//===-- RegAllocLinearScan.cpp - Linear Scan register allocator -----------===// // // The LLVM Compiler Infrastructure // // This file was developed by the LLVM research group and is distributed under // the University of Illinois Open Source License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements a linear scan register allocator. // //===----------------------------------------------------------------------===// #define DEBUG_TYPE "regalloc" #include "llvm/Function.h" #include "llvm/CodeGen/LiveIntervals.h" #include "llvm/CodeGen/LiveVariables.h" #include "llvm/CodeGen/MachineFrameInfo.h" #include "llvm/CodeGen/MachineFunctionPass.h" #include "llvm/CodeGen/MachineInstr.h" #include "llvm/CodeGen/Passes.h" #include "llvm/CodeGen/SSARegMap.h" #include "llvm/Target/MRegisterInfo.h" #include "llvm/Target/TargetInstrInfo.h" #include "llvm/Target/TargetMachine.h" #include "llvm/Support/CFG.h" #include "Support/Debug.h" #include "Support/DepthFirstIterator.h" #include "Support/Statistic.h" #include "Support/STLExtras.h" using namespace llvm; namespace { Statistic<> numSpilled ("ra-linearscan", "Number of registers spilled"); Statistic<> numReloaded("ra-linearscan", "Number of registers reloaded"); class RA : public MachineFunctionPass { private: MachineFunction* mf_; const TargetMachine* tm_; const MRegisterInfo* mri_; MachineFunction::iterator currentMbb_; MachineBasicBlock::iterator currentInstr_; typedef std::vector IntervalPtrs; IntervalPtrs unhandled_, fixed_, active_, inactive_; typedef std::vector Regs; Regs tempUseOperands_; Regs tempDefOperands_; typedef std::vector RegMask; RegMask reserved_; unsigned regUse_[MRegisterInfo::FirstVirtualRegister]; unsigned regUseBackup_[MRegisterInfo::FirstVirtualRegister]; typedef std::map Virt2PhysMap; Virt2PhysMap v2pMap_; typedef std::map Virt2StackSlotMap; Virt2StackSlotMap v2ssMap_; int instrAdded_; public: virtual const char* getPassName() const { return "Linear Scan Register Allocator"; } virtual void getAnalysisUsage(AnalysisUsage &AU) const { AU.addRequired(); AU.addRequired(); MachineFunctionPass::getAnalysisUsage(AU); } private: /// runOnMachineFunction - register allocate the whole function bool runOnMachineFunction(MachineFunction&); /// initIntervalSets - initializa the four interval sets: /// unhandled, fixed, active and inactive void initIntervalSets(const LiveIntervals::Intervals& li); /// processActiveIntervals - expire old intervals and move /// non-overlapping ones to the incative list void processActiveIntervals(IntervalPtrs::value_type cur); /// processInactiveIntervals - expire old intervals and move /// overlapping ones to the active list void processInactiveIntervals(IntervalPtrs::value_type cur); /// assignStackSlotAtInterval - choose and spill /// interval. Currently we spill the interval with the last /// end point in the active and inactive lists and the current /// interval void assignStackSlotAtInterval(IntervalPtrs::value_type cur); /// /// register handling helpers /// /// getFreePhysReg - return a free physical register for this /// virtual register interval if we have one, otherwise return /// 0 unsigned getFreePhysReg(IntervalPtrs::value_type cur); /// physRegAvailable - returns true if the specifed physical /// register is available bool physRegAvailable(unsigned physReg); /// tempPhysRegAvailable - returns true if the specifed /// temporary physical register is available bool tempPhysRegAvailable(unsigned physReg); /// getFreeTempPhysReg - return a free temprorary physical /// register for this virtual register if we have one (should /// never return 0) unsigned getFreeTempPhysReg(unsigned virtReg); /// assignVirt2PhysReg - assigns