//===- IntrinsicEmitter.cpp - Generate intrinsic information --------------===// // // The LLVM Compiler Infrastructure // // This file was developed by Chris Lattner and is distributed under // the University of Illinois Open Source License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This tablegen backend emits information about intrinsic functions. // //===----------------------------------------------------------------------===// #include "CodeGenTarget.h" #include "IntrinsicEmitter.h" #include "Record.h" #include "llvm/ADT/StringExtras.h" #include using namespace llvm; //===----------------------------------------------------------------------===// // IntrinsicEmitter Implementation //===----------------------------------------------------------------------===// void IntrinsicEmitter::run(std::ostream &OS) { EmitSourceFileHeader("Intrinsic Function Source Fragment", OS); std::vector Ints = LoadIntrinsics(Records); // Emit the enum information. EmitEnumInfo(Ints, OS); // Emit the intrinsic ID -> name table. EmitIntrinsicToNameTable(Ints, OS); // Emit the function name recognizer. EmitFnNameRecognizer(Ints, OS); // Emit the intrinsic verifier. EmitVerifier(Ints, OS); // Emit the intrinsic declaration generator. EmitGenerator(Ints, OS); // Emit mod/ref info for each function. EmitModRefInfo(Ints, OS); // Emit table of non-memory accessing intrinsics. EmitNoMemoryInfo(Ints, OS); // Emit side effect info for each intrinsic. EmitSideEffectInfo(Ints, OS); // Emit a list of intrinsics with corresponding GCC builtins. EmitGCCBuiltinList(Ints, OS); // Emit code to translate GCC builtins into LLVM intrinsics. EmitIntrinsicToGCCBuiltinMap(Ints, OS); } void IntrinsicEmitter::EmitEnumInfo(const std::vector &Ints, std::ostream &OS) { OS << "// Enum values for Intrinsics.h\n"; OS << "#ifdef GET_INTRINSIC_ENUM_VALUES\n"; for (unsigned i = 0, e = Ints.size(); i != e; ++i) { OS << " " << Ints[i].EnumName; OS << ((i != e-1) ? ", " : " "); OS << std::string(40-Ints[i].EnumName.size(), ' ') << "// " << Ints[i].Name << "\n"; } OS << "#endif\n\n"; } void IntrinsicEmitter:: EmitFnNameRecognizer(const std::vector &Ints, std::ostream &OS) { // Build a function name -> intrinsic name mapping. std::map IntMapping; for (unsigned i = 0, e = Ints.size(); i != e; ++i) IntMapping[Ints[i].Name] = i; OS << "// Function name -> enum value recognizer code.\n"; OS << "#ifdef GET_FUNCTION_RECOGNIZER\n"; OS << " switch (Name[5]) {\n"; OS << " default:\n"; // Emit the intrinsics in sorted order. char LastChar = 0; for (std::map::iterator I = IntMapping.begin(), E = IntMapping.end(); I != E; ++I) { if (I->first[5] != LastChar) { LastChar = I->first[5]; OS << " break;\n"; OS << " case '" << LastChar << "':\n"; } // For overloaded intrinsics, only the prefix needs to match if (Ints[I->second].isOverloaded) OS << " if (Len > " << I->first.size() << " && !memcmp(Name, \"" << I->first << ".