//===- CodeGenPrepare.cpp - Prepare a function for code generation --------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This pass munges the code in the input function to better prepare it for // SelectionDAG-based code generation. This works around limitations in it's // basic-block-at-a-time approach. It should eventually be removed. // //===----------------------------------------------------------------------===// #define DEBUG_TYPE "codegenprepare" #include "llvm/Transforms/Scalar.h" #include "llvm/Constants.h" #include "llvm/DerivedTypes.h" #include "llvm/Function.h" #include "llvm/InlineAsm.h" #include "llvm/Instructions.h" #include "llvm/IntrinsicInst.h" #include "llvm/Pass.h" #include "llvm/Analysis/Dominators.h" #include "llvm/Analysis/InstructionSimplify.h" #include "llvm/Analysis/ProfileInfo.h" #include "llvm/Target/TargetData.h" #include "llvm/Target/TargetLowering.h" #include "llvm/Transforms/Utils/AddrModeMatcher.h" #include "llvm/Transforms/Utils/BasicBlockUtils.h" #include "llvm/Transforms/Utils/Local.h" #include "llvm/Transforms/Utils/BuildLibCalls.h" #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/SmallSet.h" #include "llvm/ADT/Statistic.h" #include "llvm/Assembly/Writer.h" #include "llvm/Support/CallSite.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Debug.h" #include "llvm/Support/GetElementPtrTypeIterator.h" #include "llvm/Support/PatternMatch.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Support/IRBuilder.h" #include "llvm/Support/ValueHandle.h" using namespace llvm; using namespace llvm::PatternMatch; STATISTIC(NumBlocksElim, "Number of blocks eliminated"); STATISTIC(NumPHIsElim, "Number of trivial PHIs eliminated"); STATISTIC(NumGEPsElim, "Number of GEPs converted to casts"); STATISTIC(NumCmpUses, "Number of uses of Cmp expressions replaced with uses of " "sunken Cmps"); STATISTIC(NumCastUses, "Number of uses of Cast expressions replaced with uses " "of sunken Casts"); STATISTIC(NumMemoryInsts, "Number of memory instructions whose address " "computations were sunk"); STATISTIC(NumExtsMoved, "Number of [s|z]ext instructions combined with loads"); STATISTIC(NumExtUses, "Number of uses of [s|z]ext instructions optimized"); STATISTIC(NumRetsDup, "Number of return instructions duplicated"); namespace { class CodeGenPrepare : public FunctionPass { /// TLI - Keep a pointer of a TargetLowering to consult for determining /// transformation profitability. const TargetLowering *TLI; DominatorTree *DT; ProfileInfo *PFI; /// CurInstIterator - As we scan instructions optimizing them, this is the /// next instruction to optimize. Xforms that can invalidate this should /// update it. BasicBlock::iterator CurInstIterator; /// Keeps track of non-local addresses that have been sunk into a block. /// This allows us to avoid inserting duplicate code for blocks with /// multiple load/stores of the same address. DenseMap SunkAddrs; /// UpdateDT - If CFG is modified in anyway, dominator tree may need to /// be updated. bool UpdateDT; public: static char ID; // Pass identification, replacement for typeid explicit CodeGenPrepare(const TargetLowering *tli = 0) : FunctionPass(ID), TLI(tli) { initializeCodeGenPreparePass(*PassRegistry::getPassRegistry()); } bool runOnFunction(Function &F); virtual void getAnalysisUsage(AnalysisUsage &AU) const { AU.addPreserved(); AU.addPreserved(); } private: bool EliminateMostlyEmptyBlocks(Function &F); bool CanMergeBlocks(const BasicBlock *BB, const BasicBlock *DestBB) const; void EliminateMostlyEmptyBlock(BasicBlock *BB); bool OptimizeBlock(BasicBlock &BB); bool OptimizeInst(Instruction *I); bool OptimizeMemoryInst(Instruction *I, Value *Addr, const Type *AccessTy); bool OptimizeInlineAsmInst(CallInst *CS); bool OptimizeCallInst(CallInst *CI); bool MoveExtToFormExtLoad(Instruction *I); bool OptimizeExtUses(Instruction *I); bool DupRetToEnableTailCallOpts(ReturnInst *RI); }; } char CodeGenPrepare::ID = 0; INITIALIZE_PASS(CodeGenPrepare, "codegenprepare", "Optimize for code generation", false, false) FunctionPass *llvm::createCodeGenPreparePass(const TargetLowering *TLI) { return new CodeGenPrepare(TLI); } bool CodeGenPrepare::runOnFunction(Function &F) { bool EverMadeChange = false; UpdateDT = false; DT = getAnalysisIfAvailable(); PFI = getAnalysisIfAvailable(); // First pass, eliminate blocks that contain only PHI nodes and an // unconditional branch. EverMadeChange |= EliminateMostlyEmptyBlocks(F); bool MadeChange = true; while (MadeChange) { MadeChange = false; for (Function::iterator I = F.begin(), E = F.end(); I != E; ) { BasicBlock *BB = I++; MadeChange |= OptimizeBlock(*BB); } EverMadeChange |= MadeChange; } SunkAddrs.clear(); if (UpdateDT && DT) DT->DT->recalculate(F); return EverMadeChange; } /// EliminateMostlyEmptyBlocks - eliminate blocks that contain only PHI nodes, /// debug info directives, and an unconditional branch. Passes before isel /// (e.g. LSR/loopsimplify) often split edges in ways that are non-optimal for /// isel. Start by eliminating these blocks so we can split them the way we /// want them. bool CodeGenPrepare::EliminateMostlyEmptyBlocks(Function &F) { bool MadeChange = false; // Note that this intentionally skips the entry block. for (Function::iterator I = ++F.begin(), E = F.end(); I != E; ) { BasicBlock *BB = I++; // If this block doesn't end with an uncond branch, ignore it. BranchInst *BI = dyn_cast(BB->getTerminator()); if (!BI || !BI->isUnconditional()) continue; // If the instruction before the branch (skipping debug info) isn't a phi // node, then other stuff is happening here. BasicBlock::iterator BBI = BI; if (BBI != BB->begin()) { --BBI; while (isa(BBI)) { if (BBI == BB->begin()) break; --BBI; } if (!isa(BBI) && !isa(BBI)) continue; } // Do not break infinite loops. BasicBlock *DestBB = BI->getSuccessor(0); if (DestBB == BB) continue; if (!CanMergeBlocks(BB, DestBB)) continue; EliminateMostlyEmptyBlock(BB); MadeChange = true; } return MadeChange; } /// CanMergeBlocks - Return true if we can merge BB into DestBB if there is a /// single uncond branch between them, and BB contains no other non-phi /// instructions. bool CodeGenPrepare::CanMergeBlocks(const BasicBlock *BB, const BasicBlock *DestBB) const { // We only want to eliminate blocks whose phi nodes are used by phi nodes in // the successor. If there are more complex condition (e.g. preheaders), // don't mess around with them. BasicBlock::const_iterator BBI = BB->begin(); while (const PHINode *PN = dyn_cast(BBI++)) { for (Value::const_use_iterator UI = PN->use_begin(), E = PN->use_end(); UI != E; ++UI) { const Instruction *User = cast(*UI); if (User->getParent() != DestBB || !isa(User)) return false; // If User is inside DestBB block and it is a PHINode then check // incoming value. If incoming value is not from BB then this is // a complex condition (e.g. preheaders) we want to avoid here. if (User->getParent() == DestBB) { if (const PHINode *UPN = dyn_cast(User)) for (unsigned I = 0, E = UPN->getNumIncomingValues(); I != E; ++I) { Instruction *Insn = dyn_cast(UPN->getIncomingValue(I)); if (Insn && Insn->getParent() == BB && Insn->getParent() != UPN->getIncomingBlock(I)) return false; } } } } // If BB and DestBB contain any common predecessors, then the phi nodes in BB // and DestBB may have conflicting incoming values for the block. If so, we // can't merge the block. const PHINode *DestBBPN = dyn_cast(DestBB->begin()); if (!DestBBPN) return true; // no conflict. // Collect the preds of BB. SmallPtrSet BBPreds; if (const PHINode *BBPN = dyn_cast(BB->begin())) { // It is faster to get preds from a PHI than with pred_iterator. for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i) BBPreds.insert(BBPN->getIncomingBlock(i)); } else { BBPreds.insert(pred_begin(BB), pred_end(BB)); } // Walk the preds of DestBB. for (unsigned i = 0, e = DestBBPN->getNumIncomingValues(); i != e; ++i) { BasicBlock *Pred = DestBBPN->getIncomingBlock(i); if (BBPreds.count(Pred)) { // Common predecessor? BBI = DestBB->begin(); while (const PHINode *PN = dyn_cast(BBI++)) { const Value *V1 = PN->getIncomingValueForBlock(Pred); const Value *V2 = PN->getIncomingValueForBlock(BB); // If V2 is a phi node in BB, look up what the mapped value will be. if (const PHINode *V2PN = dyn_cast(V2)) if (V2PN->getParent() == BB) V2 = V2PN->getIncomingValueForBlock(Pred); // If there is a conflict, bail out. if (V1 != V2) return false; } } } return true; } /// EliminateMostlyEmptyBlock - Eliminate