//===---- llvm/Analysis/ScalarEvolutionExpander.h - SCEV Exprs --*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file was developed by the LLVM research group and is distributed under // the University of Illinois Open Source License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file defines the classes used to generate code from scalar expressions. // //===----------------------------------------------------------------------===// #ifndef LLVM_ANALYSIS_SCALAREVOLUTION_EXPANDER_H #define LLVM_ANALYSIS_SCALAREVOLUTION_EXPANDER_H #include "llvm/BasicBlock.h" #include "llvm/Constants.h" #include "llvm/Instructions.h" #include "llvm/Type.h" #include "llvm/Analysis/ScalarEvolution.h" #include "llvm/Analysis/ScalarEvolutionExpressions.h" #include "llvm/Support/CFG.h" namespace llvm { /// SCEVExpander - This class uses information about analyze scalars to /// rewrite expressions in canonical form. /// /// Clients should create an instance of this class when rewriting is needed, /// and destroy it when finished to allow the release of the associated /// memory. struct SCEVExpander : public SCEVVisitor { ScalarEvolution &SE; LoopInfo &LI; std::map InsertedExpressions; std::set InsertedInstructions; Instruction *InsertPt; friend struct SCEVVisitor; public: SCEVExpander(ScalarEvolution &se, LoopInfo &li) : SE(se), LI(li) {} LoopInfo &getLoopInfo() const { return LI; } /// clear - Erase the contents of the InsertedExpressions map so that users /// trying to expand the same expression into multiple BasicBlocks or /// different places within the same BasicBlock can do so. void clear() { InsertedExpressions.clear(); } /// isInsertedInstruction - Return true if the specified instruction was /// inserted by the code rewriter. If so, the client should not modify the /// instruction. bool isInsertedInstruction(Instruction *I) const { return InsertedInstructions.count(I); } /// getOrInsertCanonicalInductionVariable - This method returns the /// canonical induction variable of the specified type for the specified /// loop (inserting one if there is none). A canonical induction variable /// starts at zero and steps by one on each iteration. Value *getOrInsertCanonicalInductionVariable(const Loop *L, const Type *Ty){ assert((Ty->isInteger() || Ty->isFloatingPoint()) && "Can only insert integer or floating point induction variables!"); SCEVHandle H = SCEVAddRecExpr::get(SCEVUnknown::getIntegerSCEV(0, Ty), SCEVUnknown::getIntegerSCEV(1, Ty), L); return expand(H); } /// addInsertedValue - Remember the specified instruction as being the /// canonical form for the specified SCEV. void addInsertedValue(Instruction *I, SCEV *S) { InsertedExpressions[S] = (Value*)I; InsertedInstructions.insert(I); } /// expandCodeFor - Insert code to directly compute the specified SCEV /// expression into the program. The inserted code is inserted into the /// specified block. /// /// If a particular value sign is required, a type may be specified for the /// result. Value *expandCodeFor(SCEVHandle SH, Instruction *IP, const Type *Ty = 0) { // Expand the code for this SCEV. this->InsertPt = IP; return expandInTy(SH, Ty); } /// InsertCastOfTo - Insert a cast of V to the specified type, doing what /// we can to share the casts. static Value *InsertCastOfTo(Instruction::CastOps opcode, Value *V, const Type *Ty); protected: Value *expand(SCEV *S) { // Check to see if we already expanded this. std::map::iterator I = InsertedExpressions.find(S); if (I != InsertedExpressions.end()) return I->second; Value *V = visit(S); InsertedExpressions[S] = V; return V; } Value *expandInTy(SCEV *S, const Type *Ty) { Value *V = expand(S); if (Ty && V->getType() != Ty) { if (isa(Ty) && V->getType()->isInteger()) return InsertCastOfTo(Instruction::IntToPtr, V, Ty); else if (Ty->isInteger() && isa(V->getType())) return InsertCastOfTo(Instruction::PtrToInt, V, Ty); else if (Ty->getPrimitiveSizeInBits() == V->getType()->getPrimitiveSizeInBits()) return InsertCastOfTo(Instruction::BitCast, V, Ty); else if (Ty->getPrimitiveSizeInBits() > V->getType()->getPrimitiveSizeInBits()) return InsertCastOfTo(Instruction::ZExt, V, Ty); else return InsertCastOfTo(Instruction::Trunc, V, Ty); } return V; } Value *visitConstant(SCEVConstant *S) { return S->getValue(); } Value *visitTruncateExpr(SCEVTruncateExpr *S) { Value *V = expand(S->getOperand()); return CastInst::createTruncOrBitCast(V, S->getType(), "tmp.", InsertPt); } Value *visitZeroExtendExpr(SCEVZeroExtendExpr *S) { Value *V = expandInTy(S->getOperand(), S->getType()); return CastInst::createZExtOrBitCast(V, S->getType(), "tmp.", InsertPt); } Value *visitAddExpr(SCEVAddExpr *S) { const Type *Ty = S->getType(); Value *V = expandInTy(S->getOperand(S->getNumOperands()-1), Ty); // Emit a bunch of add instructions for (int i = S->getNumOperands()-2; i >= 0; --i) V = BinaryOperator::createAdd(V, expandInTy(S->getOperand(i), Ty), "tmp.", InsertPt); return V; } Value *visitMulExpr(SCEVMulExpr *S); Value *visitSDivExpr(SCEVSDivExpr *S) { const Type *Ty = S->getType(); Value *LHS = expandInTy(S->getLHS(), Ty); Value *RHS = expandInTy(S->getRHS(), Ty); return BinaryOperator::createSDiv(LHS, RHS, "tmp.", InsertPt); } Value *visitAddRecExpr(SCEVAddRecExpr *S); Value *visitUnknown(SCEVUnknown *S) { return S->getValue(); } }; } #endif