\", " << (I->first.size() + 1) << ")) return Intrinsic::" << Ints[I->second].EnumName << ";\n"; else OS << " if (Len == " << I->first.size() << " && !memcmp(Name, \"" << I->first << "\", " << I->first.size() << ")) return Intrinsic::" << Ints[I->second].EnumName << ";\n"; } OS << " }\n"; OS << "#endif\n\n"; } void IntrinsicEmitter:: EmitIntrinsicToNameTable(const std::vector &Ints, std::ostream &OS) { OS << "// Intrinsic ID to name table\n"; OS << "#ifdef GET_INTRINSIC_NAME_TABLE\n"; OS << " // Note that entry #0 is the invalid intrinsic!\n"; for (unsigned i = 0, e = Ints.size(); i != e; ++i) OS << " \"" << Ints[i].Name << "\",\n"; OS << "#endif\n\n"; } static void EmitTypeForValueType(std::ostream &OS, MVT::ValueType VT) { if (MVT::isInteger(VT)) { unsigned BitWidth = MVT::getSizeInBits(VT); OS << "IntegerType::get(" << BitWidth << ")"; } else if (VT == MVT::Other) { // MVT::OtherVT is used to mean the empty struct type here. OS << "StructType::get(std::vector())"; } else if (VT == MVT::f32) { OS << "Type::FloatTy"; } else if (VT == MVT::f64) { OS << "Type::DoubleTy"; } else if (VT == MVT::f80) { OS << "Type::X86_FP80Ty"; } else if (VT == MVT::f128) { OS << "Type::FP128Ty"; } else if (VT == MVT::ppcf128) { OS << "Type::PPC_FP128Ty"; } else if (VT == MVT::isVoid) { OS << "Type::VoidTy"; } else { assert(false && "Unsupported ValueType!"); } } static void EmitTypeGenerate(std::ostream &OS, Record *ArgType, unsigned &ArgNo) { MVT::ValueType VT = getValueType(ArgType->getValueAsDef("VT")); if (ArgType->isSubClassOf("LLVMMatchType")) { unsigned Number = ArgType->getValueAsInt("Number"); assert(Number < ArgNo && "Invalid matching number!"); OS << "Tys[" << Number << "]"; } else if (VT == MVT::iAny || VT == MVT::fAny) { // NOTE: The ArgNo variable here is not the absolute argument number, it is // the index of the "arbitrary" type in the Tys array passed to the // Intrinsic::getDeclaration function. Consequently, we only want to // increment it when we actually hit an overloaded type. Getting this wrong // leads to very subtle bugs! OS << "Tys[" << ArgNo++ << "]"; } else if (MVT::isVector(VT)) { OS << "VectorType::get("; EmitTypeForValueType(OS, MVT::getVectorElementType(VT)); OS << ", " << MVT::getVectorNumElements(VT) << ")"; } else if (VT == MVT::iPTR) { OS << "PointerType::get("; EmitTypeGenerate(OS, ArgType->getValueAsDef("ElTy"), ArgNo); OS << ")"; } else if (VT == MVT::isVoid) { if (ArgNo == 0) OS << "Type::VoidTy"; else // MVT::isVoid is used to mean varargs here. OS << "..."; } else { EmitTypeForValueType(OS, VT); } } /// RecordListComparator - Provide a determinstic comparator for lists of /// records. namespace { struct RecordListComparator { bool operator()(const std::vector &LHS, const std::vector &RHS) const { unsigned i = 0; do { if (i == RHS.size()) return false; // RHS is shorter than LHS. if (LHS[i] != RHS[i]) return LHS[i]->getName() < RHS[i]->getName(); } while (++i != LHS.size()); return i != RHS.size(); } }; } void IntrinsicEmitter::EmitVerifier(const std::vector &Ints, std::ostream &OS) { OS << "// Verifier::visitIntrinsicFunctionCall code.\n"; OS << "#ifdef GET_INTRINSIC_VERIFIER\n"; OS << " switch (ID) {\n"; OS << " default: assert(0 && \"Invalid intrinsic!