a basic block that have only phi's and /// an unconditional branch in it. void CodeGenPrepare::EliminateMostlyEmptyBlock(BasicBlock *BB) { BranchInst *BI = cast(BB->getTerminator()); BasicBlock *DestBB = BI->getSuccessor(0); DEBUG(dbgs() << "MERGING MOSTLY EMPTY BLOCKS - BEFORE:\n" << *BB << *DestBB); // If the destination block has a single pred, then this is a trivial edge, // just collapse it. if (BasicBlock *SinglePred = DestBB->getSinglePredecessor()) { if (SinglePred != DestBB) { // Remember if SinglePred was the entry block of the function. If so, we // will need to move BB back to the entry position. bool isEntry = SinglePred == &SinglePred->getParent()->getEntryBlock(); MergeBasicBlockIntoOnlyPred(DestBB, this); if (isEntry && BB != &BB->getParent()->getEntryBlock()) BB->moveBefore(&BB->getParent()->getEntryBlock()); DEBUG(dbgs() << "AFTER:\n" << *DestBB << "\n\n\n"); return; } } // Otherwise, we have multiple predecessors of BB. Update the PHIs in DestBB // to handle the new incoming edges it is about to have. PHINode *PN; for (BasicBlock::iterator BBI = DestBB->begin(); (PN = dyn_cast(BBI)); ++BBI) { // Remove the incoming value for BB, and remember it. Value *InVal = PN->removeIncomingValue(BB, false); // Two options: either the InVal is a phi node defined in BB or it is some // value that dominates BB. PHINode *InValPhi = dyn_cast(InVal); if (InValPhi && InValPhi->getParent() == BB) { // Add all of the input values of the input PHI as inputs of this phi. for (unsigned i = 0, e = InValPhi->getNumIncomingValues(); i != e; ++i) PN->addIncoming(InValPhi->getIncomingValue(i), InValPhi->getIncomingBlock(i)); } else { // Otherwise, add one instance of the dominating value for each edge that // we will be adding. if (PHINode *BBPN = dyn_cast(BB->begin())) { for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i) PN->addIncoming(InVal, BBPN->getIncomingBlock(i)); } else { for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) PN->addIncoming(InVal, *PI); } } } // The PHIs are now updated, change everything that refers to BB to use // DestBB and remove BB. BB->replaceAllUsesWith(DestBB); if (DT) { BasicBlock *BBIDom = DT->getNode(BB)->getIDom()->getBlock(); BasicBlock *DestBBIDom = DT->getNode(DestBB)->getIDom()->getBlock(); BasicBlock *NewIDom = DT->findNearestCommonDominator(BBIDom, DestBBIDom); DT->changeImmediateDominator(DestBB, NewIDom); DT->eraseNode(BB); } if (PFI) { PFI->replaceAllUses(BB, DestBB); PFI->removeEdge(ProfileInfo::getEdge(BB, DestBB)); } BB->eraseFromParent(); ++NumBlocksElim; DEBUG(dbgs() << "AFTER:\n" << *DestBB << "\n\n\n"); } /// OptimizeNoopCopyExpression - If the specified cast instruction is a noop /// copy (e.g. it's casting from one pointer type to another, i32->i8 on PPC), /// sink it into user blocks to reduce the number of virtual /// registers that must be created and coalesced. /// /// Return true if any changes are made. /// static bool OptimizeNoopCopyExpression(CastInst *CI, const TargetLowering &TLI){ // If this is a noop copy, EVT SrcVT = TLI.getValueType(CI->getOperand(0)->getType()); EVT DstVT = TLI.getValueType(CI->getType()); // This is an fp<->int conversion? if (SrcVT.isInteger() != DstVT.isInteger()) return false; // If this is an extension, it will be a zero or sign extension, which // isn't a noop. if (SrcVT.bitsLT(DstVT)) return false; // If these values will be promoted, find out what they will be promoted // to. This helps us consider truncates on PPC as noop copies when they // are. if (TLI.getTypeAction(SrcVT) == TargetLowering::Promote) SrcVT = TLI.getTypeToTransformTo(CI->getContext(), SrcVT); if (TLI.getTypeAction(DstVT) == TargetLowering::Promote) DstVT = TLI.getTypeToTransformTo(CI->getContext(), DstVT); // If, after promotion, these are the same types, this is a noop copy. if (SrcVT != DstVT) return false; BasicBlock *DefBB = CI->getParent(); /// InsertedCasts - Only insert a cast in each block once. DenseMap InsertedCasts; bool MadeChange = false; for (Value::use_iterator UI = CI->use_begin(), E = CI->use_end(); UI != E; ) { Use &TheUse = UI.getUse(); Instruction *User = cast(*UI); // Figure out which BB this cast is used in. For PHI's this is the // appropriate predecessor block. BasicBlock *UserBB = User->getParent(); if (PHINode *PN = dyn_cast(User)) { UserBB = PN->getIncomingBlock(UI); } // Preincrement use iterator so we don't invalidate it. ++UI; // If this user is in the same block as the cast, don't change the cast. if (UserBB == DefBB) continue; // If we have already inserted a cast into this block, use it. CastInst *&InsertedCast = InsertedCasts[UserBB]; if (!InsertedCast) { BasicBlock::iterator InsertPt = UserBB->getFirstNonPHI(); InsertedCast = CastInst::Create(CI->getOpcode(), CI->getOperand(0), CI->getType(), "", InsertPt); MadeChange = true; } // Replace a use of the cast with a use of the new cast. TheUse = InsertedCast; ++NumCastUses; } // If we removed all uses, nuke the cast. if (CI->use_empty()) { CI->eraseFromParent(); MadeChange = true; } return MadeChange; } /// OptimizeCmpExpression - sink the given CmpInst into user blocks to reduce /// the number of virtual registers that must be created and coalesced. This is /// a clear win except on targets with multiple condition code registers /// (PowerPC), where it might lose; some adjustment may be wanted there. /// /// Return true if any changes are made. static bool OptimizeCmpExpression(CmpInst *CI) { BasicBlock *DefBB = CI->getParent(); /// InsertedCmp - Only insert a cmp in each block once. DenseMap InsertedCmps; bool MadeChange = false; for (Value::use_iterator UI = CI->use_begin(), E = CI->use_end(); UI != E; ) { Use &TheUse = UI.getUse(); Instruction *User = cast(*UI); // Preincrement use iterator so we don't invalidate it. ++UI; // Don't bother for PHI nodes. if (isa(User)) continue; // Figure out which BB this cmp is used in. BasicBlock *UserBB = User->getParent(); // If this user is in the same block as the cmp, don't change the cmp. if (UserBB == DefBB) continue; // If we have already inserted a cmp into this block, use it. CmpInst *&InsertedCmp = InsertedCmps[UserBB]; if (!InsertedCmp) { BasicBlock::iterator InsertPt = UserBB->getFirstNonPHI(); InsertedCmp = CmpInst::Create(CI->getOpcode(), CI->getPredicate(), CI->getOperand(0), CI->getOperand(1), "", InsertPt); MadeChange = true; } // Replace a use of the cmp with a use of the new cmp. TheUse = InsertedCmp; ++NumCmpUses; } // If we removed all uses, nuke the cmp. if (CI->use_empty()) CI->eraseFromParent(); return MadeChange; } namespace { class CodeGenPrepareFortifiedLibCalls : public SimplifyFortifiedLibCalls { protected: void replaceCall(Value *With) { CI->replaceAllUsesWith(With); CI->eraseFromParent(); } bool isFoldable(unsigned SizeCIOp, unsigned, bool) const { if (ConstantInt *SizeCI = dyn_cast(CI->getArgOperand(SizeCIOp))) return SizeCI->isAllOnesValue(); return false; } }; } // end anonymous namespace bool CodeGenPrepare::OptimizeCallInst(CallInst *CI) { BasicBlock *BB = CI->getParent(); // Lower inline assembly if we can. // If we found an inline asm expession, and if the target knows how to // lower it to normal LLVM code, do so now. if (TLI && isa(CI->getCalledValue())) { if (TLI->ExpandInlineAsm(CI)) { // Avoid invalidating the iterator. CurInstIterator = BB->begin(); // Avoid processing instructions out of order, which could cause // reuse before a value is defined. SunkAddrs.clear(); return true; } // Sink address computing for memory operands into the block. if (OptimizeInlineAsmInst(CI)) return true; } // Lower all uses of llvm.objectsize.* IntrinsicInst *II = dyn_cast(CI); if (II && II->getIntrinsicID() == Intrinsic::objectsize) { bool Min = (cast(II->getArgOperand(1))->getZExtValue() == 1); const Type *ReturnTy = CI->getType(); Constant *RetVal = ConstantInt::get(ReturnTy, Min ? 