//===-- RegAllocBasic.cpp - basic register allocator ----------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file defines the RABasic function pass, which provides a minimal // implementation of the basic register allocator. // //===----------------------------------------------------------------------===// #define DEBUG_TYPE "regalloc" #include "LiveIntervalUnion.h" #include "RegAllocBase.h" #include "RenderMachineFunction.h" #include "Spiller.h" #include "VirtRegMap.h" #include "VirtRegRewriter.h" #include "llvm/ADT/OwningPtr.h" #include "llvm/Analysis/AliasAnalysis.h" #include "llvm/Function.h" #include "llvm/PassAnalysisSupport.h" #include "llvm/CodeGen/CalcSpillWeights.h" #include "llvm/CodeGen/LiveIntervalAnalysis.h" #include "llvm/CodeGen/LiveStackAnalysis.h" #include "llvm/CodeGen/MachineFunctionPass.h" #include "llvm/CodeGen/MachineInstr.h" #include "llvm/CodeGen/MachineLoopInfo.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/CodeGen/Passes.h" #include "llvm/CodeGen/RegAllocRegistry.h" #include "llvm/CodeGen/RegisterCoalescer.h" #include "llvm/Target/TargetMachine.h" #include "llvm/Target/TargetOptions.h" #include "llvm/Target/TargetRegisterInfo.h" #ifndef NDEBUG #include "llvm/ADT/SparseBitVector.h" #endif #include "llvm/Support/Debug.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/raw_ostream.h" #include #include #include using namespace llvm; static RegisterRegAlloc basicRegAlloc("basic", "basic register allocator", createBasicRegisterAllocator); // Temporary verification option until we can put verification inside // MachineVerifier. static cl::opt VerifyRegAlloc("verify-regalloc", cl::desc("Verify live intervals before renaming")); namespace { class PhysicalRegisterDescription : public AbstractRegisterDescription { const TargetRegisterInfo *TRI; public: PhysicalRegisterDescription(const TargetRegisterInfo *T): TRI(T) {} virtual const char *getName(unsigned Reg) const { return TRI->getName(Reg); } }; /// RABasic provides a minimal implementation of the basic register allocation /// algorithm. It prioritizes live virtual registers by spill weight and spills /// whenever a register is unavailable. This is not practical in production but /// provides a useful baseline both for measuring other allocators and comparing /// the speed of the basic algorithm against other styles of allocators. class RABasic : public MachineFunctionPass, public RegAllocBase { // context MachineFunction *MF; const TargetMachine *TM; MachineRegisterInfo *MRI; BitVector ReservedRegs; // analyses LiveStacks *LS; RenderMachineFunction *RMF; // state std::auto_ptr SpillerInstance; public: RABasic(); /// Return the pass name. virtual const char* getPassName() const { return "Basic Register Allocator"; } /// RABasic analysis usage. virtual void getAnalysisUsage(AnalysisUsage &AU) const; virtual void releaseMemory(); virtual Spiller &spiller() { return *SpillerInstance; } virtual unsigned selectOrSplit(LiveInterval &VirtReg, SmallVectorImpl &SplitVRegs); /// Perform register allocation. virtual bool runOnMachineFunction(MachineFunction &mf); static char ID; }; char RABasic::ID = 0; } // end anonymous namespace RABasic::RABasic(): MachineFunctionPass(ID) { initializeLiveIntervalsPass(*PassRegistry::getPassRegistry()); initializeSlotIndexesPass(*PassRegistry::getPassRegistry()); initializeStrongPHIEliminationPass(*PassRegistry::getPassRegistry()); initializeRegisterCoalescerAnalysisGroup(*PassRegistry::getPassRegistry()); initializeCalculateSpillWeightsPass(*PassRegistry::getPassRegistry()); initializeLiveStacksPass(*PassRegistry::getPassRegistry()); initializeMachineDominatorTreePass(*PassRegistry::getPassRegistry()); initializeMachineLoopInfoPass(*PassRegistry::getPassRegistry()); initializeVirtRegMapPass(*PassRegistry::getPassRegistry()); initializeRenderMachineFunctionPass(*PassRegistry::getPassRegistry()); } void