/* **************************************************************************** * File: * SchedGraph.cpp * * Purpose: * Scheduling graph based on SSA graph plus extra dependence edges * capturing dependences due to machine resources (machine registers, * CC registers, and any others). * * History: * 7/20/01 - Vikram Adve - Created ***************************************************************************/ //************************** System Include Files **************************/ #include //*************************** User Include Files ***************************/ #include "llvm/InstrTypes.h" #include "llvm/Instruction.h" #include "llvm/BasicBlock.h" #include "llvm/Method.h" #include "llvm/CodeGen/SchedGraph.h" #include "llvm/CodeGen/MachineInstr.h" #include "llvm/CodeGen/TargetMachine.h" //************************* Class Implementations **************************/ // // class SchedGraphEdge // /*ctor*/ SchedGraphEdge::SchedGraphEdge(SchedGraphNode* _src, SchedGraphNode* _sink, SchedGraphEdgeDepType _depType, DataDepOrderType _depOrderType, int _minDelay) : src(_src), sink(_sink), depType(_depType), depOrderType(_depOrderType), val(NULL), minDelay((_minDelay >= 0)? _minDelay : _src->getLatency()) { src->addOutEdge(this); sink->addInEdge(this); } /*ctor*/ SchedGraphEdge::SchedGraphEdge(SchedGraphNode* _src, SchedGraphNode* _sink, Value* _val, DataDepOrderType _depOrderType, int _minDelay) : src(_src), sink(_sink), depType(DefUseDep), depOrderType(_depOrderType), val(_val), minDelay((_minDelay >= 0)? _minDelay : _src->getLatency()) { src->addOutEdge(this); sink->addInEdge(this); } /*ctor*/ SchedGraphEdge::SchedGraphEdge(SchedGraphNode* _src, SchedGraphNode* _sink, unsigned int _regNum, DataDepOrderType _depOrderType, int _minDelay) : src(_src), sink(_sink), depType(MachineRegister), depOrderType(_depOrderType), minDelay((_minDelay >= 0)? _minDelay : _src->getLatency()), machineRegNum(_regNum) { src->addOutEdge(this); sink->addInEdge(this); } /*ctor*/ SchedGraphEdge::SchedGraphEdge(SchedGraphNode* _src, SchedGraphNode* _sink, ResourceId _resourceId, int _minDelay) : src(_src), sink(_sink), depType(MachineResource), depOrderType(NonDataDep), minDelay((_minDelay >= 0)? _minDelay : _src->getLatency()), resourceId(_resourceId) { src->addOutEdge(this); sink->addInEdge(this); } // // class SchedGraphNode // /*ctor*/ SchedGraphNode::SchedGraphNode(unsigned int _nodeId, const Instruction* _instr, const MachineInstr* _minstr, const TargetMachine& target) : nodeId(_nodeId), instr(_instr), minstr(_minstr), latency(0) { if (minstr) { MachineOpCode mopCode = minstr->getOpCode(); latency = target.getInstrInfo().hasResultInterlock(mopCode) ? target.getInstrInfo().minLatency(mopCode) : target.getInstrInfo().maxLatency(mopCode); } } /*dtor*/ SchedGraphNode::~SchedGraphNode() { // a node deletes its outgoing edges only for (unsigned i=0, N=outEdges.size(); i < N; i++) delete outEdges[i]; } inline void SchedGraphNode::addInEdge(SchedGraphEdge* edge) { inEdges.push_back(edge); } inline void SchedGraphNode::addOutEdge(SchedGraphEdge* edge) { outEdges.push_back(edge); } inline void SchedGraphNode::removeInEdge(const SchedGraphEdge* edge) { assert(edge->getSink() == this); for (iterator I = beginInEdges(); I != endInEdges(); ++I) if ((*I) == edge) { inEdges.erase(I); break; } } inline void SchedGraphNode::removeOutEdge(const SchedGraphEdge* edge) { assert(edge->getSrc() == this); for (iterator I = beginOutEdges(); I != endOutEdges(); ++I) if ((*I) == edge) { outEdges.erase(I); break; } } void SchedGraphNode::eraseAllEdges() { // Disconnect and delete all in-edges and out-edges for the node. // Note that we delete the in-edges too since they have been // disconnected from the source