0 : -1ULL); // Substituting this can cause recursive simplifications, which can // invalidate our iterator. Use a WeakVH to hold onto it in case this // happens. WeakVH IterHandle(CurInstIterator); ReplaceAndSimplifyAllUses(CI, RetVal, TLI ? TLI->getTargetData() : 0, DT); // If the iterator instruction was recursively deleted, start over at the // start of the block. if (IterHandle != CurInstIterator) { CurInstIterator = BB->begin(); SunkAddrs.clear(); } return true; } // From here on out we're working with named functions. if (CI->getCalledFunction() == 0) return false; // We'll need TargetData from here on out. const TargetData *TD = TLI ? TLI->getTargetData() : 0; if (!TD) return false; // Lower all default uses of _chk calls. This is very similar // to what InstCombineCalls does, but here we are only lowering calls // that have the default "don't know" as the objectsize. Anything else // should be left alone. CodeGenPrepareFortifiedLibCalls Simplifier; return Simplifier.fold(CI, TD); } /// DupRetToEnableTailCallOpts - Look for opportunities to duplicate return /// instructions to the predecessor to enable tail call optimizations. The /// case it is currently looking for is: /// bb0: /// %tmp0 = tail call i32 @f0() /// br label %return /// bb1: /// %tmp1 = tail call i32 @f1() /// br label %return /// bb2: /// %tmp2 = tail call i32 @f2() /// br label %return /// return: /// %retval = phi i32 [ %tmp0, %bb0 ], [ %tmp1, %bb1 ], [ %tmp2, %bb2 ] /// ret i32 %retval /// /// => /// /// bb0: /// %tmp0 = tail call i32 @f0() /// ret i32 %tmp0 /// bb1: /// %tmp1 = tail call i32 @f1() /// ret i32 %tmp1 /// bb2: /// %tmp2 = tail call i32 @f2() /// ret i32 %tmp2 /// bool CodeGenPrepare::DupRetToEnableTailCallOpts(ReturnInst *RI) { if (!TLI) return false; Value *V = RI->getReturnValue(); PHINode *PN = V ? dyn_cast(V) : NULL; if (V && !PN) return false; BasicBlock *BB = RI->getParent(); if (PN && PN->getParent() != BB) return false; // It's not safe to eliminate the sign / zero extension of the return value. // See llvm::isInTailCallPosition(). const Function *F = BB->getParent(); unsigned CallerRetAttr = F->getAttributes().getRetAttributes(); if ((CallerRetAttr & Attribute::ZExt) || (CallerRetAttr & Attribute::SExt)) return false; // Make sure there are no instructions between the PHI and return, or that the // return is the first instruction in the block. if (PN) { BasicBlock::iterator BI = BB->begin(); do { ++BI; } while (isa(BI)); if (&*BI != RI) return false; } else { if (&*BB->begin() != RI) return false; } /// Only dup the ReturnInst if the CallInst is likely to be emitted as a tail /// call. SmallVector TailCalls; if (PN) { for (unsigned I = 0, E = PN->getNumIncomingValues(); I != E; ++I) { CallInst *CI = dyn_cast(PN->getIncomingValue(I)); // Make sure the phi value is indeed produced by the tail call. if (CI && CI->hasOneUse() && CI->getParent() == PN->getIncomingBlock(I) && TLI->mayBeEmittedAsTailCall(CI)) TailCalls.push_back(CI); } } else { SmallPtrSet VisitedBBs; for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE; ++PI) { if (!VisitedBBs.insert(*PI)) continue; BasicBlock::InstListType &InstList = (*PI)->getInstList(); BasicBlock::InstListType::reverse_iterator RI = InstList.rbegin(); BasicBlock::InstListType::reverse_iterator RE = InstList.rend(); if (++RI == RE) continue; CallInst *CI = dyn_cast(&*RI); if (CI && CI->getType()->isVoidTy() && TLI->mayBeEmittedAsTailCall(CI)) TailCalls.push_back(CI); } } bool Changed = false; for (unsigned i = 0, e = TailCalls.size(); i != e; ++i) { CallInst *CI = TailCalls[i]; CallSite CS(CI); // Conservatively require the attributes of the call to match those of the // return. Ignore noalias because it doesn't affect the call sequence. unsigned CalleeRetAttr = CS.getAttributes().getRetAttributes(); if ((CalleeRetAttr ^ CallerRetAttr) & ~Attribute::NoAlias) continue; // Make sure the call instruction is followed by an unconditional branch to // the return block. BasicBlock *CallBB = CI->getParent(); BranchInst *BI = dyn_cast(CallBB->getTerminator()); if (!BI || !BI->isUnconditional() || BI->getSuccessor(0) != BB) continue; // Duplicate the return into CallBB. (void)FoldReturnIntoUncondBranch(RI, BB, CallBB); UpdateDT = Changed = true; ++NumRetsDup; } // If we eliminated all predecessors of the block, delete the block now. if (Changed && pred_begin(BB) == pred_end(BB)) BB->eraseFromParent(); return Changed; } //===----------------------------------------------------------------------===// // Memory Optimization //===----------------------------------------------------------------------===// /// IsNonLocalValue - Return true if the specified values are defined in a /// different basic block than BB. static bool IsNonLocalValue(Value *V, BasicBlock *BB) { if (Instruction *I = dyn_cast(V)) return I->getParent() != BB; return false; } /// OptimizeMemoryInst - Load and Store Instructions often have /// addressing modes that can do significant amounts of computation. As such, /// instruction selection will try to get the load or store to do as much /// computation as possible for the program. The problem is that isel can only /// see within a single block. As such, we sink as much legal addressing mode /// stuff into the block as possible. /// /// This method is used to optimize both load/store and inline asms with memory /// operands. bool CodeGenPrepare::OptimizeMemoryInst(Instruction *MemoryInst, Value *Addr, const Type *AccessTy) { Value *Repl = Addr; // Try to collapse single-value PHI nodes. This is necessary to undo // unprofitable PRE transformations. SmallVector worklist; SmallPtrSet Visited; worklist.push_back(Addr); // Use a worklist to iteratively look through PHI nodes, and ensure that // the addressing mode obtained from the non-PHI roots of the graph // are equivalent. Value *Consensus = 0; unsigned NumUsesConsensus = 0; bool IsNumUsesConsensusValid = false; SmallVector AddrModeInsts; ExtAddrMode AddrMode; while (!worklist.empty()) { Value *V = worklist.back(); worklist.pop_back(); // Break use-def graph loops. if (Visited.count(V)) { Consensus = 0; break; } Visited.insert(V); // For a PHI node, push all of its incoming values. if (PHINode *P = dyn_cast(V)) { for (unsigned i = 0, e = P->getNumIncomingValues(); i != e; ++i) worklist.push_back(P->getIncomingValue(i)); continue; } // For non-PHIs, determine the addressing mode being computed. SmallVector NewAddrModeInsts; ExtAddrMode NewAddrMode = AddressingModeMatcher::Match(V, AccessTy,MemoryInst, NewAddrModeInsts, *TLI); // This check is broken into two cases with very similar code to avoid using // getNumUses() as much as possible. Some values have a lot of uses, so // calling getNumUses() unconditionally caused a significant compile-time // regression. if (!Consensus) { Consensus = V; AddrMode = NewAddrMode; AddrModeInsts = NewAddrModeInsts; continue; } else if (NewAddrMode == AddrMode) { if (!IsNumUsesConsensusValid) { NumUsesConsensus = Consensus->getNumUses(); IsNumUsesConsensusValid = true; } // Ensure that the obtained addressing mode is equivalent to that obtained // for all other roots of the PHI traversal. Also, when choosing one // such root as representative, select the one with the most uses in order // to keep the cost modeling heuristics in AddressingModeMatcher // applicable. unsigned NumUses = V->getNumUses(); if (NumUses > NumUsesConsensus) { Consensus = V; NumUsesConsensus = NumUses; AddrModeInsts = NewAddrModeInsts; } continue; } Consensus = 0; break; } // If the addressing mode couldn't be determined, or if multiple different // ones were determined, bail out now. if (!Consensus) return false; // Check to see if any of the instructions supersumed by this addr mode are // non-local to I's BB. bool AnyNonLocal = false; for (unsigned i = 0, e = AddrModeInsts.size(); i != e; ++i) { if (IsNonLocalValue(AddrModeInsts[i], MemoryInst->getParent())) { AnyNonLocal = true; break; } } // If all the instructions matched are already in this BB, don't do anything. if (!AnyNonLocal) { DEBUG(dbgs() << "CGP: Found local addrmode: " << AddrMode << "\n"); return false; } // Insert this computation right after this user. Since our caller is // scanning from the top of the BB to the bottom, reuse of the expr are // guaranteed to happen later. BasicBlock::iterator InsertPt = MemoryInst; // Now that we determined the addressing expression we want to use and know // that we have to sink it into this block. Check to see if we have already // done this for some other load/store instr in this block. If so, reuse the // computation. Value *&SunkAddr = SunkAddrs[Addr]; if (SunkAddr) { DEBUG(dbgs() << "CGP: Reusing nonlocal addrmode: " << AddrMode << " for " << *MemoryInst); if (SunkAddr->getType() != Addr->getType()) SunkAddr = new BitCastInst(SunkAddr, Addr->getType(), "tmp", InsertPt); } else { DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode << " for " << *MemoryInst); const Type *IntPtrTy = TLI->getTargetData()->getIntPtrType(AccessTy->getContext()); Value *Result = 0; // Start with the base register. Do this first so that subsequent