RABasic::getAnalysisUsage(AnalysisUsage &AU) const { AU.setPreservesCFG(); AU.addRequired(); AU.addPreserved(); AU.addRequired(); AU.addPreserved(); if (StrongPHIElim) AU.addRequiredID(StrongPHIEliminationID); AU.addRequiredTransitive(); AU.addRequired(); AU.addRequired(); AU.addPreserved(); AU.addRequiredID(MachineDominatorsID); AU.addPreservedID(MachineDominatorsID); AU.addRequired(); AU.addPreserved(); AU.addRequired(); AU.addPreserved(); DEBUG(AU.addRequired()); MachineFunctionPass::getAnalysisUsage(AU); } void RABasic::releaseMemory() { SpillerInstance.reset(0); RegAllocBase::releaseMemory(); } #ifndef NDEBUG // Verify each LiveIntervalUnion. void RegAllocBase::verify() { LiveVirtRegBitSet VisitedVRegs; OwningArrayPtr unionVRegs(new LiveVirtRegBitSet[PhysReg2LiveUnion.numRegs()]); // Verify disjoint unions. for (unsigned PhysReg = 0; PhysReg < PhysReg2LiveUnion.numRegs(); ++PhysReg) { DEBUG(PhysicalRegisterDescription PRD(TRI); PhysReg2LiveUnion[PhysReg].dump(&PRD)); LiveVirtRegBitSet &VRegs = unionVRegs[PhysReg]; PhysReg2LiveUnion[PhysReg].verify(VRegs); // Union + intersection test could be done efficiently in one pass, but // don't add a method to SparseBitVector unless we really need it. assert(!VisitedVRegs.intersects(VRegs) && "vreg in multiple unions"); VisitedVRegs |= VRegs; } // Verify vreg coverage. for (LiveIntervals::iterator liItr = LIS->begin(), liEnd = LIS->end(); liItr != liEnd; ++liItr) { unsigned reg = liItr->first; if (TargetRegisterInfo::isPhysicalRegister(reg)) continue; if (!VRM->hasPhys(reg)) continue; // spilled? unsigned PhysReg = VRM->getPhys(reg); if (!unionVRegs[PhysReg].test(reg)) { dbgs() << "LiveVirtReg " << reg << " not in union " << TRI->getName(PhysReg) << "\n"; llvm_unreachable("unallocated live vreg"); } } // FIXME: I'm not sure how to verify spilled intervals. } #endif //!NDEBUG //===----------------------------------------------------------------------===// // RegAllocBase Implementation //===----------------------------------------------------------------------===// // Instantiate a LiveIntervalUnion for each physical register. void RegAllocBase::LiveUnionArray::init(LiveIntervalUnion::Allocator &allocator, unsigned NRegs) { NumRegs = NRegs; Array = static_cast(malloc(sizeof(LiveIntervalUnion)*NRegs)); for (unsigned r = 0; r != NRegs; ++r) new(Array + r) LiveIntervalUnion(r, allocator); } void RegAllocBase::init(const TargetRegisterInfo &tri, VirtRegMap &vrm, LiveIntervals &lis) { TRI = &tri; VRM = &vrm; LIS = &lis; PhysReg2LiveUnion.init(UnionAllocator, TRI->getNumRegs()); // Cache an interferece query for each physical reg Queries.reset(new LiveIntervalUnion::Query[PhysReg2LiveUnion.numRegs()]); } void RegAllocBase::LiveUnionArray::clear() { if (!Array) return; for (unsigned r = 0; r != NumRegs; ++r) Array[r].