//===- Target.td - Target Independent TableGen interface ---*- tablegen -*-===// // // The LLVM Compiler Infrastructure // // This file was developed by the LLVM research group and is distributed under // the University of Illinois Open Source License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file defines the target-independent interfaces which should be // implemented by each target which is using a TableGen based code generator. // //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// // // Value types - These values correspond to the register types defined in the // ValueTypes.h file. If you update anything here, you must update it there as // well! // class ValueType { string Namespace = "MVT"; int Size = size; int Value = value; } def OtherVT: ValueType<0 , 0>; // "Other" value def i1 : ValueType<1 , 1>; // One bit boolean value def i8 : ValueType<8 , 2>; // 8-bit integer value def i16 : ValueType<16 , 3>; // 16-bit integer value def i32 : ValueType<32 , 4>; // 32-bit integer value def i64 : ValueType<64 , 5>; // 64-bit integer value def i128 : ValueType<128, 6>; // 128-bit integer value def f32 : ValueType<32 , 7>; // 32-bit floating point value def f64 : ValueType<64 , 8>; // 64-bit floating point value def f80 : ValueType<80 , 9>; // 80-bit floating point value def f128 : ValueType<128, 10>; // 128-bit floating point value def FlagVT : ValueType<0 , 11>; // Condition code or machine flag def isVoid : ValueType<0 , 12>; // Produces no value def Vector : ValueType<0 , 13>; // Abstract vector value def v16i8 : ValueType<128, 14>; // 16 x i8 vector value def v8i16 : ValueType<128, 15>; // 8 x i16 vector value def v4i32 : ValueType<128, 16>; // 4 x i32 vector value def v2i64 : ValueType<128, 17>; // 2 x i64 vector value def v4f32 : ValueType<128, 18>; // 4 x f32 vector value def v2f64 : ValueType<128, 19>; // 2 x f64 vector value //===----------------------------------------------------------------------===// // Register file description - These classes are used to fill in the target // description classes. class RegisterClass; // Forward def // Register - You should define one instance of this class for each register // in the target machine. String n will become the "name" of the register. class Register { string Namespace = ""; string Name = n; // SpillSize - If this value is set to a non-zero value, it is the size in // bits of the spill slot required to hold this register. If this value is // set to zero, the information is inferred from any register classes the // register belongs to. int SpillSize = 0; // SpillAlignment - This value is used to specify the alignment required for // spilling the register. Like SpillSize, this should only be explicitly // specified if the register is not in a register class. int SpillAlignment = 0; // Aliases - A list of registers that this register overlaps with. A read or // modification of this register can potentially read or modifie the aliased // registers. // list Aliases = []; } // RegisterGroup - This can be used to define instances of Register which // need to specify aliases. // List "aliases" specifies which registers are aliased to this one. This // allows the code generator to be careful not to put two values with // overlapping live ranges into registers which alias. class RegisterGroup aliases> : Register { let Aliases = aliases; } // RegisterClass - Now that all of the registers are defined, and aliases // between registers are defined, specify which registers belong to which // register classes. This also defines the default allocation order of // registers by register allocators. // class RegisterClass regTypes, int alignment, list regList> { string Namespace = namespace; // RegType - Specify the ValueType of the registers in this register class. // Note that all registers in a register class must have the same ValueType. // list RegTypes = regTypes; // Size - Specify the spill size in bits of the registers. A default value of // zero lets tablgen pick an appropriate size. int Size = 0; // Alignment - Specify the alignment required of the registers when they are // stored or loaded to memory. // int Alignment = alignment; // MemberList - Specify which registers are in this class. If the // allocation_order_* method are not specified, this also defines the order of // allocation used by the register allocator. // list MemberList = regList; // MethodProtos/MethodBodies - These members can be used to insert arbitrary // code into a generated register class. The normal usage of this is to // overload virtual methods. code MethodProtos = [{}]; code MethodBodies = [{}]; } //===----------------------------------------------------------------------===// // Pull in the common support for scheduling // include "../TargetSchedule.td" class Predicate; // Forward def //===----------------------------------------------------------------------===// // Instruction set description - These classes correspond to the C++ classes in // the Target/TargetInstrInfo.h file. // class Instruction { string Name = ""; // The opcode string for this instruction string Namespace = ""; dag OperandList; // An dag containing the MI operand list. string AsmString = ""; // The .s format to print the instruction with. // Pattern - Set to the DAG pattern for this instruction, if we know of one, // otherwise, uninitialized. list Pattern; // The follow state will eventually be inferred automatically from the // instruction pattern. list Uses = []; // Default to using no non-operand registers list Defs = []; // Default to modifying no non-operand registers // Predicates - List of predicates which will be turned into isel matching // code. list Predicates = []; // These bits capture information about the high-level semantics of the // instruction. bit isReturn = 0; // Is this instruction a return instruction? bit isBranch = 0; // Is