//===-- JITEmitter.cpp - Write machine code to executable memory ----------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file defines a MachineCodeEmitter object that is used by the JIT to // write machine code to memory and remember where relocatable values are. // //===----------------------------------------------------------------------===// #define DEBUG_TYPE "jit" #include "JIT.h" #include "JITDebugRegisterer.h" #include "JITDwarfEmitter.h" #include "llvm/ADT/OwningPtr.h" #include "llvm/Constants.h" #include "llvm/Module.h" #include "llvm/DerivedTypes.h" #include "llvm/Analysis/DebugInfo.h" #include "llvm/CodeGen/JITCodeEmitter.h" #include "llvm/CodeGen/MachineFunction.h" #include "llvm/CodeGen/MachineCodeInfo.h" #include "llvm/CodeGen/MachineConstantPool.h" #include "llvm/CodeGen/MachineJumpTableInfo.h" #include "llvm/CodeGen/MachineModuleInfo.h" #include "llvm/CodeGen/MachineRelocation.h" #include "llvm/ExecutionEngine/GenericValue.h" #include "llvm/ExecutionEngine/JITEventListener.h" #include "llvm/ExecutionEngine/JITMemoryManager.h" #include "llvm/Target/TargetData.h" #include "llvm/Target/TargetInstrInfo.h" #include "llvm/Target/TargetJITInfo.h" #include "llvm/Target/TargetMachine.h" #include "llvm/Target/TargetOptions.h" #include "llvm/Support/Debug.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/ManagedStatic.h" #include "llvm/Support/MutexGuard.h" #include "llvm/Support/ValueHandle.h" #include "llvm/Support/raw_ostream.h" #include "llvm/System/Disassembler.h" #include "llvm/System/Memory.h" #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/SmallPtrSet.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/Statistic.h" #include "llvm/ADT/ValueMap.h" #include #ifndef NDEBUG #include #endif using namespace llvm; STATISTIC(NumBytes, "Number of bytes of machine code compiled"); STATISTIC(NumRelos, "Number of relocations applied"); STATISTIC(NumRetries, "Number of retries with more memory"); // A declaration may stop being a declaration once it's fully read from bitcode. // This function returns true if F is fully read and is still a declaration. static bool isNonGhostDeclaration(const Function *F) { return F->isDeclaration() && !F->isMaterializable(); } //===----------------------------------------------------------------------===// // JIT lazy compilation code. // namespace { class JITEmitter; class JITResolverState; template struct NoRAUWValueMapConfig : public ValueMapConfig { typedef JITResolverState *ExtraData; static void onRAUW(JITResolverState *, Value *Old, Value *New) { assert(false && "The JIT doesn't know how to handle a" " RAUW on a value it has emitted."); } }; struct CallSiteValueMapConfig : public NoRAUWValueMapConfig { typedef JITResolverState *ExtraData; static void onDelete(JITResolverState *JRS, Function *F); }; class JITResolverState { public: typedef ValueMap > FunctionToLazyStubMapTy; typedef std::map > CallSiteToFunctionMapTy; typedef ValueMap, CallSiteValueMapConfig> FunctionToCallSitesMapTy; typedef std::map, void*> GlobalToIndirectSymMapTy; private: /// FunctionToLazyStubMap - Keep track of the lazy stub created for a /// particular function so that we can reuse them if necessary. FunctionToLazyStubMapTy FunctionToLazyStubMap; /// CallSiteToFunctionMap - Keep track of the function that each lazy call /// site corresponds to, and vice versa. CallSiteToFunctionMapTy CallSiteToFunctionMap; FunctionToCallSitesMapTy FunctionToCallSitesMap; /// GlobalToIndirectSymMap - Keep track of the indirect symbol created for a /// particular GlobalVariable so that we can reuse them if necessary. GlobalToIndirectSymMapTy GlobalToIndirectSymMap; /// Instance of the JIT this ResolverState serves. JIT *TheJIT; public: JITResolverState(JIT *jit) : FunctionToLazyStubMap(this), FunctionToCallSitesMap(this), TheJIT(jit) {} FunctionToLazyStubMapTy& getFunctionToLazyStubMap( const MutexGuard& locked) { assert(locked.holds(TheJIT->lock)); return FunctionToLazyStubMap; } GlobalToIndirectSymMapTy& getGlobalToIndirectSymMap(const MutexGuard& locked) { assert(locked.holds(TheJIT->lock)); return GlobalToIndirectSymMap; } pair LookupFunctionFromCallSite( const MutexGuard &locked, void *CallSite) const { assert(locked.holds(TheJIT->lock)); // The address given to us for the stub may not be exactly right, it might be // a little bit after the stub. As such, use upper_bound to find it. CallSiteToFunctionMapTy::const_iterator I = CallSiteToFunctionMap.upper_bound(CallSite); assert(I != CallSiteToFunctionMap.begin() && "This is not a known call site!"); --I; return *I; } void AddCallSite(const MutexGuard &locked, void *CallSite, Function *F) { assert(locked.holds(TheJIT->lock)); bool Inserted = CallSiteToFunctionMap.insert( std::make_pair(CallSite, F)).second; (void)Inserted; assert(Inserted && "Pair was already in CallSiteToFunctionMap"); FunctionToCallSitesMap[F].insert(CallSite); } // Returns the Function of the stub if a stub was erased, or NULL if there // was no stub. This function uses the call-site->function map to find a // relevant function, but asserts that only stubs and not other call sites // will be passed in. Function *EraseStub(const MutexGuard &locked, void *Stub); void EraseAllCallSitesFor(const MutexGuard &locked, Function *F) { assert(locked.holds(TheJIT->lock)); EraseAllCallSitesForPrelocked(F); } void EraseAllCallSitesForPrelocked(Function *F); // Erases _all_ call sites regardless of their function. This is used to // unregister the stub addresses from the StubToResolverMap in // ~JITResolver(). void EraseAllCallSitesPrelocked(); }; /// JITResolver - Keep track of, and resolve, call sites for functions that /// have not yet been compiled. class JITResolver { typedef JITResolverState::FunctionToLazyStubMapTy FunctionToLazyStubMapTy; typedef JITResolverState::CallSiteToFunctionMapTy CallSiteToFunctionMapTy; typedef JITResolverState::GlobalToIndirectSymMapTy GlobalToIndirectSymMapTy; /// LazyResolverFn - The target lazy resolver function that we actually /// rewrite instructions to use. TargetJITInfo::LazyResolverFn LazyResolverFn; JITResolverState state; /// ExternalFnToStubMap - This is the equivalent of FunctionToLazyStubMap /// for external functions. TODO: Of course, external functions don't need /// a lazy stub. It's actually here to make it more likely that far calls /// succeed, but no single stub can guarantee that. I'll remove this in a /// subsequent checkin when I actually fix far calls. std::map ExternalFnToStubMap; /// revGOTMap - map