFG. For // example, it adjusts branches to branches to eliminate the extra hop, it // eliminates unreachable basic blocks, and does other "peephole" optimization // of the CFG. It returns true if a modification was made, and returns an // iterator that designates the first element remaining after the block that // was deleted. // // WARNING: The entry node of a method may not be simplified. // bool SimplifyCFG(Method::iterator &BBIt) { BasicBlock *BB = *BBIt; Method *M = BB->getParent(); assert(BB && BB->getParent() && "Block not embedded in method!"); assert(BB->getTerminator() && "Degenerate basic block encountered!"); assert(BB->getParent()->front() != BB && "Can't Simplify entry block!"); // Remove basic blocks that have no predecessors... which are unreachable. if (BB->pred_begin() == BB->pred_end() && !BB->hasConstantReferences()) { //cerr << "Removing BB: \n" << BB; // Loop through all of our successors and make sure they know that one // of their predecessors is going away. for_each(BB->succ_begin(), BB->succ_end(), std::bind2nd(std::mem_fun(&BasicBlock::removePredecessor), BB)); while (!BB->empty()) { Instruction *I = BB->back(); // If this instruction is used, replace uses with an arbitrary // constant value. Because control flow can't get here, we don't care // what we replace the value with. Note that since this block is // unreachable, and all values contained within it must dominate their // uses, that all uses will eventually be removed. if (!I->use_empty()) ReplaceUsesWithConstant(I); // Remove the instruction from the basic block delete BB->getInstList().pop_back(); } delete M->getBasicBlocks().remove(BBIt); return true; } // Check to see if this block has no instructions and only a single // successor. If so, replace block references with successor. BasicBlock::succ_iterator SI(BB->succ_begin()); if (SI != BB->succ_end() && ++SI == BB->succ_end()) { // One succ? if (BB->front()->isTerminator()) { // Terminator is the only instruction! BasicBlock *Succ = *BB->succ_begin(); // There is exactly one successor //cerr << "Killing Trivial BB: \n" << BB; if (Succ != BB) { // Arg, don't hurt infinite loops! // If our successor has PHI nodes, then we need to update them to // include entries for BB's predecessors, not for BB itself. // Be careful though, if this transformation fails (returns true) then // we cannot do this transformation! // if (!isa(Succ->front()) || !PropogatePredecessorsForPHIs(BB, Succ)) { BB->replaceAllUsesWith(Succ); BB = M->getBasicBlocks().remove(BBIt); if (BB->hasName() && !Succ->hasName()) // Transfer name if we can Succ->setName(BB->getName()); delete BB; // Delete basic block //cerr << "Method after removal: \n" << M; return true; } } } } // Merge basic blocks into their predecessor if there is only one pred, // and if there is only one successor of the predecessor. BasicBlock::pred_iterator PI(BB->pred_begin()); if (PI != BB->pred_end() && *PI != BB && // Not empty? Not same BB? ++PI == BB->pred_end() && !BB->hasConstantReferences()) { BasicBlock *Pred = *BB->pred_begin(); TerminatorInst *Term = Pred->getTerminator(); assert(Term != 0 && "malformed basic block without terminator!"); // Does the predecessor block only have a single successor? BasicBlock::succ_iterator SI(Pred->succ_begin()); if (++SI == Pred->succ_end()) { //cerr << "Merging: " << BB << "into: " << Pred; // Delete the unconditianal branch from the predecessor... BasicBlock::iterator DI = Pred->end(); assert(Pred->getTerminator() && "Degenerate basic block encountered!"); // Empty bb??? delete Pred->getInstList().remove(--DI); // Destroy uncond branch // Move all definitions in the succecessor to the predecessor... while (!BB->empty()) { DI = BB->begin(); Instruction *Def = BB->getInstList().remove(DI); // Remove from front Pred->getInstList().push_back(Def); // Add to end... } // Remove basic block from the method... and advance iterator to the // next valid block... BB = M->getBasicBlocks().remove(BBIt); // Make all PHI nodes that refered to BB now refer to Pred as their // source... BB->replaceAllUsesWith(Pred); // Inherit predecessors name if it exists... if (BB->hasName() && !Pred->hasName()) Pred->setName(BB->getName()); delete BB; // You ARE the weakest link... goodbye return true; } } return false; } static bool DoDCEPass(Method *M) { Method::iterator BBIt, BBEnd = M->end(); if (M->begin() == BBEnd) return false; // Nothing to do bool Changed = false; // Loop through now and remove instructions that have no uses... for (BBIt = M->begin(); BBIt != BBEnd; ++BBIt) { Changed |= RemoveUnusedDefs((*BBIt)->getInstList()); Changed |= RemoveSingularPHIs(*BBIt); } // Loop over all of the basic blocks (except the first one) and remove them // if they are unneeded... // for (BBIt = M->begin(), ++BBIt; BBIt != M->end(); ) { if (SimplifyCFG(BBIt)) { Changed = true; } else { ++BBIt; } } return Changed; } // It is possible that we may require multiple passes over the code to fully // eliminate dead code. Iterate until we are done. // bool DeadCodeElimination::doDCE(Method *M) { bool Changed = false; while (DoDCEPass(M)) Changed = true; return Changed; } bool DeadCodeElimination::RemoveUnusedGlobalValues(Module *Mod) { bool Changed = false; for (Module::iterator MI = Mod->begin(); MI != Mod->end(); ) { Method *Meth = *MI; if (Meth->isExternal() && Meth->use_size() == 0) { // No references to prototype? //cerr << "Removing method proto: " << Meth->getName() << endl; delete Mod->getMethodList().remove(MI); // Remove prototype // Remove moves iterator to point to the next one automatically Changed = true; } else { ++MI; // Skip prototype in use. } } for (Module::giterator GI = Mod->gbegin(); GI != Mod->gend(); ) { GlobalVariable *GV = *GI; if (!GV->hasInitializer() && GV->use_size() == 0) { // No references to uninitialized global variable? //cerr << "Removing global var: " << GV->getName() << endl; delete Mod->getGlobalList().remove(GI); // Remove moves iterator to point to the next one automatically Changed = true; } else { ++GI; } } return Changed; }