\");\n"; // This checking can emit a lot of very common code. To reduce the amount of // code that we emit, batch up cases that have identical types. This avoids // problems where GCC can run out of memory compiling Verifier.cpp. typedef std::map, std::vector, RecordListComparator> MapTy; MapTy UniqueArgInfos; // Compute the unique argument type info. for (unsigned i = 0, e = Ints.size(); i != e; ++i) UniqueArgInfos[Ints[i].ArgTypeDefs].push_back(i); // Loop through the array, emitting one comparison for each batch. for (MapTy::iterator I = UniqueArgInfos.begin(), E = UniqueArgInfos.end(); I != E; ++I) { for (unsigned i = 0, e = I->second.size(); i != e; ++i) { OS << " case Intrinsic::" << Ints[I->second[i]].EnumName << ":\t\t// " << Ints[I->second[i]].Name << "\n"; } const std::vector &ArgTypes = I->first; OS << " VerifyIntrinsicPrototype(ID, IF, " << ArgTypes.size() << ", "; for (unsigned j = 0; j != ArgTypes.size(); ++j) { Record *ArgType = ArgTypes[j]; if (ArgType->isSubClassOf("LLVMMatchType")) { unsigned Number = ArgType->getValueAsInt("Number"); assert(Number < j && "Invalid matching number!"); OS << "~" << Number; } else { MVT::ValueType VT = getValueType(ArgType->getValueAsDef("VT")); OS << getEnumName(VT); if (VT == MVT::isVoid && j != 0 && j != ArgTypes.size()-1) throw "Var arg type not last argument"; } if (j != ArgTypes.size()-1) OS << ", "; } OS << ");\n"; OS << " break;\n"; } OS << " }\n"; OS << "#endif\n\n"; } void IntrinsicEmitter::EmitGenerator(const std::vector &Ints, std::ostream &OS) { OS << "// Code for generating Intrinsic function declarations.\n"; OS << "#ifdef GET_INTRINSIC_GENERATOR\n"; OS << " switch (id) {\n"; OS << " default: assert(0 && \"Invalid intrinsic!\");\n"; // Similar to GET_INTRINSIC_VERIFIER, batch up cases that have identical // types. typedef std::map, std::vector, RecordListComparator> MapTy; MapTy UniqueArgInfos; // Compute the unique argument type info. for (unsigned i = 0, e = Ints.size(); i != e; ++i) UniqueArgInfos[Ints[i].ArgTypeDefs].push_back(i); // Loop through the array, emitting one generator for each batch. for (MapTy::iterator I = UniqueArgInfos.begin(), E = UniqueArgInfos.end(); I != E; ++I) { for (unsigned i = 0, e = I->second.size(); i != e; ++i) { OS << " case Intrinsic::" << Ints[I->second[i]].EnumName << ":\t\t// " << Ints[I->second[i]].Name << "\n"; } const std::vector &ArgTypes = I->first; unsigned N = ArgTypes.size(); if (N > 1 && getValueType(ArgTypes[N-1]->getValueAsDef("VT")) == MVT::isVoid) { OS << " IsVarArg = true;\n"; --N; } unsigned ArgNo = 0; OS << " ResultTy = "; EmitTypeGenerate(OS, ArgTypes[0], ArgNo); OS << ";\n"; for (unsigned j = 1; j != N; ++j) { OS << " ArgTys.push_back("; EmitTypeGenerate(OS, ArgTypes[j], ArgNo); OS << ");\n"; } OS << " break;\n"; } OS << " }\n"; OS << "#endif\n\n"; } void IntrinsicEmitter::EmitModRefInfo(const std::vector &Ints, std::ostream &OS) { OS << "// BasicAliasAnalysis code.\n"; OS << "#ifdef GET_MODREF_BEHAVIOR\n"; for (unsigned i = 0, e = Ints.size(); i != e; ++i) { switch (Ints[i].ModRef) { default: break; case CodeGenIntrinsic::NoMem: OS << " NoMemoryIntrinsics->set(Intrinsic::" << Ints[i].EnumName << ");\n"; break; case CodeGenIntrinsic::ReadArgMem: case CodeGenIntrinsic::ReadMem: OS << " OnlyReadsMemoryIntrinsics->set(Intrinsic::" << Ints[i].EnumName << ");\n"; break; } } OS << "#endif\n\n"; } void IntrinsicEmitter:: EmitNoMemoryInfo(const std::vector &Ints, std::ostream &OS) { OS << "// SelectionDAGIsel code.