addresses to indexes in the GOT std::map revGOTMap; unsigned nextGOTIndex; JITEmitter &JE; /// Instance of JIT corresponding to this Resolver. JIT *TheJIT; public: explicit JITResolver(JIT &jit, JITEmitter &je) : state(&jit), nextGOTIndex(0), JE(je), TheJIT(&jit) { LazyResolverFn = jit.getJITInfo().getLazyResolverFunction(JITCompilerFn); } ~JITResolver(); /// getLazyFunctionStubIfAvailable - This returns a pointer to a function's /// lazy-compilation stub if it has already been created. void *getLazyFunctionStubIfAvailable(Function *F); /// getLazyFunctionStub - This returns a pointer to a function's /// lazy-compilation stub, creating one on demand as needed. void *getLazyFunctionStub(Function *F); /// getExternalFunctionStub - Return a stub for the function at the /// specified address, created lazily on demand. void *getExternalFunctionStub(void *FnAddr); /// getGlobalValueIndirectSym - Return an indirect symbol containing the /// specified GV address. void *getGlobalValueIndirectSym(GlobalValue *V, void *GVAddress); void getRelocatableGVs(SmallVectorImpl &GVs, SmallVectorImpl &Ptrs); /// getGOTIndexForAddress - Return a new or existing index in the GOT for /// an address. This function only manages slots, it does not manage the /// contents of the slots or the memory associated with the GOT. unsigned getGOTIndexForAddr(void *addr); /// JITCompilerFn - This function is called to resolve a stub to a compiled /// address. If the LLVM Function corresponding to the stub has not yet /// been compiled, this function compiles it first. static void *JITCompilerFn(void *Stub); }; class StubToResolverMapTy { /// Map a stub address to a specific instance of a JITResolver so that /// lazily-compiled functions can find the right resolver to use. /// /// Guarded by Lock. std::map Map; /// Guards Map from concurrent accesses. mutable sys::Mutex Lock; public: /// Registers a Stub to be resolved by Resolver. void RegisterStubResolver(void *Stub, JITResolver *Resolver) { MutexGuard guard(Lock); Map.insert(std::make_pair(Stub, Resolver)); } /// Unregisters the Stub when it's invalidated. void UnregisterStubResolver(void *Stub) { MutexGuard guard(Lock); Map.erase(Stub); } /// Returns the JITResolver instance that owns the Stub. JITResolver *getResolverFromStub(void *Stub) const { MutexGuard guard(Lock); // The address given to us for the stub may not be exactly right, it might // be a little bit after the stub. As such, use upper_bound to find it. // This is the same trick as in LookupFunctionFromCallSite from // JITResolverState. std::map::const_iterator I = Map.upper_bound(Stub); assert(I != Map.begin() && "This is not a known stub!"); --I; return I->second; } /// True if any stubs refer to the given resolver. Only used in an assert(). /// O(N) bool ResolverHasStubs(JITResolver* Resolver) const { MutexGuard guard(Lock); for (std::map::const_iterator I = Map.begin(), E = Map.end(); I != E; ++I) { if (I->second == Resolver) return true; } return false; } }; /// This needs to be static so that a lazy call stub can access it with no /// context except the address of the stub. ManagedStatic StubToResolverMap; /// JITEmitter - The JIT implementation of the MachineCodeEmitter, which is /// used to output functions to memory for execution. class JITEmitter : public JITCodeEmitter { JITMemoryManager *MemMgr; // When outputting a function stub in the context of some other function, we // save BufferBegin/BufferEnd/CurBufferPtr here. uint8_t *SavedBufferBegin, *SavedBufferEnd, *SavedCurBufferPtr; // When reattempting to JIT a function after running out of space, we store // the estimated size of the function we're trying to JIT here, so we can // ask the memory manager for at least this much space. When we // successfully emit the function, we reset this back to zero. uintptr_t SizeEstimate; /// Relocations - These are the relocations that the function needs, as /// emitted. std::vector Relocations; /// MBBLocations - This vector is a mapping from MBB ID's to their address. /// It is filled in by the StartMachineBasicBlock callback and queried by /// the getMachineBasicBlockAddress callback. std::vector MBBLocations; /// ConstantPool - The constant pool for the current function. /// MachineConstantPool *ConstantPool; /// ConstantPoolBase - A pointer to the first entry in the constant pool. /// void *ConstantPoolBase; /// ConstPoolAddresses - Addresses of individual constant pool entries. /// SmallVector ConstPoolAddresses; /// JumpTable - The jump tables for the current function. /// MachineJumpTableInfo *JumpTable; /// JumpTableBase - A pointer to the first entry in the jump table. /// void *JumpTableBase; /// Resolver - This contains info about the currently resolved functions. JITResolver Resolver; /// DE - The dwarf emitter for the jit. OwningPtr DE; /// DR - The debug registerer for the jit. OwningPtr DR; /// LabelLocations - This vector is a mapping from Label ID's to their /// address. DenseMap LabelLocations; /// MMI - Machine module info for exception informations MachineModuleInfo* MMI; // CurFn - The llvm function being emitted. Only valid during // finishFunction(). const Function *CurFn; /// Information about emitted code, which is passed to the /// JITEventListeners. This is reset in startFunction and used in /// finishFunction. JITEvent_EmittedFunctionDetails EmissionDetails; struct EmittedCode { void *FunctionBody; // Beginning of the function's allocation. void *Code; // The address the function's code actually starts at. void *ExceptionTable; EmittedCode() : FunctionBody(0), Code(0), ExceptionTable(0) {} }; struct EmittedFunctionConfig : public ValueMapConfig { typedef JITEmitter *ExtraData; static void onDelete(JITEmitter *, const Function*); static void onRAUW(JITEmitter *, const Function*, const Function*); }; ValueMap EmittedFunctions; DebugLoc PrevDL; /// Instance of the JIT JIT *TheJIT; public: JITEmitter(JIT &jit, JITMemoryManager *JMM, TargetMachine &TM) : SizeEstimate(0), Resolver(jit, *this), MMI(0), CurFn(0), EmittedFunctions(this), TheJIT(&jit) { MemMgr = JMM ? JMM : JITMemoryManager::CreateDefaultMemManager(); if (jit.getJITInfo().needsGOT()) { MemMgr->AllocateGOT(); DEBUG(dbgs() << "JIT is managing a GOT\n"); } if (JITExceptionHandling || JITEmitDebugInfo) { DE.reset(new JITDwarfEmitter(jit)); } if (JITEmitDebugInfo) { DR.reset(new JITDebugRegisterer(TM)); } } ~JITEmitter() { delete MemMgr; } /// classof - Methods for support type inquiry through isa, cast, and /// dyn_cast: /// static