the free physical register to /// the virtual register passed as arguments void assignVirt2PhysReg(unsigned virtReg, unsigned physReg); /// clearVirtReg - free the physical register associated with this /// virtual register and disassociate virtual->physical and /// physical->virtual mappings void clearVirtReg(unsigned virtReg); /// assignVirt2StackSlot - assigns this virtual register to a /// stack slot void assignVirt2StackSlot(unsigned virtReg); /// getStackSlot - returns the offset of the specified /// register on the stack int getStackSlot(unsigned virtReg); /// spillVirtReg - spills the virtual register void spillVirtReg(unsigned virtReg); /// loadPhysReg - loads to the physical register the value of /// the virtual register specifed. Virtual register must have /// an assigned stack slot void loadVirt2PhysReg(unsigned virtReg, unsigned physReg); void markPhysRegFree(unsigned physReg); void markPhysRegNotFree(unsigned physReg); void backupRegUse() { memcpy(regUseBackup_, regUse_, sizeof(regUseBackup_)); } void restoreRegUse() { memcpy(regUse_, regUseBackup_, sizeof(regUseBackup_)); } void printVirt2PhysMap() const { std::cerr << "allocated registers:\n"; for (Virt2PhysMap::const_iterator i = v2pMap_.begin(), e = v2pMap_.end(); i != e; ++i) { std::cerr << '[' << i->first << ',' << mri_->getName(i->second) << "]\n"; } std::cerr << '\n'; } void printIntervals(const char* const str, RA::IntervalPtrs::const_iterator i, RA::IntervalPtrs::const_iterator e) const { if (str) std::cerr << str << " intervals:\n"; for (; i != e; ++i) { std::cerr << "\t\t" << **i << " -> "; if ((*i)->reg < MRegisterInfo::FirstVirtualRegister) { std::cerr << mri_->getName((*i)->reg); } else { std::cerr << mri_->getName(v2pMap_.find((*i)->reg)->second); } std::cerr << '\n'; } } void printFreeRegs(const char* const str, const TargetRegisterClass* rc) const { if (str) std::cerr << str << ':'; for (TargetRegisterClass::iterator i = rc->allocation_order_begin(*mf_); i != rc->allocation_order_end(*mf_); ++i) { unsigned reg = *i; if (!regUse_[reg]) { std::cerr << ' ' << mri_->getName(reg); if (reserved_[reg]) std::cerr << "*"; } } std::cerr << '\n'; } }; } bool RA::runOnMachineFunction(MachineFunction &fn) { mf_ = &fn; tm_ = &fn.getTarget(); mri_ = tm_->getRegisterInfo(); initIntervalSets(getAnalysis().getIntervals()); v2pMap_.clear(); v2ssMap_.clear(); memset(regUse_, 0, sizeof(regUse_)); memset(regUseBackup_, 0, sizeof(regUseBackup_)); // FIXME: this will work only for the X86 backend. I need to // device an algorthm to select the minimal (considering register // aliasing) number of temp registers to reserve so that we have 2 // registers for each register class available. // reserve R8: CH, CL // R16: CX, DI, // R32: ECX, EDI, // RFP: FP5, FP6 reserved_.assign(MRegisterInfo::FirstVirtualRegister, false); reserved_[ 8] = true; /* CH */ reserved_[ 9] = true; /* CL */ reserved_[10] = true; /* CX */ reserved_[12] = true; /* DI */ reserved_[18] = true; /* ECX */ reserved_[19] = true; /* EDI */ reserved_[28] = true; /* FP5 */ reserved_[29] = true; /* FP6 */ // linear scan algorithm DEBUG(printIntervals("\tunhandled", unhandled_.begin(), unhandled_.end())); DEBUG(printIntervals("\tfixed", fixed_.begin(), fixed_.end())); DEBUG(printIntervals("\tactive", active_.begin(), active_.end())); DEBUG(printIntervals("\tinactive", inactive_.begin(), inactive_.end())); while (!unhandled_.empty() || !fixed_.empty()) { // pick the interval with the earliest start point IntervalPtrs::value_type cur; if (fixed_.empty()) { cur = unhandled_.front(); unhandled_.erase(unhandled_.begin()); } else if (unhandled_.empty()) { cur = fixed_.front(); fixed_.erase(fixed_.begin()); } else