this instruction a branch instruction? bit isBarrier = 0; // Can control flow fall through this instruction? bit isCall = 0; // Is this instruction a call instruction? bit isLoad = 0; // Is this instruction a load instruction? bit isStore = 0; // Is this instruction a store instruction? bit isTwoAddress = 0; // Is this a two address instruction? bit isConvertibleToThreeAddress = 0; // Can this 2-addr instruction promote? bit isCommutable = 0; // Is this 3 operand instruction commutable? bit isTerminator = 0; // Is this part of the terminator for a basic block? bit hasDelaySlot = 0; // Does this instruction have an delay slot? bit usesCustomDAGSchedInserter = 0; // Pseudo instr needing special help. bit hasCtrlDep = 0; // Does this instruction r/w ctrl-flow chains? bit hasInFlag = 0; // Does this instruction read a flag operand? bit hasOutFlag = 0; // Does this instruction write a flag operand? bit noResults = 0; // Does this instruction produce no results? InstrItinClass Itinerary; // Execution steps used for scheduling. } /// Predicates - These are extra conditionals which are turned into instruction /// selector matching code. Currently each predicate is just a string. class Predicate { string CondString = cond; } class Requires preds> { list Predicates = preds; } /// ops definition - This is just a simple marker used to identify the operands /// list for an instruction. This should be used like this: /// (ops R32:$dst, R32:$src) or something similar. def ops; /// variable_ops definition - Mark this instruction as taking a variable number /// of operands. def variable_ops; /// Operand Types - These provide the built-in operand types that may be used /// by a target. Targets can optionally provide their own operand types as /// needed, though this should not be needed for RISC targets. class Operand { ValueType Type = ty; string PrintMethod = "printOperand"; int NumMIOperands = 1; dag MIOperandInfo = (ops); } def i1imm : Operand; def i8imm : Operand; def i16imm : Operand; def i32imm : Operand; def i64imm : Operand; // InstrInfo - This class should only be instantiated once to provide parameters // which are global to the the target machine. // class InstrInfo { Instruction PHIInst; // If the target wants to associate some target-specific information with each // instruction, it should provide these two lists to indicate how to assemble // the target specific information into the 32 bits available. // list TSFlagsFields = []; list TSFlagsShifts = []; // Target can specify its instructions in either big or little-endian formats. // For instance, while both Sparc and PowerPC are big-endian platforms, the // Sparc manual specifies its instructions in the format [31..0] (big), while // PowerPC specifies them using the format [0..31] (little). bit isLittleEndianEncoding = 0; } //===----------------------------------------------------------------------===// // AsmWriter - This class can be implemented by targets that need to customize // the format of the .s file writer. // // Subtargets can have multiple different asmwriters (e.g. AT&T vs Intel syntax // on X86 for example). // class AsmWriter { // AsmWriterClassName - This specifies the suffix to use for the asmwriter // class. Generated AsmWriter classes are always prefixed with the target // name. string AsmWriterClassName = "AsmPrinter"; // InstFormatName - AsmWriters can specify the name of the format string to // print instructions with. string InstFormatName = "AsmString"; // Variant - AsmWriters can be of multiple different variants. Variants are // used to support targets that need to emit assembly code in ways that are // mostly the same for different targets, but have minor differences in // syntax. If the asmstring contains {|} characters in them, this integer // will specify which alternative to use. For example "{x|y|z}" with Variant // == 1, will expand to "y". int Variant = 0; } def DefaultAsmWriter : AsmWriter; //===----------------------------------------------------------------------===// // Target - This class contains the "global" target information // class Target { // CalleeSavedRegisters - As you might guess, this is a list of the callee // saved registers for a target. list CalleeSavedRegisters = []; // PointerType - Specify the value type to be used to represent pointers in // this target. Typically this is an i32 or i64 type. ValueType PointerType; // InstructionSet - Instruction set description for this target. InstrInfo InstructionSet; // AssemblyWriters - The AsmWriter instances available for this target. list AssemblyWriters = [DefaultAsmWriter]; } //===----------------------------------------------------------------------===// // SubtargetFeature - A characteristic of the chip set. // class SubtargetFeature { // Name - Feature name. Used by command line (-mattr=) to determine the // appropriate target chip. // string Name = n; // Type - Type of attribute to be set by feature. // string Type = t; // Attribute - Attribute to be set by feature. // string Attribute = a; // Desc - Feature description. Used by command line (-mattr=) to display help // information. // string Desc = d; } //===----------------------------------------------------------------------===// // Processor chip sets - These values represent each of the chip sets supported // by the scheduler. Each Processor definition requires corresponding // instruction itineraries. // class Processor f> { // Name - Chip set name. Used by command line (-mcpu=) to determine the // appropriate target chip. // string Name = n; // ProcItin - The scheduling information for the target processor. // ProcessorItineraries ProcItin = pi; // Features - list of list Features = f; } //===----------------------------------------------------------------------===// // Pull in the common support for DAG isel generation // include "../TargetSelectionDAG.td"