\n"; OS << "#ifdef GET_NO_MEMORY_INTRINSICS\n"; OS << " switch (IntrinsicID) {\n"; OS << " default: break;\n"; for (unsigned i = 0, e = Ints.size(); i != e; ++i) { switch (Ints[i].ModRef) { default: break; case CodeGenIntrinsic::NoMem: OS << " case Intrinsic::" << Ints[i].EnumName << ":\n"; break; } } OS << " return true; // These intrinsics do not reference memory.\n"; OS << " }\n"; OS << "#endif\n\n"; } void IntrinsicEmitter:: EmitSideEffectInfo(const std::vector &Ints, std::ostream &OS){ OS << "// Return true if doesn't access or only reads memory.\n"; OS << "#ifdef GET_SIDE_EFFECT_INFO\n"; OS << " switch (IntrinsicID) {\n"; OS << " default: break;\n"; for (unsigned i = 0, e = Ints.size(); i != e; ++i) { switch (Ints[i].ModRef) { default: break; case CodeGenIntrinsic::NoMem: case CodeGenIntrinsic::ReadArgMem: case CodeGenIntrinsic::ReadMem: OS << " case Intrinsic::" << Ints[i].EnumName << ":\n"; break; } } OS << " return true; // These intrinsics have no side effects.\n"; OS << " }\n"; OS << "#endif\n\n"; } void IntrinsicEmitter:: EmitGCCBuiltinList(const std::vector &Ints, std::ostream &OS){ OS << "// Get the GCC builtin that corresponds to an LLVM intrinsic.\n"; OS << "#ifdef GET_GCC_BUILTIN_NAME\n"; OS << " switch (F->getIntrinsicID()) {\n"; OS << " default: BuiltinName = \"\"; break;\n"; for (unsigned i = 0, e = Ints.size(); i != e; ++i) { if (!Ints[i].GCCBuiltinName.empty()) { OS << " case Intrinsic::" << Ints[i].EnumName << ": BuiltinName = \"" << Ints[i].GCCBuiltinName << "\"; break;\n"; } } OS << " }\n"; OS << "#endif\n\n"; } void IntrinsicEmitter:: EmitIntrinsicToGCCBuiltinMap(const std::vector &Ints, std::ostream &OS) { typedef std::map, std::string> BIMTy; BIMTy BuiltinMap; for (unsigned i = 0, e = Ints.size(); i != e; ++i) { if (!Ints[i].GCCBuiltinName.empty()) { std::pair Key(Ints[i].GCCBuiltinName, Ints[i].TargetPrefix); if (!BuiltinMap.insert(std::make_pair(Key, Ints[i].EnumName)).second) throw "Intrinsic '" + Ints[i].TheDef->getName() + "': duplicate GCC builtin name!"; } } OS << "// Get the LLVM intrinsic that corresponds to a GCC builtin.\n"; OS << "// This is used by the C front-end. The GCC builtin name is passed\n"; OS << "// in as BuiltinName, and a target prefix (e.g. 'ppc') is passed\n"; OS << "// in as TargetPrefix. The result is assigned to 'IntrinsicID'.\n"; OS << "#ifdef GET_LLVM_INTRINSIC_FOR_GCC_BUILTIN\n"; OS << " if (0);\n"; // Note: this could emit significantly better code if we cared. for (BIMTy::iterator I = BuiltinMap.begin(), E = BuiltinMap.end();I != E;++I){ OS << " else if ("; if (!I->first.second.empty()) { // Emit this as a strcmp, so it can be constant folded by the FE. OS << "!strcmp(TargetPrefix, \"" << I->first.second << "\") &&\n" << " "; } OS << "!strcmp(BuiltinName, \"" << I->first.first << "\"))\n"; OS << " IntrinsicID = Intrinsic::" << I->second << ";\n"; } OS << " else\n"; OS << " IntrinsicID = Intrinsic::not_intrinsic;\n"; OS << "#endif\n\n"; }