if (unhandled_.front()->start() < fixed_.front()->start()) { cur = unhandled_.front(); unhandled_.erase(unhandled_.begin()); } else { cur = fixed_.front(); fixed_.erase(fixed_.begin()); } DEBUG(std::cerr << *cur << '\n'); processActiveIntervals(cur); processInactiveIntervals(cur); // if this register is fixed we are done if (cur->reg < MRegisterInfo::FirstVirtualRegister) { markPhysRegNotFree(cur->reg); active_.push_back(cur); } // otherwise we are allocating a virtual register. try to find // a free physical register or spill an interval in order to // assign it one (we could spill the current though). else { backupRegUse(); // for every interval in inactive we overlap with, mark the // register as not free for (IntervalPtrs::const_iterator i = inactive_.begin(), e = inactive_.end(); i != e; ++i) { unsigned reg = (*i)->reg; if (reg >= MRegisterInfo::FirstVirtualRegister) reg = v2pMap_[reg]; if (cur->overlaps(**i)) { markPhysRegNotFree(reg); } } // for every interval in fixed we overlap with, // mark the register as not free for (IntervalPtrs::const_iterator i = fixed_.begin(), e = fixed_.end(); i != e; ++i) { assert((*i)->reg < MRegisterInfo::FirstVirtualRegister && "virtual register interval in fixed set?"); if (cur->overlaps(**i)) markPhysRegNotFree((*i)->reg); } DEBUG(std::cerr << "\tallocating current interval:\n"); unsigned physReg = getFreePhysReg(cur); if (!physReg) { assignStackSlotAtInterval(cur); } else { restoreRegUse(); assignVirt2PhysReg(cur->reg, physReg); active_.push_back(cur); } } DEBUG(printIntervals("\tactive", active_.begin(), active_.end())); DEBUG(printIntervals("\tinactive", inactive_.begin(), inactive_.end())); } // expire any remaining active intervals for (IntervalPtrs::iterator i = active_.begin(); i != active_.end(); ++i) { unsigned reg = (*i)->reg; DEBUG(std::cerr << "\t\tinterval " << **i << " expired\n"); if (reg >= MRegisterInfo::FirstVirtualRegister) { reg = v2pMap_[reg]; } markPhysRegFree(reg); } active_.clear(); inactive_.clear(); DEBUG(std::cerr << "finished register allocation\n"); DEBUG(printVirt2PhysMap()); DEBUG(std::cerr << "Rewrite machine code:\n"); for (currentMbb_ = mf_->begin(); currentMbb_ != mf_->end(); ++currentMbb_) { instrAdded_ = 0; for (currentInstr_ = currentMbb_->begin(); currentInstr_ != currentMbb_->end(); ++currentInstr_) { DEBUG(std::cerr << "\tinstruction: "; (*currentInstr_)->print(std::cerr, *tm_);); // use our current mapping and actually replace and // virtual register with its allocated physical registers DEBUG(std::cerr << "\t\treplacing virtual registers with mapped " "physical registers:\n"); for (unsigned i = 0, e = (*currentInstr_)->getNumOperands(); i != e; ++i) { MachineOperand& op = (*currentInstr_)->getOperand(i); if (op.isVirtualRegister()) { unsigned virtReg = op.getAllocatedRegNum(); unsigned physReg = v2pMap_[virtReg]; if (physReg) { DEBUG(std::cerr << "\t\t\t%reg" << virtReg << " -> " << mri_->getName(physReg) << '\n'); (*currentInstr_)->SetMachineOperandReg(i, physReg); } } } DEBUG(std::cerr << "\t\tloading temporarily used operands to " "registers:\n"); for (unsigned i = 0, e = (*currentInstr_)->getNumOperands(); i != e; ++i) { MachineOperand& op = (*currentInstr_)->getOperand(i); if (op.isVirtualRegister() && op.isUse() && !op.isDef()) { unsigned virtReg = op.getAllocatedRegNum(); unsigned physReg = v2pMap_[virtReg]; if (!physReg) { physReg = getFreeTempPhysReg(virtReg); loadVirt2PhysReg(virtReg, physReg); tempUseOperands_.push_back(virtReg); } (*currentInstr_)->SetMachineOperandReg(i, physReg); } } DEBUG(std::cerr << "\t\tclearing temporarily used operands:\n"); for (unsigned i = 0, e = tempUseOperands_.size(); i != e; ++i) { clearVirtReg(tempUseOperands_[i]); } tempUseOperands_.clear(); DEBUG(std::cerr << "\t\tassigning temporarily defined operands to " "registers:\n"); for (unsigned i = 0, e = (*currentInstr_)->getNumOperands(); i != e; ++i) { MachineOperand& op = (*currentInstr_)->getOperand(i); if (op.isVirtualRegister() && op.isDef()) { unsigned virtReg = op.getAllocatedRegNum(); unsigned physReg = v2pMap_[virtReg]; if (!physReg) { physReg = getFreeTempPhysReg(virtReg); } if (op.isUse()) { // def and use loadVirt2PhysReg(virtReg, physReg); } else { assignVirt2PhysReg(virtReg, physReg); } tempDefOperands_.push_back(virtReg); (*currentInstr_)->SetMachineOperandReg(i, physReg); } } DEBUG(std::cerr << "\t\tspilling temporarily defined operands " "of this instruction:\n"); ++currentInstr_; // we want to insert after this instruction for (unsigned i = 0, e = tempDefOperands_.size(); i != e; ++i) { spillVirtReg(tempDefOperands_[i]); } --currentInstr_; // restore currentInstr_ iterator tempDefOperands_.clear(); } } return true; } void RA::initIntervalSets(const LiveIntervals::Intervals& li) { assert(unhandled_.empty() && fixed_.empty() && active_.empty() && inactive_.empty() && "interval sets should be empty on initialization"); for (LiveIntervals::Intervals::const_iterator i = li.begin(), e = li.end(); i != e; ++i) { if (i->reg < MRegisterInfo::FirstVirtualRegister) fixed_.push_back(&*i); else unhandled_.push_back(&*i); } } void RA::processActiveIntervals(IntervalPtrs::value_type cur) { DEBUG(std::cerr << "\tprocessing active intervals:\n"); for (IntervalPtrs::iterator i = active_.begin(); i != active_.end();) { unsigned reg = (*i)->reg; // remove expired intervals. we expire earlier because this if // an interval expires this is going to be the last use. in // this case we can reuse the register for a def in the same // instruction if ((*i)->expiredAt(cur->start() + 1)) { DEBUG(std::cerr << "\t\tinterval " << **i << " expired\n"); if (reg >= MRegisterInfo::FirstVirtualRegister) { reg = v2pMap_[reg]; } markPhysRegFree(reg); // remove from active i = active_.erase(i); } // move inactive intervals to inactive list else if (!(*i)->liveAt(cur->start())) { DEBUG(std::cerr << "\t\t\tinterval " << **i << " inactive\n"); if (reg >= MRegisterInfo::FirstVirtualRegister) { reg = v2pMap_[reg]; } markPhysRegFree(reg); // add to inactive inactive_.push_back(*i); // remove from active i = active_.erase(i); } else { ++i; } } } void RA::processInactiveIntervals(IntervalPtrs::value_type cur) { DEBUG(std::cerr << "\tprocessing inactive intervals:\n"); for (IntervalPtrs::iterator i = inactive_.begin(); i != inactive_.end();) { unsigned reg = (*i)->reg; // remove expired intervals. we expire earlier because this if // an interval expires this is going to be the last use. in // this case we can reuse the register for a def in the same // instruction if ((*i)->expiredAt(cur->start() + 1)) { DEBUG(std::cerr << "\t\t\tinterval " << **i << " expired\n"); // remove from inactive i = inactive_.erase(i); } // move re-activated intervals in active list else if ((*i)->liveAt(cur->start())) { DEBUG(std::cerr << "\t\t\tinterval " << **i << " active\n"); if (reg >= MRegisterInfo::FirstVirtualRegister) { reg = v2pMap_[reg]; } markPhysRegNotFree(reg); // add to active active_.push_back(*i); // remove from inactive i = inactive_.erase(i); } else { ++i; } } } namespace { template void updateWeight(T rw[], int reg, T w) { if (rw[reg] == std::numeric_limits::max() || w == std::numeric_limits::max()) rw[reg] = std::numeric_limits::max(); else rw[reg] += w; } } void RA::assignStackSlotAtInterval(IntervalPtrs::value_type cur) { DEBUG(std::cerr << "\t\tassigning stack slot at interval " << *cur << ":\n"); // set all weights to zero float regWeight[MRegisterInfo::FirstVirtualRegister]; for (unsigned i = 0; i < MRegisterInfo::FirstVirtualRegister; ++i) regWeight[i] = 0.0F; // for each interval in active that overlaps for (IntervalPtrs::const_iterator i = active_.begin(), e = active_.end(); i != e; ++i) { if (!cur->overlaps(**i)) continue; unsigned reg = (*i)->reg; if (reg >= MRegisterInfo::FirstVirtualRegister) { reg = v2pMap_[reg]; } updateWeight(regWeight, reg, (*i)->weight); for (const unsigned* as = mri_->getAliasSet(reg); *as; ++as) updateWeight(regWeight, *as, (*i)->weight); } // for each interval in inactive that overlaps for (IntervalPtrs::const_iterator i = inactive_.begin(), e = inactive_.end(); i != e; ++i) { if (!cur->overlaps(**i)) continue; unsigned reg = (*i)->reg; if (reg >= MRegisterInfo::FirstVirtualRegister) { reg = v2pMap_[reg]; } updateWeight(regWeight, reg, (*i)->weight); for (const unsigned* as = mri_->getAliasSet(reg); *as; ++as) updateWeight(regWeight, *as, (*i)->weight); } // for each fixed interval that overlaps for (IntervalPtrs::const_iterator i = fixed_.begin(), e = fixed_.end(); i != e; ++i) { if (!cur->overlaps(**i)) continue; assert((*i)->reg < MRegisterInfo::FirstVirtualRegister && "virtual register interval in fixed set?"); updateWeight(regWeight, (*i)->reg, (*i)->weight); for (const unsigned* as = mri_->getAliasSet((*i)->reg); *as; ++as) updateWeight(regWeight, *as, (*i)->weight); } float minWeight = std::numeric_limits::max(); unsigned minReg = 0; const TargetRegisterClass* rc = mf_->getSSARegMap()->getRegClass(cur->reg); for (TargetRegisterClass::iterator i = rc->allocation_order_begin(*mf_); i != rc->allocation_order_end(*mf_); ++i) { unsigned reg = *i; if (!reserved_[reg] && minWeight > regWeight[reg]) { minWeight = regWeight[reg]; minReg = reg; } } if (cur->weight < minWeight) { restoreRegUse(); DEBUG(std::cerr << "\t\t\t\tspilling: " << *cur << '\n'); assignVirt2StackSlot(cur->reg); } else { DEBUG(std::cerr << "\t\t\t\tfreeing: " << mri_->getName(minReg) << '\n'); std::set toSpill; toSpill.insert(minReg); for (const unsigned* as = mri_->getAliasSet(minReg); *as; ++as) toSpill.insert(*as); std::vector spilled; for (IntervalPtrs::iterator i = active_.begin(); i != active_.end(); ) { unsigned reg = (*i)->reg; if (reg >= MRegisterInfo::FirstVirtualRegister && toSpill.find(v2pMap_[reg]) != toSpill.end() && cur->overlaps(**i)) { spilled.push_back(v2pMap_[reg]); DEBUG(std::cerr << "\t\t\t\tspilling : " << **i << '\n'); assignVirt2StackSlot(reg); i = active_.erase(i); } else { ++i; } } for (IntervalPtrs::iterator i = inactive_.begin(); i != inactive_.end(); ) { unsigned reg = (*i)->reg; if (reg >= MRegisterInfo::FirstVirtualRegister && toSpill.find(v2pMap_[reg]) != toSpill.end() && cur->overlaps(**i)) { DEBUG(std::cerr << "\t\t\t\tspilling : " << **i << '\n'); assignVirt2StackSlot(reg); i = inactive_.erase(i); } else { ++i; } } unsigned physReg = getFreePhysReg(cur); assert(physReg && "no free physical register after spill?"); restoreRegUse(); for (unsigned i = 0; i < spilled.size(); ++i) markPhysRegFree(spilled[i]); assignVirt2PhysReg(cur->reg, physReg); active_.push_back(cur); } } bool RA::physRegAvailable(unsigned physReg) { assert(!reserved_[physReg] && "cannot call this method with a reserved register"); return !regUse_[physReg]; } unsigned RA::getFreePhysReg(IntervalPtrs::value_type cur) { DEBUG(std::cerr << "\t\tgetting free physical register: "); const TargetRegisterClass* rc = mf_->getSSARegMap()->getRegClass(cur->reg); for (TargetRegisterClass::iterator i = rc->allocation_order_begin(*mf_); i != rc->allocation_order_end(*mf_); ++i) { unsigned reg = *i; if (!reserved_[reg] && !regUse_[reg]) { DEBUG(std::cerr << mri_->getName(reg) << '\n'); return reg; } } DEBUG(std::cerr << "no free register\n"); return 0; } bool RA::tempPhysRegAvailable(unsigned physReg) { assert(reserved_[physReg] && "cannot call this method with a not reserved temp register"); return !regUse_[physReg]; } unsigned RA::getFreeTempPhysReg(unsigned virtReg) { DEBUG(std::cerr << "\t\tgetting free temporary physical register: "); const TargetRegisterClass* rc = mf_->getSSARegMap()->getRegClass(virtReg); // go in reverse allocation order for the temp registers for (TargetRegisterClass::iterator i = rc->allocation_order_end(*mf_) - 1; i != rc->allocation_order_begin(*mf_) - 1; --i) { unsigned reg = *i; if (reserved_[reg] && !regUse_[reg]) { DEBUG(std::cerr << mri_->getName(reg) << '\n'); return reg; } } assert(0 && "no free temporary physical register?"); return 0; } void RA::assignVirt2PhysReg(unsigned virtReg, unsigned physReg) { v2pMap_[virtReg] = physReg; markPhysRegNotFree(physReg); } void RA::clearVirtReg(unsigned virtReg) { Virt2PhysMap::iterator it = v2pMap_.find(virtReg); assert(it != v2pMap_.end() && "attempting to clear a not allocated virtual register"); unsigned physReg = it->second; markPhysRegFree(physReg); v2pMap_[virtReg] = 0; // this marks that this virtual register // lives on the stack DEBUG(std::cerr << "\t\t\tcleared register " << mri_->getName(physReg) << "\n"); } void RA::assignVirt2StackSlot(unsigned virtReg) { const TargetRegisterClass* rc = mf_->getSSARegMap()->getRegClass(virtReg); int frameIndex = mf_->getFrameInfo()->CreateStackObject(rc); bool inserted = v2ssMap_.insert(std::make_pair(virtReg, frameIndex)).second; assert(inserted && "attempt to assign stack slot to already assigned register?"); // if the virtual register was previously assigned clear the mapping // and free the virtual register if (v2pMap_.find(virtReg) != v2pMap_.end()) { clearVirtReg(virtReg); } else { v2pMap_[virtReg] = 0; // this marks that this virtual register // lives on the stack } } int RA::getStackSlot(unsigned virtReg) { // use lower_bound so that we can do a possibly O(1) insert later // if necessary Virt2StackSlotMap::iterator it = v2ssMap_.find(virtReg); assert(it != v2ssMap_.end() && "attempt to get stack slot on register that does not live on the stack"); return it->second; } void RA::spillVirtReg(unsigned virtReg) { DEBUG(std::cerr << "\t\t\tspilling register: " << virtReg); const TargetRegisterClass* rc = mf_->getSSARegMap()->getRegClass(virtReg); int frameIndex = getStackSlot(virtReg); DEBUG(std::cerr << " to stack slot #" << frameIndex << '\n'); ++numSpilled; instrAdded_ += mri_->storeRegToStackSlot(*currentMbb_, currentInstr_, v2pMap_[virtReg], frameIndex, rc); clearVirtReg(virtReg); } void RA::loadVirt2PhysReg(unsigned virtReg, unsigned physReg) { DEBUG(std::cerr << "\t\t\tloading register: " << virtReg); const TargetRegisterClass* rc = mf_->getSSARegMap()->getRegClass(virtReg); int frameIndex = getStackSlot(virtReg); DEBUG(std::cerr << " from stack slot #" << frameIndex << '\n'); ++numReloaded; instrAdded_ += mri_->loadRegFromStackSlot(*currentMbb_, currentInstr_, physReg, frameIndex, rc); assignVirt2PhysReg(virtReg, physReg); } void RA::markPhysRegFree(unsigned physReg) { assert(regUse_[physReg] != 0); --regUse_[physReg]; for (const unsigned* as = mri_->getAliasSet(physReg); *as; ++as) { physReg = *as; assert(regUse_[physReg] != 0); --regUse_[physReg]; } } void RA::markPhysRegNotFree(unsigned physReg) { ++regUse_[physReg]; for (const unsigned* as = mri_->getAliasSet(physReg); *as; ++as) { physReg = *as; ++regUse_[physReg]; } } FunctionPass* llvm::createLinearScanRegisterAllocator() { return new RA(); }