node and will not be deleted there. for (iterator I = beginInEdges(); I != endInEdges(); ++I) { (*I)->getSrc()->removeOutEdge(*I); delete *I; } for (iterator I = beginOutEdges(); I != endOutEdges(); ++I) { (*I)->getSink()->removeInEdge(*I); delete *I; } inEdges.clear(); outEdges.clear(); } // // class SchedGraph // /*ctor*/ SchedGraph::SchedGraph(const BasicBlock* bb, const TargetMachine& target) { bbVec.push_back(bb); this->buildGraph(target); } /*dtor*/ SchedGraph::~SchedGraph() { // delete all the nodes. each node deletes its out-edges. for (iterator I=begin(); I != end(); ++I) delete (*I).second; } void SchedGraph::dump() const { cout << " Sched Graph for Basic Blocks: "; for (unsigned i=0, N=bbVec.size(); i < N; i++) { cout << (bbVec[i]->hasName()? bbVec[i]->getName() : "block") << " (" << bbVec[i] << ")" << ((i == N-1)? "" : ", "); } cout << endl << endl << " Actual Root nodes : "; for (unsigned i=0, N=graphRoot->outEdges.size(); i < N; i++) cout << graphRoot->outEdges[i]->getSink()->getNodeId() << ((i == N-1)? "" : ", "); cout << endl << " Graph Nodes:" << endl; for (const_iterator I=begin(); I != end(); ++I) cout << endl << * (*I).second; cout << endl; } void SchedGraph::addDummyEdges() { assert(graphRoot->outEdges.size() == 0); for (const_iterator I=begin(); I != end(); ++I) { SchedGraphNode* node = (*I).second; assert(node != graphRoot && node != graphLeaf); if (node->beginInEdges() == node->endInEdges()) (void) new SchedGraphEdge(graphRoot, node, SchedGraphEdge::CtrlDep, SchedGraphEdge::NonDataDep, 0); if (node->beginOutEdges() == node->endOutEdges()) (void) new SchedGraphEdge(node, graphLeaf, SchedGraphEdge::CtrlDep, SchedGraphEdge::NonDataDep, 0); } } void SchedGraph::addCDEdges(const TerminatorInst* term, const TargetMachine& target) { const MachineInstrInfo& mii = target.getInstrInfo(); MachineCodeForVMInstr& termMvec = term->getMachineInstrVec(); // Find the first branch instr in the sequence of machine instrs for term // unsigned first = 0; while (! mii.isBranch(termMvec[first]->getOpCode())) ++first; assert(first < termMvec.size() && "No branch instructions for BR? Ok, but weird! Delete assertion."); if (first == termMvec.size()) return; SchedGraphNode* firstBrNode = this->getGraphNodeForInstr(termMvec[first]); // Add CD edges from each instruction in the sequence to the // *last preceding* branch instr. in the sequence // for (int i = (int) termMvec.size()-1; i > (int) first; i--) { SchedGraphNode* toNode = this->getGraphNodeForInstr(termMvec[i]); assert(toNode && "No node for instr generated for branch?"); for (int j = i-1; j >= 0; j--) if (mii.isBranch(termMvec[j]->getOpCode())) { SchedGraphNode* brNode = this->getGraphNodeForInstr(termMvec[j]); assert(brNode && "No node for instr generated for branch?"); (void) new SchedGraphEdge(brNode, toNode, SchedGraphEdge::CtrlDep, SchedGraphEdge::NonDataDep, 0); break; // only one incoming edge is enough } } // Add CD edges from each instruction preceding the first branch // to the first branch // for (int i = first-1; i >= 0; i--) { SchedGraphNode* fromNode = this->getGraphNodeForInstr(termMvec[i]); assert(fromNode && "No node for instr generated for branch?"); (void) new SchedGraphEdge(fromNode, firstBrNode, SchedGraphEdge::CtrlDep, SchedGraphEdge::NonDataDep, 0); } // Now add CD edges to the first branch instruction in the sequence // from all preceding instructions in the basic block. // const BasicBlock* bb = term->getParent(); for (BasicBlock::const_iterator II = bb->begin(); II != bb->end(); ++II) { if ((*II) == (const Instruction*) term) // special case, handled above continue; assert(! (*II)->isTerminator() && "Two terminators in basic block?"); const MachineCodeForVMInstr& mvec = (*II)->getMachineInstrVec(); for (unsigned i=0, N=mvec.size(); i < N; i++) { SchedGraphNode* fromNode = this->getGraphNodeForInstr(mvec[i]); if (fromNode == NULL) continue; // dummy instruction, e.g., PHI (void) new SchedGraphEdge(fromNode, firstBrNode, SchedGraphEdge::CtrlDep, SchedGraphEdge::NonDataDep, 0); // If we find any other machine instructions (other than due to // the terminator) that also have delay slots, add an outgoing edge // from the instruction to the instructions in the delay slots. // unsigned d = mii.getNumDelaySlots(mvec[i]->getOpCode()); assert(i+d < N && "Insufficient delay slots for instruction?"); for (unsigned j=1; j <= d; j++) { SchedGraphNode* toNode = this->getGraphNodeForInstr(mvec[i+j]); assert(toNode && "No node for machine instr in delay slot?"); (void) new SchedGraphEdge(fromNode, toNode, SchedGraphEdge::CtrlDep, SchedGraphEdge::NonDataDep, 0); } } } } void SchedGraph::addMemEdges(const vector& memVec, const TargetMachine& target) { const MachineInstrInfo& mii = target.getInstrInfo(); for (unsigned im=0, NM=memVec.size(); im < NM; im++) { const Instruction* fromInstr = memVec[im]; bool fromIsLoad = fromInstr->getOpcode() == Instruction::Load; for (unsigned jm=im+1; jm < NM; jm++) { const Instruction* toInstr = memVec[jm]; bool toIsLoad = toInstr->getOpcode() == Instruction::Load; SchedGraphEdge::DataDepOrderType depOrderType; if (fromIsLoad) { if (toIsLoad) continue; // both instructions are loads depOrderType = SchedGraphEdge::AntiDep; } else { depOrderType = (toIsLoad)? SchedGraphEdge::TrueDep : SchedGraphEdge::OutputDep; } MachineCodeForVMInstr& fromInstrMvec=fromInstr->getMachineInstrVec(); MachineCodeForVMInstr& toInstrMvec = toInstr->getMachineInstrVec(); // We have two VM memory instructions, and at least one is a store. // Add edges between all machine load/store instructions. // for (unsigned i=0, N=fromInstrMvec.size(); i < N; i++) { MachineOpCode fromOpCode = fromInstrMvec[i]->getOpCode(); if (mii.isLoad(fromOpCode) || mii.isStore(fromOpCode)) { SchedGraphNode* fromNode = this->getGraphNodeForInstr(fromInstrMvec[i]); assert(fromNode && "No node for memory instr?"); for (unsigned j=0, M=toInstrMvec.size(); j < M; j++) { MachineOpCode toOpCode = toInstrMvec[j]->getOpCode(); if (mii.isLoad(toOpCode) || mii.isStore(toOpCode)) { SchedGraphNode* toNode = this->getGraphNodeForInstr(toInstrMvec[j]); assert(toNode && "No node for memory instr?"); (void) new SchedGraphEdge(fromNode, toNode, SchedGraphEdge::MemoryDep, depOrderType, 1); } } } } } } } typedef vector< pair > RegRefVec; // The following needs to be a class, not a typedef, so we can use // an opaque declaration in SchedGraph.h class NodeToRegRefMap: public hash_map { typedef hash_map:: iterator iterator; typedef hash_map::const_iterator const_iterator; }; void SchedGraph::addMachineRegEdges(NodeToRegRefMap& regToRefVecMap, const TargetMachine& target) { assert(bbVec.size() == 1 && "Only handling a single basic block here"); // This assumes that such hardwired registers are never allocated // to any LLVM value (since register allocation happens later), i.e., // any uses or defs of this register have been made explicit! // Also assumes that two registers with different numbers are // not aliased! // for (NodeToRegRefMap::iterator I = regToRefVecMap.begin(); I != regToRefVecMap.end(); ++I) { int regNum = (*I).first; RegRefVec& regRefVec = (*I).second; // regRefVec is ordered by control flow order in the basic block int lastDefIdx = -1; for (unsigned i=0; i < regRefVec.size(); ++i) { SchedGraphNode* node = regRefVec[i].first; bool isDef = regRefVec[i].second; if (isDef) { // Each def gets an output edge from the last def if (lastDefIdx > 0) new