~LiveIntervalUnion(); free(Array); NumRegs = 0; Array = 0; } void RegAllocBase::releaseMemory() { PhysReg2LiveUnion.clear(); } namespace llvm { /// This class defines a queue of live virtual registers prioritized by spill /// weight. The heaviest vreg is popped first. /// /// Currently, this is trivial wrapper that gives us an opaque type in the /// header, but we may later give it a virtual interface for register allocators /// to override the priority queue comparator. class LiveVirtRegQueue { typedef std::priority_queue , LessSpillWeightPriority> PriorityQ; PriorityQ PQ; public: // Is the queue empty? bool empty() { return PQ.empty(); } // Get the highest priority lvr (top + pop) LiveInterval *get() { LiveInterval *VirtReg = PQ.top(); PQ.pop(); return VirtReg; } // Add this lvr to the queue void push(LiveInterval *VirtReg) { PQ.push(VirtReg); } }; } // end namespace llvm // Visit all the live virtual registers. If they are already assigned to a // physical register, unify them with the corresponding LiveIntervalUnion, // otherwise push them on the priority queue for later assignment. void RegAllocBase::seedLiveVirtRegs(LiveVirtRegQueue &VirtRegQ) { for (LiveIntervals::iterator I = LIS->begin(), E = LIS->end(); I != E; ++I) { unsigned RegNum = I->first; LiveInterval &VirtReg = *I->second; if (TargetRegisterInfo::isPhysicalRegister(RegNum)) { PhysReg2LiveUnion[RegNum].unify(VirtReg); } else { VirtRegQ.push(&VirtReg); } } } // Top-level driver to manage the queue of unassigned VirtRegs and call the // selectOrSplit implementation. void RegAllocBase::allocatePhysRegs() { // Push each vreg onto a queue or "precolor" by adding it to a physreg union. LiveVirtRegQueue VirtRegQ; seedLiveVirtRegs(VirtRegQ); // Continue assigning vregs one at a time to available physical registers. while (!VirtRegQ.empty()) { // Pop the highest priority vreg. LiveInterval *VirtReg = VirtRegQ.get(); // selectOrSplit requests the allocator to return an available physical // register if possible and populate a list of new live intervals that // result from splitting. typedef SmallVector VirtRegVec; VirtRegVec SplitVRegs; unsigned AvailablePhysReg = selectOrSplit(*VirtReg, SplitVRegs); if (AvailablePhysReg) { DEBUG(dbgs() << "allocating: " << TRI->getName(AvailablePhysReg) << " " << *VirtReg << '\n'); assert(!VRM->hasPhys(VirtReg->reg) && "duplicate vreg in union"); VRM->assignVirt2Phys(VirtReg->reg, AvailablePhysReg); PhysReg2LiveUnion[AvailablePhysReg].unify(*VirtReg); } for (VirtRegVec::iterator I = SplitVRegs.begin(), E = SplitVRegs.end(); I != E; ++I) { LiveInterval* SplitVirtReg = *I; if (SplitVirtReg->empty()) continue; DEBUG(dbgs() << "queuing new interval: " << *SplitVirtReg << "\n"); assert(TargetRegisterInfo::isVirtualRegister(SplitVirtReg->reg) && "expect split value in virtual register"); VirtRegQ.push(SplitVirtReg); } } } // Check if this live virtual register interferes with a physical register. If // not, then check for interference on each register that aliases with the // physical register. Return the interfering register. unsigned RegAllocBase::checkPhysRegInterference(LiveInterval &VirtReg, unsigned PhysReg) { if (query(VirtReg, PhysReg).checkInterference()) return PhysReg; for (const unsigned *AliasI = TRI->getAliasSet(PhysReg); *AliasI; ++AliasI) { if (query(VirtReg, *AliasI).checkInterference()) return *AliasI; } return 0; } // Helper for spillInteferences() that spills all interfering vregs currently // assigned to this physical register. void RegAllocBase::spillReg(LiveInterval& VirtReg, unsigned PhysReg, SmallVectorImpl &SplitVRegs) { LiveIntervalUnion::Query &Q = query(VirtReg, PhysReg); assert(Q.seenAllInterferences() && "need collectInterferences()"); const SmallVectorImpl &PendingSpills = Q.interferingVRegs(); for (SmallVectorImpl::const_iterator I = PendingSpills.begin(), E = PendingSpills.end(); I != E; ++I) { LiveInterval &SpilledVReg = **I; DEBUG(dbgs() << "extracting from " << TRI->getName(PhysReg) << " " << SpilledVReg << '\n'); // Deallocate the interfering vreg by removing it from the union. // A LiveInterval instance may not be in a union during