inline bool classof(const JITEmitter*) { return true; } static inline bool classof(const MachineCodeEmitter*) { return true; } JITResolver &getJITResolver() { return Resolver; } virtual void startFunction(MachineFunction &F); virtual bool finishFunction(MachineFunction &F); void emitConstantPool(MachineConstantPool *MCP); void initJumpTableInfo(MachineJumpTableInfo *MJTI); void emitJumpTableInfo(MachineJumpTableInfo *MJTI); void startGVStub(const GlobalValue* GV, unsigned StubSize, unsigned Alignment = 1); void startGVStub(void *Buffer, unsigned StubSize); void finishGVStub(); virtual void *allocIndirectGV(const GlobalValue *GV, const uint8_t *Buffer, size_t Size, unsigned Alignment); /// allocateSpace - Reserves space in the current block if any, or /// allocate a new one of the given size. virtual void *allocateSpace(uintptr_t Size, unsigned Alignment); /// allocateGlobal - Allocate memory for a global. Unlike allocateSpace, /// this method does not allocate memory in the current output buffer, /// because a global may live longer than the current function. virtual void *allocateGlobal(uintptr_t Size, unsigned Alignment); virtual void addRelocation(const MachineRelocation &MR) { Relocations.push_back(MR); } virtual void StartMachineBasicBlock(MachineBasicBlock *MBB) { if (MBBLocations.size() <= (unsigned)MBB->getNumber()) MBBLocations.resize((MBB->getNumber()+1)*2); MBBLocations[MBB->getNumber()] = getCurrentPCValue(); DEBUG(dbgs() << "JIT: Emitting BB" << MBB->getNumber() << " at [" << (void*) getCurrentPCValue() << "]\n"); } virtual uintptr_t getConstantPoolEntryAddress(unsigned Entry) const; virtual uintptr_t getJumpTableEntryAddress(unsigned Entry) const; virtual uintptr_t getMachineBasicBlockAddress(MachineBasicBlock *MBB) const { assert(MBBLocations.size() > (unsigned)MBB->getNumber() && MBBLocations[MBB->getNumber()] && "MBB not emitted!"); return MBBLocations[MBB->getNumber()]; } /// retryWithMoreMemory - Log a retry and deallocate all memory for the /// given function. Increase the minimum allocation size so that we get /// more memory next time. void retryWithMoreMemory(MachineFunction &F); /// deallocateMemForFunction - Deallocate all memory for the specified /// function body. void deallocateMemForFunction(const Function *F); virtual void processDebugLoc(DebugLoc DL, bool BeforePrintingInsn); virtual void emitLabel(MCSymbol *Label) { LabelLocations[Label] = getCurrentPCValue(); } virtual DenseMap *getLabelLocations() { return &LabelLocations; } virtual uintptr_t getLabelAddress(MCSymbol *Label) const { assert(LabelLocations.count(Label) && "Label not emitted!"); return LabelLocations.find(Label)->second; } virtual void setModuleInfo(MachineModuleInfo* Info) { MMI = Info; if (DE.get()) DE->setModuleInfo(Info); } void setMemoryExecutable() { MemMgr->setMemoryExecutable(); } JITMemoryManager *getMemMgr() const { return MemMgr; } private: void *getPointerToGlobal(GlobalValue *GV, void *Reference, bool MayNeedFarStub); void *getPointerToGVIndirectSym(GlobalValue *V, void *Reference); unsigned addSizeOfGlobal(const GlobalVariable *GV, unsigned Size); unsigned addSizeOfGlobalsInConstantVal( const Constant *C, unsigned Size, SmallPtrSet &SeenGlobals, SmallVectorImpl &Worklist); unsigned addSizeOfGlobalsInInitializer( const Constant *Init, unsigned Size, SmallPtrSet &SeenGlobals, SmallVectorImpl &Worklist); unsigned GetSizeOfGlobalsInBytes(MachineFunction &MF); }; } void CallSiteValueMapConfig::onDelete(JITResolverState *JRS, Function *F) { JRS->EraseAllCallSitesForPrelocked(F); } Function *JITResolverState::EraseStub(const MutexGuard &locked, void *Stub) { CallSiteToFunctionMapTy::iterator C2F_I = CallSiteToFunctionMap.find(Stub); if (C2F_I == CallSiteToFunctionMap.end()) { // Not a stub. return NULL; } StubToResolverMap->UnregisterStubResolver(Stub); Function *const F = C2F_I->second; #ifndef NDEBUG void *RealStub = FunctionToLazyStubMap.lookup(F); assert(RealStub == Stub && "Call-site that wasn't a stub passed in to EraseStub"); #endif FunctionToLazyStubMap.erase(F); CallSiteToFunctionMap.erase(C2F_I); // Remove the stub from the function->call-sites map, and remove the whole // entry from the map if that was the last call site. FunctionToCallSitesMapTy::iterator F2C_I = FunctionToCallSitesMap.find(F); assert(F2C_I != FunctionToCallSitesMap.end() && "FunctionToCallSitesMap broken"); bool Erased = F2C_I->second.erase(Stub); (void)Erased; assert(Erased && "FunctionToCallSitesMap broken"); if (F2C_I->second.empty()) FunctionToCallSitesMap.erase(F2C_I); return F; } void JITResolverState::EraseAllCallSitesForPrelocked(Function *F) { FunctionToCallSitesMapTy::iterator F2C = FunctionToCallSitesMap.find(F); if (F2C == FunctionToCallSitesMap.end()) return; StubToResolverMapTy &S2RMap = *StubToResolverMap; for (SmallPtrSet::const_iterator I = F2C->second.begin(), E = F2C->second.end(); I != E; ++I) { S2RMap.UnregisterStubResolver(*I); bool Erased = CallSiteToFunctionMap.erase(*I); (void)Erased; assert(Erased && "Missing call site->function mapping"); } FunctionToCallSitesMap.erase(F2C); } void JITResolverState::EraseAllCallSitesPrelocked() { StubToResolverMapTy &S2RMap = *StubToResolverMap; for (CallSiteToFunctionMapTy::const_iterator I = CallSiteToFunctionMap.begin(), E = CallSiteToFunctionMap.end(); I != E; ++I) { S2RMap.UnregisterStubResolver(I->first); } CallSiteToFunctionMap.clear(); FunctionToCallSitesMap.clear(); } JITResolver::~JITResolver() { // No need to lock because we're in the destructor, and state isn't shared. state.EraseAllCallSitesPrelocked(); assert(!StubToResolverMap->ResolverHasStubs(this) && "Resolver destroyed with stubs still alive."); } /// getLazyFunctionStubIfAvailable - This returns a pointer to a function stub /// if it has already been created. void *JITResolver::getLazyFunctionStubIfAvailable(Function *F) { MutexGuard locked(TheJIT->lock); // If we already have a stub for this function, recycle it. return state.getFunctionToLazyStubMap(locked).lookup(F); } /// getFunctionStub - This returns a pointer to a function stub, creating /// one on demand as needed. void *JITResolver::getLazyFunctionStub(Function *F) { MutexGuard locked(TheJIT->lock); // If we already have a lazy stub for this function, recycle it. void *&Stub = state.getFunctionToLazyStubMap(locked)[F]; if (Stub) return Stub; // Call the lazy resolver function if we are JIT'ing lazily. Otherwise we // must resolve the symbol now. void *Actual = TheJIT->isCompilingLazily() ? (void *)(intptr_t)LazyResolverFn : (void *)0; // If this is an external declaration, attempt to resolve the address now // to place in the stub. if (isNonGhostDeclaration(F) || F->hasAvailableExternallyLinkage()) { Actual = TheJIT->getPointerToFunction(F); // If we resolved the symbol to a null address (eg. a weak external) // don't emit a stub. Return a null pointer to the application. if (!Actual) return 0; } TargetJITInfo::StubLayout SL = TheJIT->getJITInfo().getStubLayout(); JE.startGVStub(F, SL.Size, SL.Alignment); // Codegen a new stub, calling the lazy resolver or the actual address of the // external function, if it was resolved. Stub = TheJIT->getJITInfo().emitFunctionStub(F, Actual, JE); JE.finishGVStub(); if (Actual != (void*)(intptr_t)LazyResolverFn) { // If we are getting the stub for an external function, we really want the // address of the stub in the GlobalAddressMap for the JIT, not the address // of the external function. TheJIT->updateGlobalMapping(F, Stub); } DEBUG(dbgs() << "JIT: Lazy stub emitted at [" << Stub << "] for function '" << F->getName() << "'\n"); if (TheJIT->isCompilingLazily()) { // Register this JITResolver as the one corresponding to this call site so // JITCompilerFn will be able to find it. StubToResolverMap->RegisterStubResolver(Stub, this); // Finally, keep track of the stub-to-Function mapping so that the // JITCompilerFn knows which function to compile! state.AddCallSite(locked, Stub, F); } else if (!Actual) { // If we are JIT'ing non-lazily but need to call a function that does not // exist yet, add it to the JIT's work list so that we can fill in the // stub address later. assert(!isNonGhostDeclaration(F) && !F->hasAvailableExternallyLinkage() && "'Actual' should have been set above."); TheJIT->addPendingFunction(F); } return Stub; } /// getGlobalValueIndirectSym - Return a lazy pointer containing the specified /// GV address. void *JITResolver::getGlobalValueIndirectSym(GlobalValue *GV, void *GVAddress) { MutexGuard locked(TheJIT->lock); // If we already have a stub for this global variable, recycle it. void *&IndirectSym = state.getGlobalToIndirectSymMap(locked)[GV]; if (IndirectSym) return IndirectSym; // Otherwise, codegen a new indirect symbol. IndirectSym = TheJIT->getJITInfo().emitGlobalValueIndirectSym(GV, GVAddress, JE); DEBUG(dbgs() << "JIT: Indirect symbol emitted at [" << IndirectSym << "] for GV '" << GV->getName() << "'\n"); return IndirectSym; } /// getExternalFunctionStub - Return a stub for the function at the /// specified address, created lazily on demand. void *JITResolver::getExternalFunctionStub(void *FnAddr) { // If we already have a stub for this function, recycle it. void *&Stub = ExternalFnToStubMap[FnAddr]; if (Stub) return Stub; TargetJITInfo::StubLayout SL = TheJIT->getJITInfo().getStubLayout(); JE.startGVStub(0, SL.Size, SL.Alignment); Stub = TheJIT->getJITInfo().emitFunctionStub(0, FnAddr, JE); JE.finishGVStub(); DEBUG(dbgs() << "JIT: Stub emitted at [" << Stub << "] for external function at '" << FnAddr << "'\n"); return Stub; } unsigned JITResolver::getGOTIndexForAddr(void* addr) { unsigned idx = revGOTMap[addr]; if (!idx) { idx = ++nextGOTIndex; revGOTMap[addr] = idx; DEBUG(dbgs() << "JIT: Adding GOT entry " << idx << " for addr [" << addr << "]\n"); } return idx; } void JITResolver::getRelocatableGVs(SmallVectorImpl &GVs, SmallVectorImpl &Ptrs) { MutexGuard locked(TheJIT->lock); const FunctionToLazyStubMapTy &FM = state.getFunctionToLazyStubMap(locked); GlobalToIndirectSymMapTy &GM = state.getGlobalToIndirectSymMap(locked); for (FunctionToLazyStubMapTy::const_iterator i = FM.begin(), e = FM.end(); i != e; ++i){ Function *F = i->first; if (F->isDeclaration() && F->hasExternalLinkage()) { GVs.push_back(i->first); Ptrs.push_back(i->second); } } for (GlobalToIndirectSymMapTy::iterator i = GM.begin(), e = GM.end(); i != e; ++i) { GVs.push_back(i->first); Ptrs.push_back(i->second); } } /// JITCompilerFn - This function is called when a lazy compilation stub has /// been entered. It looks up which function this stub corresponds to, compiles /// it if necessary, then returns the resultant function pointer. void *JITResolver::JITCompilerFn(void *Stub) { JITResolver *JR = StubToResolverMap->getResolverFromStub(Stub); assert(JR && "Unable to find the corresponding JITResolver to the call site"); Function* F = 0; void* ActualPtr = 0; { // Only lock for getting the Function. The call getPointerToFunction made // in this function might trigger function materializing, which requires // JIT lock to be unlocked. MutexGuard locked(JR->TheJIT->lock); // The address given to us for the stub may not be exactly right, it might // be a little bit after the stub. As such, use upper_bound to find it. pair I = JR->state.LookupFunctionFromCallSite(locked, Stub); F = I.second; ActualPtr = I.first; } // If we have already code generated the function, just return the address. void *Result = JR->TheJIT->getPointerToGlobalIfAvailable(F); if (!Result) { // Otherwise we don't have it, do lazy compilation now. // If lazy compilation is disabled, emit a useful error message and abort. if (!JR->TheJIT->isCompilingLazily()) { report_fatal_error("LLVM JIT requested to do lazy compilation of function '" + F->getName() + "' when lazy compiles are disabled!"); } DEBUG(dbgs() << "JIT: Lazily resolving function '" << F->getName() << "' In stub ptr = " << Stub << " actual ptr = " << ActualPtr << "\n"); Result = JR->TheJIT->getPointerToFunction(F); } // Reacquire the lock to update the GOT map. MutexGuard locked(JR->TheJIT->lock); // We might like to remove the call site from the CallSiteToFunction map, but // we can't do that! Multiple threads could be stuck, waiting to acquire the // lock above. As soon as the 1st function finishes compiling the function, // the next one will be released, and needs to be able to find the function it // needs to call. // FIXME: We could rewrite all references to this stub if we knew them. // What we will do is set the compiled function address to map to the // same GOT entry as the stub so that later clients may update the GOT // if they see it still using the stub address. // Note: this is done so the Resolver doesn't have to manage GOT memory // Do this without allocating map space if the target isn't using a GOT if(JR->revGOTMap.find(Stub) != JR->revGOTMap.end()) JR->revGOTMap[Result] = JR->revGOTMap[Stub]; return Result; } //===----------------------------------------------------------------------===// // JITEmitter code. // void *JITEmitter::getPointerToGlobal(GlobalValue *V, void *Reference, bool MayNeedFarStub) { if (GlobalVariable *GV = dyn_cast(V)) return TheJIT->getOrEmitGlobalVariable(GV); if (GlobalAlias *GA = dyn_cast(V)) return TheJIT->getPointerToGlobal(GA->resolveAliasedGlobal(false)); // If we have already compiled the function, return a pointer to its body. Function *F = cast(V); void *FnStub = Resolver.getLazyFunctionStubIfAvailable(F); if (FnStub) { // Return the function stub if it's already created. We do this first so // that we're returning the same address for the function as any previous // call. TODO: Yes, this is wrong. The lazy stub isn't guaranteed to be // close enough to call. return FnStub; } // If we know the target can handle arbitrary-distance calls, try to // return a direct pointer. if (!MayNeedFarStub) { // If we have code, go ahead and return that. void *ResultPtr = TheJIT->getPointerToGlobalIfAvailable(F); if (ResultPtr) return ResultPtr; // If this is an external function pointer, we can force the JIT to // 'compile' it, which really just adds it to the map. if (isNonGhostDeclaration(F) || F->hasAvailableExternallyLinkage()) return TheJIT->getPointerToFunction(F); } // Otherwise, we may need a to emit a stub, and, conservatively, we always do // so. Note that it's possible to return null from getLazyFunctionStub in the // case of a weak extern that fails to resolve. return Resolver.getLazyFunctionStub(F); } void *JITEmitter::getPointerToGVIndirectSym(GlobalValue *V, void *Reference) { // Make sure GV is emitted first, and create a stub containing the fully // resolved address. void *GVAddress = getPointerToGlobal(V, Reference, false); void *StubAddr = Resolver.getGlobalValueIndirectSym(V, GVAddress); return StubAddr; } void JITEmitter::processDebugLoc(DebugLoc DL, bool BeforePrintingInsn) { if (DL.isUnknown()) return; if (!BeforePrintingInsn) return; const LLVMContext& Context = EmissionDetails.MF->getFunction()->getContext(); if (DL.getScope(Context) != 0 && PrevDL != DL) { JITEvent_EmittedFunctionDetails::LineStart NextLine; NextLine.Address = getCurrentPCValue(); NextLine.Loc = DL; EmissionDetails.LineStarts.push_back(NextLine); } PrevDL = DL; } static unsigned GetConstantPoolSizeInBytes(MachineConstantPool *MCP, const TargetData *TD) { const std::vector &Constants = MCP->getConstants(); if (Constants.empty()) return 0; unsigned Size = 0; for (unsigned i = 0, e = Constants.size(); i != e; ++i) { MachineConstantPoolEntry CPE = Constants[i]; unsigned AlignMask = CPE.getAlignment() - 1; Size = (Size + AlignMask) & ~AlignMask; const Type *Ty = CPE.getType(); Size += TD->getTypeAllocSize(Ty); } return Size; } static unsigned GetJumpTableSizeInBytes(MachineJumpTableInfo *MJTI, JIT *jit) { const std::vector &JT = MJTI->getJumpTables(); if (JT.empty()) return 0; unsigned NumEntries = 0; for (unsigned i = 0, e = JT.size(); i != e; ++i) NumEntries += JT[i].MBBs.size(); return NumEntries * MJTI->getEntrySize(*jit->getTargetData()); } static uintptr_t RoundUpToAlign(uintptr_t Size, unsigned Alignment) { if (Alignment == 0) Alignment = 1; // Since we do not know where the buffer will be allocated, be pessimistic. return Size + Alignment; } /// addSizeOfGlobal - add the size of the global (plus any alignment padding) /// into the running total Size. unsigned JITEmitter::addSizeOfGlobal(const GlobalVariable *GV, unsigned Size) { const Type *ElTy = GV->getType()->getElementType(); size_t GVSize = (size_t)TheJIT->getTargetData()->getTypeAllocSize(ElTy); size_t GVAlign = (size_t)TheJIT->getTargetData()->getPreferredAlignment(GV); DEBUG(dbgs() << "JIT: Adding in size " << GVSize << " alignment " << GVAlign); DEBUG(GV->dump()); // Assume code section ends with worst possible alignment, so first // variable needs maximal padding. if (Size==0) Size = 1; Size = ((Size+GVAlign-1)/GVAlign)*GVAlign; Size += GVSize; return Size; } /// addSizeOfGlobalsInConstantVal - find any globals that we haven't seen yet /// but are referenced from the constant; put them in SeenGlobals and the /// Worklist, and add their size into the running total Size. unsigned JITEmitter::addSizeOfGlobalsInConstantVal( const Constant *C, unsigned Size, SmallPtrSet &SeenGlobals, SmallVectorImpl &Worklist) { // If its undefined, return the garbage. if (isa(C)) return Size; // If the value is a ConstantExpr if (const ConstantExpr *CE = dyn_cast(C)) { Constant *Op0 = CE->getOperand(0); switch (CE->getOpcode()) { case Instruction::GetElementPtr: case Instruction::Trunc: case Instruction::ZExt: case Instruction::SExt: case Instruction::FPTrunc: case Instruction::FPExt: case Instruction::UIToFP: case Instruction::SIToFP: case Instruction::FPToUI: case Instruction::FPToSI: case Instruction::PtrToInt: case Instruction::IntToPtr: case Instruction::BitCast: { Size = addSizeOfGlobalsInConstantVal(Op0, Size, SeenGlobals, Worklist); break; } case Instruction::Add: case Instruction::FAdd: case Instruction::Sub: case Instruction::FSub: case Instruction::Mul: case Instruction::FMul: case Instruction::UDiv: case Instruction::SDiv: case Instruction::URem: case Instruction::SRem: case Instruction::And: case Instruction::Or: case Instruction::Xor: { Size = addSizeOfGlobalsInConstantVal(Op0, Size, SeenGlobals, Worklist); Size = addSizeOfGlobalsInConstantVal(CE->getOperand(1), Size, SeenGlobals, Worklist); break; } default: { std::string msg; raw_string_ostream Msg(msg); Msg << "ConstantExpr not handled: " << *CE; report_fatal_error(Msg.str()); } } } if (C->getType()->getTypeID() == Type::PointerTyID) if (const GlobalVariable* GV = dyn_cast(C)) if (SeenGlobals.insert(GV)) { Worklist.push_back(GV); Size = addSizeOfGlobal(GV, Size); } return Size; } /// addSizeOfGLobalsInInitializer - handle any globals that we haven't seen yet /// but are referenced from the given initializer. unsigned JITEmitter::addSizeOfGlobalsInInitializer( const Constant *Init, unsigned Size, SmallPtrSet &SeenGlobals, SmallVectorImpl &Worklist) { if (!isa(Init) && !isa(Init) && !isa(Init) && !isa(Init) && !isa(Init) && Init->getType()->isFirstClassType()) Size = addSizeOfGlobalsInConstantVal(Init, Size, SeenGlobals, Worklist); return Size; } /// GetSizeOfGlobalsInBytes - walk the code for the function, looking for /// globals; then walk the initializers of those globals looking for more. /// If their size has not been considered yet, add it into the running total /// Size. unsigned JITEmitter::GetSizeOfGlobalsInBytes(MachineFunction &MF) { unsigned Size = 0; SmallPtrSet