SchedGraphEdge(regRefVec[lastDefIdx].first, node, regNum, SchedGraphEdge::OutputDep); // Also, an anti edge from all uses *since* the last def, // But don't add edge from an instruction to itself! for (int u = 1 + lastDefIdx; u < (int) i; u++) if (regRefVec[u].first != node) new SchedGraphEdge(regRefVec[u].first, node, regNum, SchedGraphEdge::AntiDep); } else { // Each use gets a true edge from the last def if (lastDefIdx > 0) new SchedGraphEdge(regRefVec[lastDefIdx].first, node, regNum); } } } } void SchedGraph::addSSAEdge(SchedGraphNode* node, Value* val, const TargetMachine& target) { if (val->getValueType() != Value::InstructionVal) return; const Instruction* thisVMInstr = node->getInstr(); const Instruction* defVMInstr = (const Instruction*) val; // Phi instructions are the only ones that produce a value but don't get // any non-dummy machine instructions. Return here as an optimization. // if (defVMInstr->isPHINode()) return; // Now add the graph edge for the appropriate machine instruction(s). // Note that multiple machine instructions generated for the // def VM instruction may modify the register for the def value. // MachineCodeForVMInstr& defMvec = defVMInstr->getMachineInstrVec(); const MachineInstrInfo& mii = target.getInstrInfo(); for (unsigned i=0, N=defMvec.size(); i < N; i++) for (int o=0, N = mii.getNumOperands(defMvec[i]->getOpCode()); o < N; o++) { const MachineOperand& defOp = defMvec[i]->getOperand(o); if (defOp.opIsDef() && (defOp.getOperandType() == MachineOperand::MO_VirtualRegister || defOp.getOperandType() == MachineOperand::MO_CCRegister) && (defOp.getVRegValue() == val)) { // this instruction does define value `val'. // if there is a node for it in the same graph, add an edge. SchedGraphNode* defNode = this->getGraphNodeForInstr(defMvec[i]); if (defNode != NULL) (void) new SchedGraphEdge(defNode, node, val); } } } void SchedGraph::addEdgesForInstruction(SchedGraphNode* node, NodeToRegRefMap& regToRefVecMap, const TargetMachine& target) { const Instruction& instr = * node->getInstr(); // No dummy nodes here! const MachineInstr& minstr = * node->getMachineInstr(); // Add incoming edges for the following: // (1) operands of the machine instruction, including hidden operands // (2) machine register dependences // (3) other resource dependences for the machine instruction, if any // Also, note any uses or defs of machine registers. // for (unsigned i=0, numOps=minstr.getNumOperands(); i < numOps; i++) { const MachineOperand& mop = minstr.getOperand(i); // if this writes to a machine register other than the hardwired // "zero" register used on many processors, record the reference. if (mop.getOperandType() == MachineOperand::MO_MachineRegister && (! (target.zeroRegNum >= 0 && mop.getMachineRegNum()==(unsigned) target.zeroRegNum))) { regToRefVecMap[mop.getMachineRegNum()]. push_back(make_pair(node, i)); } // ignore all other def operands if (minstr.operandIsDefined(i)) continue; switch(mop.getOperandType()) { case MachineOperand::MO_VirtualRegister: case MachineOperand::MO_CCRegister: if (mop.getVRegValue()) addSSAEdge(node, mop.getVRegValue(), target); break; case MachineOperand::MO_MachineRegister: break; case MachineOperand::MO_SignExtendedImmed: case MachineOperand::MO_UnextendedImmed: case MachineOperand::MO_PCRelativeDisp: break; // nothing to do for immediate fields default: assert(0 && "Unknown machine operand type in SchedGraph builder"); break; } } // add all true, anti, // and output dependences for this register. but ignore } void SchedGraph::buildGraph(const TargetMachine& target) { const MachineInstrInfo& mii = target.getInstrInfo(); const BasicBlock* bb = bbVec[0]; assert(bbVec.size() == 1 && "Only handling a single basic block here"); // Use this data structures to