modification! PhysReg2LiveUnion[PhysReg].extract(SpilledVReg); // Clear the vreg assignment. VRM->clearVirt(SpilledVReg.reg); // Spill the extracted interval. spiller().spill(&SpilledVReg, SplitVRegs, PendingSpills); } // After extracting segments, the query's results are invalid. But keep the // contents valid until we're done accessing pendingSpills. Q.clear(); } // Spill or split all live virtual registers currently unified under PhysReg // that interfere with VirtReg. The newly spilled or split live intervals are // returned by appending them to SplitVRegs. bool RegAllocBase::spillInterferences(LiveInterval &VirtReg, unsigned PhysReg, SmallVectorImpl &SplitVRegs) { // Record each interference and determine if all are spillable before mutating // either the union or live intervals. // Collect interferences assigned to the requested physical register. LiveIntervalUnion::Query &QPreg = query(VirtReg, PhysReg); unsigned NumInterferences = QPreg.collectInterferingVRegs(); if (QPreg.seenUnspillableVReg()) { return false; } // Collect interferences assigned to any alias of the physical register. for (const unsigned *asI = TRI->getAliasSet(PhysReg); *asI; ++asI) { LiveIntervalUnion::Query &QAlias = query(VirtReg, *asI); NumInterferences += QAlias.collectInterferingVRegs(); if (QAlias.seenUnspillableVReg()) { return false; } } DEBUG(dbgs() << "spilling " << TRI->getName(PhysReg) << " interferences with " << VirtReg << "\n"); assert(NumInterferences > 0 && "expect interference"); // Spill each interfering vreg allocated to PhysReg or an alias. spillReg(VirtReg, PhysReg, SplitVRegs); for (const unsigned *AliasI = TRI->getAliasSet(PhysReg); *AliasI; ++AliasI) spillReg(VirtReg, *AliasI, SplitVRegs); return true; } // Add newly allocated physical registers to the MBB live in sets. void RegAllocBase::addMBBLiveIns(MachineFunction *MF) { typedef SmallVector MBBVec; MBBVec liveInMBBs; MachineBasicBlock &entryMBB = *MF->begin(); for (unsigned PhysReg = 0; PhysReg < PhysReg2LiveUnion.numRegs(); ++PhysReg) { LiveIntervalUnion &LiveUnion = PhysReg2LiveUnion[PhysReg]; if (LiveUnion.empty()) continue; for (LiveIntervalUnion::SegmentIter SI = LiveUnion.begin(); SI.valid(); ++SI) { // Find the set of basic blocks which this range is live into... liveInMBBs.clear(); if (!LIS->findLiveInMBBs(SI.start(), SI.stop(), liveInMBBs)) continue; // And add the physreg for this interval to their live-in sets. for (MBBVec::iterator I = liveInMBBs.begin(), E = liveInMBBs.end(); I != E; ++I) { MachineBasicBlock *MBB = *I; if (MBB == &entryMBB) continue; if (MBB->isLiveIn(PhysReg)) continue; MBB->addLiveIn(PhysReg); } } } } //===----------------------------------------------------------------------===// // RABasic Implementation //===----------------------------------------------------------------------===// // Driver for the register assignment and splitting heuristics. // Manages iteration over the LiveIntervalUnions. // // This is a minimal implementation of register assignment and splitting that // spills whenever we run out of registers. // // selectOrSplit can only be called once per live virtual register. We then do a // single interference test for each register the correct class until we find an // available register. So, the number of interference tests in the worst case is // |vregs| * |machineregs|. And since the number of interference tests is // minimal, there is no value in caching them outside the scope of // selectOrSplit(). unsigned RABasic::selectOrSplit(LiveInterval &VirtReg, SmallVectorImpl &SplitVRegs) { // Populate a list of physical register spill