SeenGlobals; for (MachineFunction::iterator MBB = MF.begin(), E = MF.end(); MBB != E; ++MBB) { for (MachineBasicBlock::const_iterator I = MBB->begin(), E = MBB->end(); I != E; ++I) { const TargetInstrDesc &Desc = I->getDesc(); const MachineInstr &MI = *I; unsigned NumOps = Desc.getNumOperands(); for (unsigned CurOp = 0; CurOp < NumOps; CurOp++) { const MachineOperand &MO = MI.getOperand(CurOp); if (MO.isGlobal()) { const GlobalValue* V = MO.getGlobal(); const GlobalVariable *GV = dyn_cast(V); if (!GV) continue; // If seen in previous function, it will have an entry here. if (TheJIT->getPointerToGlobalIfAvailable( const_cast(GV))) continue; // If seen earlier in this function, it will have an entry here. // FIXME: it should be possible to combine these tables, by // assuming the addresses of the new globals in this module // start at 0 (or something) and adjusting them after codegen // complete. Another possibility is to grab a marker bit in GV. if (SeenGlobals.insert(GV)) // A variable as yet unseen. Add in its size. Size = addSizeOfGlobal(GV, Size); } } } } DEBUG(dbgs() << "JIT: About to look through initializers\n"); // Look for more globals that are referenced only from initializers. SmallVector Worklist( SeenGlobals.begin(), SeenGlobals.end()); while (!Worklist.empty()) { const GlobalVariable* GV = Worklist.back(); Worklist.pop_back(); if (GV->hasInitializer()) Size = addSizeOfGlobalsInInitializer(GV->getInitializer(), Size, SeenGlobals, Worklist); } return Size; } void JITEmitter::startFunction(MachineFunction &F) { DEBUG(dbgs() << "JIT: Starting CodeGen of Function " << F.getFunction()->getName() << "\n"); uintptr_t ActualSize = 0; // Set the memory writable, if it's not already MemMgr->setMemoryWritable(); if (MemMgr->NeedsExactSize()) { DEBUG(dbgs() << "JIT: ExactSize\n"); const TargetInstrInfo* TII = F.getTarget().getInstrInfo(); MachineConstantPool *MCP = F.getConstantPool(); // Ensure the constant pool/jump table info is at least 4-byte aligned. ActualSize = RoundUpToAlign(ActualSize, 16); // Add the alignment of the constant pool ActualSize = RoundUpToAlign(ActualSize, MCP->getConstantPoolAlignment()); // Add the constant pool size ActualSize += GetConstantPoolSizeInBytes(MCP, TheJIT->getTargetData()); if (MachineJumpTableInfo *MJTI = F.getJumpTableInfo()) { // Add the aligment of the jump table info ActualSize = RoundUpToAlign(ActualSize, MJTI->getEntryAlignment(*TheJIT->getTargetData())); // Add the jump table size ActualSize += GetJumpTableSizeInBytes(MJTI, TheJIT); } // Add the alignment for the function ActualSize = RoundUpToAlign(ActualSize, std::max(F.getFunction()->getAlignment(), 8U)); // Add the function size ActualSize += TII->GetFunctionSizeInBytes(F); DEBUG(dbgs() << "JIT: ActualSize before globals " << ActualSize << "\n"); // Add the size of the globals that will be allocated after this function. // These are all the ones referenced from this function that were not // previously allocated. ActualSize += GetSizeOfGlobalsInBytes(F); DEBUG(dbgs() << "JIT: ActualSize after globals " << ActualSize << "\n"); } else if (SizeEstimate > 0) { // SizeEstimate will be non-zero on reallocation attempts. ActualSize = SizeEstimate; } BufferBegin = CurBufferPtr = MemMgr->startFunctionBody(F.getFunction(), ActualSize); BufferEnd = BufferBegin+ActualSize; EmittedFunctions[F.getFunction()].FunctionBody = BufferBegin; // Ensure the constant pool/jump table info is at least 4-byte aligned. emitAlignment(16); emitConstantPool(F.getConstantPool()); if (MachineJumpTableInfo *MJTI = F.getJumpTableInfo()) initJumpTableInfo(MJTI); // About to start emitting the machine code for the function. emitAlignment(std::max(F.getFunction()->getAlignment(), 8U)); TheJIT->updateGlobalMapping(F.getFunction(), CurBufferPtr); EmittedFunctions[F.getFunction()].Code = CurBufferPtr; MBBLocations.clear(); EmissionDetails.MF = &F; EmissionDetails.LineStarts.clear(); } bool JITEmitter::finishFunction(MachineFunction &F) { if (CurBufferPtr == BufferEnd) { // We must call endFunctionBody before retrying, because // deallocateMemForFunction requires it. MemMgr->endFunctionBody(F.getFunction(), BufferBegin, CurBufferPtr); retryWithMoreMemory(F); return true; } if (MachineJumpTableInfo *MJTI = F.getJumpTableInfo()) emitJumpTableInfo(MJTI); // FnStart is the start of the text, not the start of the constant pool and // other per-function data. uint8_t *FnStart = (uint8_t *)TheJIT->getPointerToGlobalIfAvailable(F.getFunction()); // FnEnd is the end of the function's machine code. uint8_t *FnEnd = CurBufferPtr; if (!Relocations.empty()) { CurFn = F.getFunction(); NumRelos += Relocations.size(); // Resolve the relocations to concrete pointers. for (unsigned i = 0, e = Relocations.size(); i != e; ++i) { MachineRelocation &MR = Relocations[i]; void *ResultPtr = 0; if (!MR.letTargetResolve()) { if (MR.isExternalSymbol()) { ResultPtr = TheJIT->getPointerToNamedFunction(MR.getExternalSymbol(), false); DEBUG(dbgs() << "JIT: Map \'" << MR.getExternalSymbol() << "\' to [" << ResultPtr << "]\n"); // If the target REALLY wants a stub for this function, emit it now. if (MR.mayNeedFarStub()) { ResultPtr = Resolver.getExternalFunctionStub(ResultPtr); } } else if (MR.isGlobalValue()) { ResultPtr = getPointerToGlobal(MR.getGlobalValue(), BufferBegin+MR.getMachineCodeOffset(), MR.mayNeedFarStub()); } else if (MR.isIndirectSymbol()) { ResultPtr = getPointerToGVIndirectSym( MR.getGlobalValue(), BufferBegin+MR.getMachineCodeOffset()); } else if (MR.isBasicBlock()) { ResultPtr = (void*)getMachineBasicBlockAddress(MR.getBasicBlock()); } else if (MR.isConstantPoolIndex()) { ResultPtr = (void*)getConstantPoolEntryAddress(MR.getConstantPoolIndex()); } else { assert(MR.isJumpTableIndex()); ResultPtr=(void*)getJumpTableEntryAddress(MR.getJumpTableIndex()); } MR.setResultPointer(ResultPtr); } // if we are managing the GOT and the relocation wants an index, // give it one if (MR.isGOTRelative() && MemMgr->isManagingGOT()) { unsigned idx = Resolver.getGOTIndexForAddr(ResultPtr); MR.setGOTIndex(idx); if (((void**)MemMgr->getGOTBase())[idx] != ResultPtr) { DEBUG(dbgs() << "JIT: GOT was out of date for " << ResultPtr << " pointing at " << ((void**)MemMgr->getGOTBase())[idx] << "\n"); ((void**)MemMgr->getGOTBase())[idx] = ResultPtr; } } } CurFn = 0; TheJIT->getJITInfo().relocate(BufferBegin, &Relocations[0], Relocations.size(), MemMgr->getGOTBase()); } // Update the GOT entry for F to point to the new code. if (MemMgr->isManagingGOT()) { unsigned idx = Resolver.getGOTIndexForAddr((void*)BufferBegin); if (((void**)MemMgr->getGOTBase())[idx] != (void*)BufferBegin) { DEBUG(dbgs() << "JIT: GOT was out of date for " << (void*)BufferBegin << " pointing at " << ((void**)MemMgr->getGOTBase())[idx] << "\n"); ((void**)MemMgr->getGOTBase())[idx] = (void*)BufferBegin; } } // CurBufferPtr may have moved beyond FnEnd, due to memory allocation for // global variables that were referenced in the relocations. MemMgr->endFunctionBody(F.getFunction(), BufferBegin, CurBufferPtr); if (CurBufferPtr == BufferEnd) { retryWithMoreMemory(F); return true; } else { // Now that we've succeeded in emitting the function, reset the // SizeEstimate back down to zero. SizeEstimate = 0; } BufferBegin = CurBufferPtr = 0; NumBytes += FnEnd-FnStart; // Invalidate the icache if necessary. sys::Memory::InvalidateInstructionCache(FnStart, FnEnd-FnStart); TheJIT->NotifyFunctionEmitted(*F.getFunction(), FnStart, FnEnd-FnStart, EmissionDetails); // Reset the previous debug location. PrevDL = DebugLoc(); DEBUG(dbgs() << "JIT: Finished CodeGen of [" << (void*)FnStart << "] Function: " << F.getFunction()->getName() << ": " << (FnEnd-FnStart) << " bytes of text, " << Relocations.size() << " relocations\n"); Relocations.clear(); ConstPoolAddresses.clear(); // Mark code region readable and executable if it's not so already. MemMgr->setMemoryExecutable(); DEBUG({ if (sys::hasDisassembler()) { dbgs() << "JIT: Disassembled code:\n"; dbgs() << sys::disassembleBuffer(FnStart, FnEnd-FnStart, (uintptr_t)FnStart); } else { dbgs() << "JIT: Binary code:\n"; uint8_t* q = FnStart; for (int i = 0; q < FnEnd; q += 4, ++i) { if (i == 4) i = 0; if (i == 0) dbgs() << "JIT: " << (long)(q - FnStart) << ": "; bool Done = false; for (int j = 3; j >= 0; --j) { if (q + j >= FnEnd) Done = true; else dbgs() << (unsigned short)q[j]; } if (Done) break; dbgs() << ' '; if (i == 3) dbgs() << '\n'; } dbgs()<< '\n'; } }); if (JITExceptionHandling || JITEmitDebugInfo) { uintptr_t ActualSize = 0; SavedBufferBegin = BufferBegin; SavedBufferEnd = BufferEnd; SavedCurBufferPtr = CurBufferPtr; if (MemMgr->NeedsExactSize()) ActualSize = DE->GetDwarfTableSizeInBytes(F, *this, FnStart, FnEnd); BufferBegin = CurBufferPtr = MemMgr->startExceptionTable(F.getFunction(), ActualSize); BufferEnd = BufferBegin+ActualSize; EmittedFunctions[F.getFunction()].ExceptionTable = BufferBegin; uint8_t *EhStart; uint8_t *FrameRegister = DE->EmitDwarfTable(F, *this, FnStart, FnEnd, EhStart); MemMgr->endExceptionTable(F.getFunction(), BufferBegin, CurBufferPtr, FrameRegister); uint8_t *EhEnd = CurBufferPtr; BufferBegin = SavedBufferBegin; BufferEnd = SavedBufferEnd; CurBufferPtr = SavedCurBufferPtr; if (JITExceptionHandling) { TheJIT->RegisterTable(FrameRegister); } if (JITEmitDebugInfo) { DebugInfo I; I.FnStart = FnStart; I.FnEnd = FnEnd; I.EhStart = EhStart; I.EhEnd = EhEnd; DR->RegisterFunction(F.getFunction(), I); } } if (MMI) MMI->EndFunction(); return false; } void JITEmitter::retryWithMoreMemory(MachineFunction &F) { DEBUG(dbgs() << "JIT: Ran out of space for native code. Reattempting.\n"); Relocations.clear(); // Clear the old relocations or we'll reapply them. ConstPoolAddresses.clear(); ++NumRetries; deallocateMemForFunction(F.getFunction()); // Try again with at least twice as much free space. SizeEstimate = (uintptr_t)(2 * (BufferEnd - BufferBegin)); } /// deallocateMemForFunction - Deallocate all memory for the specified /// function body. Also drop any references the function has to stubs. /// May be called while the Function is being destroyed inside ~Value(). void JITEmitter::deallocateMemForFunction(const Function *F) { ValueMap::iterator Emitted = EmittedFunctions.find(F); if (Emitted != EmittedFunctions.end()) { MemMgr->deallocateFunctionBody(Emitted->second.FunctionBody); MemMgr->deallocateExceptionTable(Emitted->second.ExceptionTable); TheJIT->NotifyFreeingMachineCode(Emitted->second.Code); EmittedFunctions.erase(Emitted); } // TODO: Do we need to unregister exception handling information from libgcc // here? if (JITEmitDebugInfo) { DR->UnregisterFunction(F); } } void* JITEmitter::allocateSpace(uintptr_t Size, unsigned Alignment) { if (BufferBegin) return JITCodeEmitter::allocateSpace(Size, Alignment); // create a new memory block if there is no active one. // care must be taken so that BufferBegin is invalidated when a // block is trimmed BufferBegin = CurBufferPtr = MemMgr->allocateSpace(Size, Alignment); BufferEnd = BufferBegin+Size; return CurBufferPtr; } void* JITEmitter::allocateGlobal(uintptr_t Size, unsigned Alignment) { // Delegate this call through the memory manager. return MemMgr->allocateGlobal(Size, Alignment); } void JITEmitter::emitConstantPool(MachineConstantPool *MCP) { if (TheJIT->getJITInfo().hasCustomConstantPool()) return; const std::vector &Constants = MCP->getConstants(); if (Constants.empty()) return; unsigned Size = GetConstantPoolSizeInBytes(MCP, TheJIT->getTargetData()); unsigned Align = MCP->getConstantPoolAlignment(); ConstantPoolBase = allocateSpace(Size, Align); ConstantPool = MCP; if (ConstantPoolBase == 0) return; // Buffer overflow. DEBUG(dbgs() << "JIT: Emitted constant pool at [" << ConstantPoolBase << "] (size: " << Size << ", alignment: " << Align << ")\n"); // Initialize the memory for all of the constant pool entries. unsigned Offset = 0; for (unsigned i = 0, e = Constants.size(); i != e; ++i) { MachineConstantPoolEntry CPE = Constants[i]; unsigned AlignMask = CPE.getAlignment() - 1; Offset = (Offset + AlignMask) & ~AlignMask; uintptr_t CAddr = (uintptr_t)ConstantPoolBase + Offset; ConstPoolAddresses.push_back(CAddr); if (CPE.isMachineConstantPoolEntry()) { // FIXME: add support to lower machine constant pool values into bytes! report_fatal_error("Initialize memory with machine specific constant pool" "entry has not been implemented!"); } TheJIT->InitializeMemory(CPE.Val.ConstVal, (void*)CAddr); DEBUG(dbgs() << "JIT: CP" << i << " at [0x"; dbgs().write_hex(CAddr) << "]\n"); const Type *Ty = CPE.Val.ConstVal->getType(); Offset += TheJIT->getTargetData()->getTypeAllocSize(Ty); } } void JITEmitter::initJumpTableInfo(MachineJumpTableInfo *MJTI) { if (TheJIT->getJITInfo().hasCustomJumpTables()) return; if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_Inline) return; const std::vector &JT = MJTI->getJumpTables(); if (JT.empty()) return; unsigned NumEntries = 0; for (unsigned i = 0, e = JT.size(); i != e; ++i) NumEntries += JT[i].MBBs.size(); unsigned EntrySize = MJTI->getEntrySize(*TheJIT->getTargetData()); // Just allocate space for all the jump tables now. We will fix up the actual // MBB entries in the tables after we emit the code for each block, since then // we will know the final locations of the MBBs in memory. JumpTable = MJTI; JumpTableBase = allocateSpace(NumEntries * EntrySize, MJTI->getEntryAlignment(*TheJIT->getTargetData())); } void JITEmitter::emitJumpTableInfo(MachineJumpTableInfo *MJTI) { if (TheJIT->getJITInfo().hasCustomJumpTables()) return; const std::vector &JT = MJTI->getJumpTables(); if (JT.empty() || JumpTableBase == 0) return; switch (MJTI->getEntryKind()) { case MachineJumpTableInfo::EK_Inline: return; case MachineJumpTableInfo::EK_BlockAddress: { // EK_BlockAddress - Each entry is a plain address of block, e.g.: // .word LBB123 assert(MJTI->getEntrySize(*TheJIT->getTargetData()) == sizeof(void*) && "Cross JIT'ing?"); // For each jump table, map each target in the jump table to the address of // an emitted MachineBasicBlock. intptr_t *SlotPtr = (intptr_t*)JumpTableBase; for (unsigned i = 0, e = JT.size(); i != e; ++i) { const std::vector &MBBs = JT[i].MBBs; // Store the address of the basic block for this jump table slot in the // memory we allocated for the jump table in 'initJumpTableInfo' for (unsigned mi = 0, me = MBBs.size(); mi != me; ++mi) *SlotPtr++ = getMachineBasicBlockAddress(MBBs[mi]); } break; } case MachineJumpTableInfo::EK_Custom32: case MachineJumpTableInfo::EK_GPRel32BlockAddress: case MachineJumpTableInfo::EK_LabelDifference32: { assert(MJTI->getEntrySize(*TheJIT->getTargetData()) == 4&&"Cross JIT'ing?"); // For each jump table, place the offset from the beginning of the table // to the target address. int *SlotPtr = (int*)JumpTableBase; for (unsigned i = 0, e = JT.size(); i != e; ++i) { const std::vector &MBBs = JT[i].MBBs; // Store the offset of the basic block for this jump table slot in the // memory we allocated for the jump table in 'initJumpTableInfo' uintptr_t Base = (uintptr_t)SlotPtr; for (unsigned mi = 0, me = MBBs.size(); mi != me; ++mi) { uintptr_t MBBAddr = getMachineBasicBlockAddress(MBBs[mi]); /// FIXME: USe EntryKind instead of magic "getPICJumpTableEntry" hook. *SlotPtr++ = TheJIT->getJITInfo().getPICJumpTableEntry(MBBAddr, Base); } } break; } } } void JITEmitter::startGVStub(const GlobalValue* GV, unsigned StubSize, unsigned Alignment) { SavedBufferBegin = BufferBegin; SavedBufferEnd = BufferEnd; SavedCurBufferPtr = CurBufferPtr; BufferBegin = CurBufferPtr = MemMgr->allocateStub(GV, StubSize, Alignment); BufferEnd = BufferBegin+StubSize+1; } void JITEmitter::startGVStub(void *Buffer, unsigned StubSize) { SavedBufferBegin = BufferBegin; SavedBufferEnd = BufferEnd; SavedCurBufferPtr = CurBufferPtr; BufferBegin = CurBufferPtr = (uint8_t *)Buffer; BufferEnd = BufferBegin+StubSize+1; } void JITEmitter::finishGVStub() { assert(CurBufferPtr != BufferEnd && "Stub overflowed allocated space."); NumBytes += getCurrentPCOffset(); BufferBegin = SavedBufferBegin; BufferEnd = SavedBufferEnd; CurBufferPtr = SavedCurBufferPtr; } void *JITEmitter::allocIndirectGV(const GlobalValue *GV, const uint8_t *Buffer, size_t Size, unsigned Alignment) { uint8_t *IndGV = MemMgr->allocateStub(GV, Size, Alignment); memcpy(IndGV, Buffer, Size); return IndGV; } // getConstantPoolEntryAddress - Return the address of the 'ConstantNum' entry // in the constant pool that was last emitted with the 'emitConstantPool' // method. // uintptr_t JITEmitter::getConstantPoolEntryAddress(unsigned ConstantNum) const { assert(ConstantNum < ConstantPool->getConstants().size() && "Invalid ConstantPoolIndex!"); return ConstPoolAddresses[ConstantNum]; } // getJumpTableEntryAddress - Return the address of the JumpTable with index // 'Index' in the jumpp table that was last initialized with 'initJumpTableInfo' // uintptr_t JITEmitter::getJumpTableEntryAddress(unsigned Index) const { const std::vector &JT = JumpTable->getJumpTables(); assert(Index < JT.size() && "Invalid jump table index!"); unsigned EntrySize = JumpTable->getEntrySize(*TheJIT->getTargetData()); unsigned Offset = 0; for (unsigned i = 0; i < Index; ++i) Offset += JT[i].MBBs.size(); Offset *= EntrySize; return (uintptr_t)((char *)JumpTableBase + Offset); } void JITEmitter::EmittedFunctionConfig::onDelete( JITEmitter *Emitter, const Function *F) { Emitter->deallocateMemForFunction(F); } void JITEmitter::EmittedFunctionConfig::onRAUW( JITEmitter *, const Function*, const Function*) { llvm_unreachable("The JIT doesn't know how to handle a" " RAUW on a value it has emitted."); } //===----------------------------------------------------------------------===// // Public interface to this file //===----------------------------------------------------------------------===// JITCodeEmitter *JIT::createEmitter(JIT &jit, JITMemoryManager *JMM, TargetMachine &tm) { return new JITEmitter(jit, JMM, tm); } // getPointerToFunctionOrStub - If the specified function has been // code-gen'd, return a pointer to the function. If not, compile it, or use // a stub to implement lazy compilation if available. // void *JIT::getPointerToFunctionOrStub(Function *F) { // If we have already code generated the function, just return the address. if (void *Addr = getPointerToGlobalIfAvailable(F)) return Addr; // Get a stub if the target supports it. assert(isa(JCE) && "Unexpected MCE?"); JITEmitter *JE = cast(getCodeEmitter()); return JE->getJITResolver().getLazyFunctionStub(F); } void JIT::updateFunctionStub(Function *F) { // Get the empty stub we generated earlier. assert(isa(JCE) && "Unexpected MCE?"); JITEmitter *JE = cast(getCodeEmitter()); void *Stub = JE->getJITResolver().getLazyFunctionStub(F); void *Addr = getPointerToGlobalIfAvailable(F); assert(Addr != Stub && "Function must have non-stub address to be updated."); // Tell the target jit info to rewrite the stub at the specified address, // rather than creating a new one. TargetJITInfo::StubLayout layout = getJITInfo().getStubLayout(); JE->startGVStub(Stub, layout.Size); getJITInfo().emitFunctionStub(F, Addr, *getCodeEmitter()); JE->finishGVStub(); } /// freeMachineCodeForFunction - release machine code memory for given Function. /// void JIT::freeMachineCodeForFunction(Function *F) { // Delete translation for this from the ExecutionEngine, so it will get // retranslated next time it is used. updateGlobalMapping(F, 0); // Free the actual memory for the function body and related stuff. assert(isa(JCE) && "Unexpected MCE?"); cast(JCE)->deallocateMemForFunction(F); }