address // matching finds it last, which will prevent it from trying to match it // as the scaled value in case it happens to be a mul. That would be // problematic if we've sunk a different mul for the scale, because then // we'd end up sinking both muls. if (AddrMode.BaseReg) { Value *V = AddrMode.BaseReg; if (V->getType()->isPointerTy()) V = new PtrToIntInst(V, IntPtrTy, "sunkaddr", InsertPt); if (V->getType() != IntPtrTy) V = CastInst::CreateIntegerCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr", InsertPt); Result = V; } // Add the scale value. if (AddrMode.Scale) { Value *V = AddrMode.ScaledReg; if (V->getType() == IntPtrTy) { // done. } else if (V->getType()->isPointerTy()) { V = new PtrToIntInst(V, IntPtrTy, "sunkaddr", InsertPt); } else if (cast(IntPtrTy)->getBitWidth() < cast(V->getType())->getBitWidth()) { V = new TruncInst(V, IntPtrTy, "sunkaddr", InsertPt); } else { V = new SExtInst(V, IntPtrTy, "sunkaddr", InsertPt); } if (AddrMode.Scale != 1) V = BinaryOperator::CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale), "sunkaddr", InsertPt); if (Result) Result = BinaryOperator::CreateAdd(Result, V, "sunkaddr", InsertPt); else Result = V; } // Add in the BaseGV if present. if (AddrMode.BaseGV) { Value *V = new PtrToIntInst(AddrMode.BaseGV, IntPtrTy, "sunkaddr", InsertPt); if (Result) Result = BinaryOperator::CreateAdd(Result, V, "sunkaddr", InsertPt); else Result = V; } // Add in the Base Offset if present. if (AddrMode.BaseOffs) { Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs); if (Result) Result = BinaryOperator::CreateAdd(Result, V, "sunkaddr", InsertPt); else Result = V; } if (Result == 0) SunkAddr = Constant::getNullValue(Addr->getType()); else SunkAddr = new IntToPtrInst(Result, Addr->getType(), "sunkaddr",InsertPt); } MemoryInst->replaceUsesOfWith(Repl, SunkAddr); if (Repl->use_empty()) { RecursivelyDeleteTriviallyDeadInstructions(Repl); // This address is now available for reassignment, so erase the table entry; // we don't want to match some completely different instruction. SunkAddrs[Addr] = 0; } ++NumMemoryInsts; return true; } /// OptimizeInlineAsmInst - If there are any memory operands, use /// OptimizeMemoryInst to sink their address computing into the block when /// possible / profitable. bool CodeGenPrepare::OptimizeInlineAsmInst(CallInst *CS) { bool MadeChange = false; TargetLowering::AsmOperandInfoVector TargetConstraints = TLI->ParseConstraints(CS); unsigned ArgNo = 0; for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i]; // Compute the constraint code and ConstraintType to use. TLI->ComputeConstraintToUse(OpInfo, SDValue()); if (OpInfo.ConstraintType == TargetLowering::C_Memory && OpInfo.isIndirect) { Value *OpVal = CS->getArgOperand(ArgNo++); MadeChange |= OptimizeMemoryInst(CS, OpVal, OpVal->getType()); } else if (OpInfo.Type == InlineAsm::isInput) ArgNo++; } return MadeChange; } /// MoveExtToFormExtLoad - Move a zext or sext fed by a load into the same /// basic block as the load, unless conditions are unfavorable. This allows /// SelectionDAG to fold the extend into the load. /// bool CodeGenPrepare::MoveExtToFormExtLoad(Instruction *I) { // Look for a load being extended. LoadInst *LI = dyn_cast(I->getOperand(0)); if (!LI) return false; // If they're already in the same block, there's nothing to do. if (LI->getParent() == I->getParent()) return false; // If the load has other users and the truncate is not free, this probably // isn't worthwhile. if (!LI->hasOneUse() && TLI && (TLI->isTypeLegal(TLI->getValueType(LI->getType())) || !TLI->isTypeLegal(TLI->getValueType(I->getType()))) && !TLI->isTruncateFree(I->getType(), LI->getType())) return false; // Check whether the target supports casts folded into loads. unsigned LType; if (isa(I)) LType = ISD::ZEXTLOAD; else { assert(isa(I) && "Unexpected ext type!"); LType = ISD::SEXTLOAD; } if (TLI && !TLI->isLoadExtLegal(LType, TLI->getValueType(LI->getType()))) return false; // Move the extend into the same block as the load, so that SelectionDAG // can fold it. I->removeFromParent(); I->insertAfter(LI); ++NumExtsMoved; return true; } bool CodeGenPrepare::OptimizeExtUses(Instruction *I) { BasicBlock *DefBB = I->getParent(); // If the result of a {s|z}ext and its source are both live out, rewrite all // other uses of the source with result of extension. Value *Src = I->getOperand(0); if (Src->hasOneUse()) return false; // Only do this xform if truncating is free. if (TLI && !TLI->isTruncateFree(I->getType(), Src->getType())) return false; // Only safe to perform the optimization if the source is also defined in // this block. if (!isa(Src) || DefBB != cast(Src)->getParent()) return false; bool DefIsLiveOut = false; for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E; ++UI) { Instruction *User = cast(*UI); // Figure out which BB this ext is used in. BasicBlock *UserBB = User->getParent(); if (UserBB == DefBB) continue; DefIsLiveOut = true; break; } if (!DefIsLiveOut) return false; // Make sure non of the uses are PHI nodes. for (Value::use_iterator UI = Src->use_begin(), E = Src->use_end(); UI != E; ++UI) { Instruction *User = cast(*UI); BasicBlock *UserBB = User->getParent(); if (UserBB == DefBB) continue; // Be conservative. We don't want this xform to end up introducing // reloads just before load / store instructions. if (isa(User) || isa(User) || isa(User)) return false; } // InsertedTruncs - Only insert one trunc in each block once. DenseMap InsertedTruncs; bool MadeChange = false; for (Value::use_iterator UI = Src->use_begin(), E = Src->use_end(); UI != E; ++UI) { Use &TheUse = UI.getUse(); Instruction *User = cast(*UI); // Figure out which BB this ext is used in. BasicBlock *UserBB = User->getParent(); if (UserBB == DefBB) continue; // Both src and def are live in this block. Rewrite the use. Instruction *&InsertedTrunc = InsertedTruncs[UserBB]; if (!InsertedTrunc) { BasicBlock::iterator InsertPt = UserBB->getFirstNonPHI(); InsertedTrunc = new TruncInst(I, Src->getType(), "", InsertPt); } // Replace a use of the {s|z}ext source with a use of the result. TheUse = InsertedTrunc; ++NumExtUses; MadeChange = true; } return MadeChange; } bool CodeGenPrepare::OptimizeInst(Instruction *I) { if (PHINode *P = dyn_cast(I)) { // It is possible for very late stage optimizations (such as SimplifyCFG) // to introduce PHI nodes too late to be cleaned up. If we detect such a // trivial PHI, go ahead and zap it here. if (Value *V = SimplifyInstruction(P)) { P->replaceAllUsesWith(V); P->eraseFromParent(); ++NumPHIsElim; return true; } return false; } if (CastInst *CI = dyn_cast(I)) { // If the source of the cast is a constant, then this should have // already been constant folded. The only reason NOT to constant fold // it is if something (e.g. LSR) was careful to place the constant // evaluation in a block other than then one that uses it (e.g. to hoist // the address of globals out of a loop). If this is the case, we don't // want to forward-subst the cast. if (isa(CI->getOperand(0))) return false; if (TLI && OptimizeNoopCopyExpression(CI, *TLI)) return true; if (isa(I) || isa(I)) { bool MadeChange = MoveExtToFormExtLoad(I); return MadeChange | OptimizeExtUses(I); } return false; } if (CmpInst *CI = dyn_cast(I)) return OptimizeCmpExpression(CI); if (LoadInst *LI = dyn_cast(I)) { if (TLI) return OptimizeMemoryInst(I, I->getOperand(0), LI->getType()); return false; } if (StoreInst *SI = dyn_cast(I)) { if (TLI) return OptimizeMemoryInst(I, SI->getOperand(1), SI->getOperand(0)->getType()); return false; } if (GetElementPtrInst *GEPI = dyn_cast(I)) { if (GEPI->hasAllZeroIndices()) { /// The GEP operand must be a pointer, so must its result -> BitCast Instruction *NC = new BitCastInst(GEPI->getOperand(0), GEPI->getType(), GEPI->getName(), GEPI); GEPI->replaceAllUsesWith(NC); GEPI->eraseFromParent(); ++NumGEPsElim; OptimizeInst(NC); return true; } return false; } if (CallInst *CI = dyn_cast(I)) return OptimizeCallInst(CI); if (ReturnInst *RI = dyn_cast(I)) return DupRetToEnableTailCallOpts(RI); return false; } // In this pass we look for GEP and cast instructions that are used // across basic blocks and rewrite them to improve basic-block-at-a-time // selection. bool CodeGenPrepare::OptimizeBlock(BasicBlock &BB) { SunkAddrs.clear(); bool MadeChange = false; CurInstIterator = BB.begin(); for (BasicBlock::iterator E = BB.end(); CurInstIterator != E; ) MadeChange |= OptimizeInst(CurInstIterator++); return MadeChange; }