candidates. SmallVector PhysRegSpillCands; // Check for an available register in this class. const TargetRegisterClass *TRC = MRI->getRegClass(VirtReg.reg); DEBUG(dbgs() << "RegClass: " << TRC->getName() << ' '); for (TargetRegisterClass::iterator I = TRC->allocation_order_begin(*MF), E = TRC->allocation_order_end(*MF); I != E; ++I) { unsigned PhysReg = *I; if (ReservedRegs.test(PhysReg)) continue; // Check interference and as a side effect, intialize queries for this // VirtReg and its aliases. unsigned interfReg = checkPhysRegInterference(VirtReg, PhysReg); if (interfReg == 0) { // Found an available register. return PhysReg; } LiveInterval *interferingVirtReg = Queries[interfReg].firstInterference().liveUnionPos().value(); // The current VirtReg must either spillable, or one of its interferences // must have less spill weight. if (interferingVirtReg->weight < VirtReg.weight ) { PhysRegSpillCands.push_back(PhysReg); } } // Try to spill another interfering reg with less spill weight. // // FIXME: RAGreedy will sort this list by spill weight. for (SmallVectorImpl::iterator PhysRegI = PhysRegSpillCands.begin(), PhysRegE = PhysRegSpillCands.end(); PhysRegI != PhysRegE; ++PhysRegI) { if (!spillInterferences(VirtReg, *PhysRegI, SplitVRegs)) continue; assert(checkPhysRegInterference(VirtReg, *PhysRegI) == 0 && "Interference after spill."); // Tell the caller to allocate to this newly freed physical register. return *PhysRegI; } // No other spill candidates were found, so spill the current VirtReg. DEBUG(dbgs() << "spilling: " << VirtReg << '\n'); SmallVector pendingSpills; spiller().spill(&VirtReg, SplitVRegs, pendingSpills); // The live virtual register requesting allocation was spilled, so tell // the caller not to allocate anything during this round. return 0; } bool RABasic::runOnMachineFunction(MachineFunction &mf) { DEBUG(dbgs() << "********** BASIC REGISTER ALLOCATION **********\n" << "********** Function: " << ((Value*)mf.getFunction())->getName() << '\n'); MF = &mf; TM = &mf.getTarget(); MRI = &mf.getRegInfo(); DEBUG(RMF = &getAnalysis()); const TargetRegisterInfo *TRI = TM->getRegisterInfo(); RegAllocBase::init(*TRI, getAnalysis(), getAnalysis()); ReservedRegs = TRI->getReservedRegs(*MF); SpillerInstance.reset(createSpiller(*this, *MF, *VRM)); allocatePhysRegs(); addMBBLiveIns(MF); // Diagnostic output before rewriting DEBUG(dbgs() << "Post alloc VirtRegMap:\n" << *VRM << "\n"); // optional HTML output DEBUG(RMF->renderMachineFunction("After basic register allocation.", VRM)); // FIXME: Verification currently must run before VirtRegRewriter. We should // make the rewriter a separate pass and override verifyAnalysis instead. When // that happens, verification naturally falls under VerifyMachineCode. #ifndef NDEBUG if (VerifyRegAlloc) { // Verify accuracy of LiveIntervals. The standard machine code verifier // ensures that each LiveIntervals covers all uses of the virtual reg. // FIXME: MachineVerifier is badly broken when using the standard // spiller. Always use -spiller=inline with -verify-regalloc. Even with the // inline spiller, some tests fail to verify because the coalescer does not // always generate verifiable code. MF->verify(this); // Verify that LiveIntervals are partitioned into unions and disjoint within // the unions. verify(); } #endif // !NDEBUG // Run rewriter std::auto_ptr rewriter(createVirtRegRewriter()); rewriter->runOnMachineFunction(*MF, *VRM, LIS); // The pass output is in VirtRegMap. Release all the transient data. releaseMemory(); return true; } FunctionPass* llvm::createBasicRegisterAllocator() { return new RABasic(); }