note all LLVM memory instructions. // We use this to add memory dependence edges without a second full walk. // vector memVec; // Use this data structures to note any uses or definitions of // machine registers so we can add edges for those later without // extra passes over the nodes. // The vector holds an ordered list of references to the machine reg, // ordered according to control-flow order. This only works for a // single basic block, hence the assertion. Each reference is identified // by the pair: . // NodeToRegRefMap regToRefVecMap; // Make a dummy root node. We'll add edges to the real roots later. graphRoot = new SchedGraphNode(0, NULL, NULL, target); graphLeaf = new SchedGraphNode(1, NULL, NULL, target); //---------------------------------------------------------------- // First add nodes for all the machine instructions in the basic block. // This greatly simplifies identifing which edges to add. // Also, remember the load/store instructions to add memory deps later. //---------------------------------------------------------------- for (BasicBlock::const_iterator II = bb->begin(); II != bb->end(); ++II) { const Instruction *instr = *II; const MachineCodeForVMInstr& mvec = instr->getMachineInstrVec(); for (unsigned i=0, N=mvec.size(); i < N; i++) if (! mii.isDummyPhiInstr(mvec[i]->getOpCode())) { SchedGraphNode* node = new SchedGraphNode(getNumNodes(), instr, mvec[i], target); this->noteGraphNodeForInstr(mvec[i], node); } if (instr->getOpcode() == Instruction::Load || instr->getOpcode() == Instruction::Store) memVec.push_back(instr); } //---------------------------------------------------------------- // Now add the edges. //---------------------------------------------------------------- // First, add edges to the terminator instruction of the basic block. this->addCDEdges(bb->getTerminator(), target); // Then add memory dep edges: store->load, load->store, and store->store this->addMemEdges(memVec, target); // Then add other edges for all instructions in the block. for (SchedGraph::iterator GI = this->begin(); GI != this->end(); ++GI) { SchedGraphNode* node = (*GI).second; addEdgesForInstruction(node, regToRefVecMap, target); } // Then add edges for dependences on machine registers this->addMachineRegEdges(regToRefVecMap, target); // Finally, add edges from the dummy root and to dummy leaf this->addDummyEdges(); } // // class SchedGraphSet // /*ctor*/ SchedGraphSet::SchedGraphSet(const Method* _method, const TargetMachine& target) : method(_method) { buildGraphsForMethod(method, target); } /*dtor*/ SchedGraphSet::~SchedGraphSet() { // delete all the graphs for (iterator I=begin(); I != end(); ++I) delete (*I).second; } void SchedGraphSet::dump() const { cout << "======== Sched graphs for method `" << (method->hasName()? method->getName() : "???") << "' ========" << endl << endl; for (const_iterator I=begin(); I != end(); ++I) (*I).second->dump(); cout << endl << "====== End graphs for method `" << (method->hasName()? method->getName() : "") << "' ========" << endl << endl; } void SchedGraphSet::buildGraphsForMethod(const Method *method, const TargetMachine& target) { for (Method::const_iterator BI = method->begin(); BI != method->end(); ++BI) { SchedGraph* graph = new SchedGraph(*BI, target); this->noteGraphForBlock(*BI, graph); } } ostream& operator<<(ostream& os, const SchedGraphEdge& edge) { os << "edge [" << edge.src->getNodeId() << "] -> [" << edge.sink->getNodeId() << "] : "; switch(edge.depType) { case SchedGraphEdge::CtrlDep: os<< "Control Dep"; break; case SchedGraphEdge::DefUseDep: os<< "Reg Value " << edge.val; break; case SchedGraphEdge::MemoryDep: os<< "Mem Value " << edge.val; break; case SchedGraphEdge::MachineRegister: os<< "Reg " <