//===- X86Disassembler.cpp - Disassembler for x86 and x86_64 ----*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file is part of the X86 Disassembler. // It contains code to translate the data produced by the decoder into // MCInsts. // Documentation for the disassembler can be found in X86Disassembler.h. // //===----------------------------------------------------------------------===// #include "X86Disassembler.h" #include "X86DisassemblerDecoder.h" #include "llvm/MC/EDInstInfo.h" #include "llvm/MC/MCDisassembler.h" #include "llvm/MC/MCDisassembler.h" #include "llvm/MC/MCInst.h" #include "llvm/Target/TargetRegistry.h" #include "llvm/Support/Debug.h" #include "llvm/Support/MemoryObject.h" #include "llvm/Support/raw_ostream.h" #include "X86GenRegisterNames.inc" #include "X86GenEDInfo.inc" using namespace llvm; using namespace llvm::X86Disassembler; void x86DisassemblerDebug(const char *file, unsigned line, const char *s) { dbgs() << file << ":" << line << ": " << s; } #define debug(s) DEBUG(x86DisassemblerDebug(__FILE__, __LINE__, s)); namespace llvm { // Fill-ins to make the compiler happy. These constants are never actually // assigned; they are just filler to make an automatically-generated switch // statement work. namespace X86 { enum { BX_SI = 500, BX_DI = 501, BP_SI = 502, BP_DI = 503, sib = 504, sib64 = 505 }; } extern Target TheX86_32Target, TheX86_64Target; } static bool translateInstruction(MCInst &target, InternalInstruction &source); X86GenericDisassembler::X86GenericDisassembler(DisassemblerMode mode) : MCDisassembler(), fMode(mode) { } X86GenericDisassembler::~X86GenericDisassembler() { } EDInstInfo *X86GenericDisassembler::getEDInfo() const { return instInfoX86; } /// regionReader - a callback function that wraps the readByte method from /// MemoryObject. /// /// @param arg - The generic callback parameter. In this case, this should /// be a pointer to a MemoryObject. /// @param byte - A pointer to the byte to be read. /// @param address - The address to be read. static int regionReader(void* arg, uint8_t* byte, uint64_t address) { MemoryObject* region = static_cast(arg); return region->readByte(address, byte); } /// logger - a callback function that wraps the operator<< method from /// raw_ostream. /// /// @param arg - The generic callback parameter. This should be a pointe /// to a raw_ostream. /// @param log - A string to be logged. logger() adds a newline. static void logger(void* arg, const char* log) { if (!arg) return; raw_ostream &vStream = *(static_cast(arg)); vStream << log << "\n"; } // // Public interface for the disassembler // bool X86GenericDisassembler::getInstruction(MCInst &instr, uint64_t &size, const MemoryObject ®ion, uint64_t address, raw_ostream &vStream) const { InternalInstruction internalInstr; int ret = decodeInstruction(&internalInstr, regionReader, (void*)®ion, logger, (void*)&vStream, address, fMode); if (ret) { size = internalInstr.readerCursor - address; return false; } else { size = internalInstr.length; return !translateInstruction(instr, internalInstr); } } // // Private code that translates from struct InternalInstructions to MCInsts. // /// translateRegister - Translates an internal register to the appropriate LLVM /// register, and appends it as an operand to an MCInst. /// /// @param mcInst - The MCInst to append to. /// @param reg - The Reg to append. static void translateRegister(MCInst &mcInst, Reg reg) { #define ENTRY(x) X86::x, uint8_t llvmRegnums[] = { ALL_REGS 0 }; #undef ENTRY uint8_t llvmRegnum = llvmRegnums[reg]; mcInst.addOperand(MCOperand::CreateReg(llvmRegnum)); } /// translateImmediate - Appends an immediate operand to an MCInst. /// /// @param mcInst - The MCInst to append to. /// @param immediate - The immediate value to append. /// @param operand - The operand, as stored in the descriptor table. /// @param insn - The internal instruction. static void translateImmediate(MCInst &mcInst, uint64_t immediate, OperandSpecifier &operand, InternalInstruction &insn) { // Sign-extend the immediate if necessary. OperandType type = operand.type; if (type == TYPE_RELv) { switch (insn.displacementSize) { default: break; case 8: type = TYPE_MOFFS8; break; case 16: type = TYPE_MOFFS16; break; case 32: type = TYPE_MOFFS32; break; case 64: type = TYPE_MOFFS64; break; } } switch (type) { case TYPE_MOFFS8: case TYPE_REL8: if(immediate & 0x80) immediate |= ~(0xffull); break; case TYPE_MOFFS16: if(immediate & 0x8000) immediate |= ~(0xffffull); break; case TYPE_MOFFS32: case TYPE_REL32: case TYPE_REL64: if(immediate & 0x80000000) immediate |= ~(0xffffffffull); break; case TYPE_MOFFS64: default: // operand is 64 bits wide. Do nothing. break; } mcInst.addOperand(MCOperand::CreateImm(immediate)); } /// translateRMRegister - Translates a register stored in the R/M field of the /// ModR/M byte to its LLVM equivalent and appends it to an MCInst. /// @param mcInst - The MCInst to append to. /// @param insn - The internal instruction to extract the R/M field /// from. /// @return - 0 on success; -1 otherwise static bool translateRMRegister(MCInst &mcInst, InternalInstruction &insn) { if (insn.eaBase == EA_BASE_sib || insn.eaBase == EA_BASE_sib64) { debug("A R/M register operand may not have a SIB byte"); return true; } switch (insn.eaBase) { default: debug("Unexpected EA base register"); return true; case EA_BASE_NONE: debug("EA_BASE_NONE for ModR/M base"); return true; #define ENTRY(x) case EA_BASE_##x: ALL_EA_BASES #undef ENTRY debug("A R/M register operand may not have a base; " "the operand must be a register."); return true; #define ENTRY(x) \ case EA_REG_##x: \ mcInst.addOperand(MCOperand::CreateReg(X86::x)); break; ALL_REGS #undef ENTRY } return false; } /// translateRMMemory - Translates a memory operand stored in the Mod and R/M /// fields of an internal instruction (and possibly its SIB byte) to a memory /// operand in LLVM's format, and appends it to an MCInst. /// /// @param mcInst - The MCInst to append to. /// @param insn - The instruction to extract Mod, R/M, and SIB fields /// from. /// @return - 0 on success; nonzero otherwise static bool translateRMMemory(MCInst &mcInst, InternalInstruction &insn) { // Addresses in an MCInst are represented as five operands: // 1. basereg (register) The R/M base, or (if there is a SIB) the // SIB base // 2. scaleamount (immediate) 1, or (if there is a SIB) the specified // scale amount // 3. indexreg (register) x86_registerNONE, or (if there is a SIB) // the index (which is multiplied by the // scale amount) // 4. displacement (immediate) 0, or the displacement if there is one // 5. segmentreg (register) x86_registerNONE for now, but could be set // if we have segment overrides MCOperand baseReg; MCOperand scaleAmount; MCOperand indexReg; MCOperand displacement; MCOperand segmentReg; if (insn.eaBase == EA_BASE_sib || insn.eaBase == EA_BASE_sib64) { if (insn.sibBase != SIB_BASE_NONE) { switch (insn.sibBase) { default: debug("Unexpected sibBase"); return true; #define ENTRY(x) \ case SIB_BASE_##x: \ baseReg = MCOperand::CreateReg(X86::x); break; ALL_SIB_BASES #undef ENTRY } } else { baseReg = MCOperand::CreateReg(0); } if (insn.sibIndex != SIB_INDEX_NONE) { switch (insn.sibIndex) { default: debug("Unexpected sibIndex"); return true; #define ENTRY(x) \ case SIB_INDEX_##x: \ indexReg = MCOperand::CreateReg(X86::x); break; EA_BASES_32BIT EA_BASES_64BIT #undef ENTRY } } else { indexReg = MCOperand::CreateReg(0); } scaleAmount = MCOperand::CreateImm(insn.sibScale); } else { switch (insn.eaBase) { case EA_BASE_NONE: if (insn.eaDisplacement == EA_DISP_NONE) { debug("EA_BASE_NONE and EA_DISP_NONE for ModR/M base"); return true; } if (insn.mode == MODE_64BIT) baseReg = MCOperand::CreateReg(X86::RIP); // Section 2.2.1.6 else baseReg = MCOperand::CreateReg(0); indexReg = MCOperand::CreateReg(0); break; case EA_BASE_BX_SI: baseReg = MCOperand::CreateReg(X86::BX); indexReg = MCOperand::CreateReg(X86::SI); break; case EA_BASE_BX_DI: baseReg = MCOperand::CreateReg(X86::BX); indexReg = MCOperand::CreateReg(X86::DI); break; case EA_BASE_BP_SI: baseReg = MCOperand::CreateReg(X86::BP); indexReg = MCOperand::CreateReg(X86::SI); break; case EA_BASE_BP_DI: baseReg = MCOperand::CreateReg(X86::BP); indexReg = MCOperand::CreateReg(X86::DI); break; default: indexReg = MCOperand::CreateReg(0); switch (insn.eaBase) { default: debug("Unexpected eaBase"); return true; // Here, we will use the fill-ins defined above. However, // BX_SI, BX_DI, BP_SI, and BP_DI are all handled above and // sib and sib64 were handled in the top-level if, so they're only // placeholders to keep the compiler happy. #define ENTRY(x) \ case EA_BASE_##x: \ baseReg = MCOperand::CreateReg(X86::x); break; ALL_EA_BASES #undef ENTRY #define ENTRY(x) case EA_REG_##x: ALL_REGS #undef ENTRY debug("A R/M memory operand may not be a register; " "the base field must be a base."); return true; } } scaleAmount = MCOperand::CreateImm(1); } displacement = MCOperand::CreateImm(insn.displacement); static const uint8_t segmentRegnums[SEG_OVERRIDE_max] = { 0, // SEG_OVERRIDE_NONE X86::CS, X86::SS, X86::DS, X86::ES, X86::FS, X86::GS }; segmentReg = MCOperand::CreateReg(segmentRegnums[insn.segmentOverride]); mcInst.addOperand(baseReg); mcInst.addOperand(scaleAmount); mcInst.addOperand(indexReg); mcInst.addOperand(displacement); mcInst.addOperand(segmentReg); return false; } /// translateRM - Translates an operand stored in the R/M (and possibly SIB) /// byte of an instruction to LLVM form, and appends it to an MCInst. /// /// @param mcInst - The MCInst to append to. /// @param operand - The operand, as stored in the descriptor table. /// @param insn - The instruction to extract Mod, R/M, and SIB fields /// from. /// @return - 0 on success; nonzero otherwise static bool translateRM(MCInst &mcInst, OperandSpecifier &operand, InternalInstruction &insn) { switch (operand.type) { default: debug("Unexpected type for a R/M operand"); return true; case TYPE_R8: case TYPE_R16: case TYPE_R32: case TYPE_R64: case TYPE_Rv: case TYPE_MM: case TYPE_MM32: case TYPE_MM64: case TYPE_XMM: case TYPE_XMM32: case TYPE_XMM64: case TYPE_XMM128: case TYPE_DEBUGREG: case TYPE_CONTROLREG: return translateRMRegister(mcInst, insn); case TYPE_M: case TYPE_M8: case TYPE_M16: case TYPE_M32: case TYPE_M64: case TYPE_M128: case TYPE_M512: case TYPE_Mv: case TYPE_M32FP: case TYPE_M64FP: case TYPE_M80FP: case TYPE_M16INT: case TYPE_M32INT: case TYPE_M64INT: case TYPE_M1616: case TYPE_M1632: case TYPE_M1664: case TYPE_LEA: return translateRMMemory(mcInst, insn); } } /// translateFPRegister - Translates a stack position on the FPU stack to its /// LLVM form, and appends it to an MCInst. /// /// @param mcInst - The MCInst to append to. /// @param stackPos - The stack position to translate. /// @return - 0 on success; nonzero otherwise. static bool translateFPRegister(MCInst &mcInst, uint8_t stackPos) { if (stackPos >= 8) { debug("Invalid FP stack position"); return true; } mcInst.addOperand(MCOperand::CreateReg(X86::ST0 + stackPos)); return false; } /// translateOperand - Translates an operand stored in an internal instruction /// to LLVM's format and appends it to an MCInst. /// /// @param mcInst - The MCInst to append to. /// @param operand - The operand, as stored in the descriptor table. /// @param insn - The internal instruction. /// @return - false on success; true otherwise. static bool translateOperand(MCInst &mcInst, OperandSpecifier &operand, InternalInstruction &insn) { switch (operand.encoding) { default: debug("Unhandled operand encoding during translation"); return true; case ENCODING_REG: translateRegister(mcInst, insn.reg); return false; case ENCODING_RM: return translateRM(mcInst, operand, insn); case ENCODING_CB: case ENCODING_CW: case ENCODING_CD: case ENCODING_CP: case ENCODING_CO: case ENCODING_CT: debug("Translation of code offsets isn't supported."); return true; case ENCODING_IB: case ENCODING_IW: case ENCODING_ID: case ENCODING_IO: case ENCODING_Iv: case ENCODING_Ia: translateImmediate(mcInst, insn.immediates[insn.numImmediatesTranslated++], operand, insn); return false; case ENCODING_RB: case ENCODING_RW: case ENCODING_RD: case ENCODING_RO: translateRegister(mcInst, insn.opcodeRegister); return false; case ENCODING_I: return translateFPRegister(mcInst, insn.opcodeModifier); case ENCODING_Rv: translateRegister(mcInst, insn.opcodeRegister); return false; case ENCODING_DUP: return translateOperand(mcInst, insn.spec->operands[operand.type - TYPE_DUP0], insn); } } /// translateInstruction - Translates an internal instruction and all its /// operands to an MCInst. /// /// @param mcInst - The MCInst to populate with the instruction's data. /// @param insn - The internal instruction. /// @return - false on success; true otherwise. static bool translateInstruction(MCInst &mcInst, InternalInstruction &insn) { if (!insn.spec) { debug("Instruction has no specification"); return true; } mcInst.setOpcode(insn.instructionID); int index; insn.numImmediatesTranslated = 0; for (index = 0; index < X86_MAX_OPERANDS; ++index) { if (insn.spec->operands[index].encoding != ENCODING_NONE) { if (translateOperand(mcInst, insn.spec->operands[index], insn)) { return true; } } } return false; } static MCDisassembler *createX86_32Disassembler(const Target &T) { return new X86Disassembler::X86_32Disassembler; } static MCDisassembler *createX86_64Disassembler(const Target &T) { return new X86Disassembler::X86_64Disassembler; } extern "C" void LLVMInitializeX86Disassembler() { // Register the disassembler. TargetRegistry::RegisterMCDisassembler(TheX86_32Target, createX86_32Disassembler); TargetRegistry::RegisterMCDisassembler(TheX86_64Target, createX86_64Disassembler); }