//===-- LoopUnroll.cpp - Loop unroller pass -------------------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This pass implements a simple loop unroller. It works best when loops have // been canonicalized by the -indvars pass, allowing it to determine the trip // counts of loops easily. // // This pass will multi-block loops only if they contain no non-unrolled // subloops. The process of unrolling can produce extraneous basic blocks // linked with unconditional branches. This will be corrected in the future. // //===----------------------------------------------------------------------===// #define DEBUG_TYPE "loop-unroll" #include "llvm/Transforms/Scalar.h" #include "llvm/Constants.h" #include "llvm/Function.h" #include "llvm/Instructions.h" #include "llvm/Analysis/ConstantFolding.h" #include "llvm/Analysis/LoopInfo.h" #include "llvm/Analysis/LoopPass.h" #include "llvm/Transforms/Utils/Cloning.h" #include "llvm/Transforms/Utils/Local.h" #include "llvm/Support/CFG.h" #include "llvm/Support/Compiler.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Debug.h" #include "llvm/Support/MathExtras.h" #include "llvm/ADT/Statistic.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/SmallPtrSet.h" #include "llvm/IntrinsicInst.h" #include #include #include using namespace llvm; STATISTIC(NumCompletelyUnrolled, "Number of loops completely unrolled"); STATISTIC(NumUnrolled, "Number of loops unrolled (completely or otherwise)"); namespace { cl::opt UnrollThreshold ("unroll-threshold", cl::init(100), cl::Hidden, cl::desc("The cut-off point for automatic loop unrolling")); cl::opt UnrollCount ("unroll-count", cl::init(0), cl::Hidden, cl::desc("Use this unroll count for all loops, for testing purposes")); class VISIBILITY_HIDDEN LoopUnroll : public LoopPass { LoopInfo *LI; // The current loop information public: static char ID; // Pass ID, replacement for typeid LoopUnroll() : LoopPass((intptr_t)&ID) {} /// A magic value for use with the Threshold parameter to indicate /// that the loop unroll should be performed regardless of how much /// code expansion would result. static const unsigned NoThreshold = UINT_MAX; bool runOnLoop(Loop *L, LPPassManager &LPM); bool unrollLoop(Loop *L, unsigned Count, unsigned Threshold); BasicBlock *FoldBlockIntoPredecessor(BasicBlock *BB); /// This transformation requires natural loop information & requires that /// loop preheaders be inserted into the CFG... /// virtual void getAnalysisUsage(AnalysisUsage &AU) const { AU.addRequiredID(LoopSimplifyID); AU.addRequiredID(LCSSAID); AU.addRequired(); AU.addPreservedID(LCSSAID); AU.addPreserved(); } }; char LoopUnroll::ID = 0; RegisterPass X("loop-unroll", "Unroll loops"); } LoopPass *llvm::createLoopUnrollPass() { return new LoopUnroll(); } /// ApproximateLoopSize - Approximate the size of the loop. static unsigned ApproximateLoopSize(const Loop *L) { unsigned Size = 0; for (unsigned i = 0, e = L->getBlocks().size(); i != e; ++i) { BasicBlock *BB = L->getBlocks()[i]; Instruction *Term = BB->getTerminator(); for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) { if (isa(I) && BB == L->getHeader()) { // Ignore PHI nodes in the header. } else if (I->hasOneUse() && I->use_back() == Term) { // Ignore instructions only used by the loop terminator. } else if (isa(I)) { // Ignore debug instructions } else { ++Size; } // TODO: Ignore expressions derived from PHI and constants if inval of phi // is a constant, or if operation is associative. This will get induction // variables. } } return Size; } // RemapInstruction - Convert the instruction operands from referencing the // current values into those specified by ValueMap. // static inline void RemapInstruction(Instruction *I, DenseMap &ValueMap) { for (unsigned op = 0, E = I->getNumOperands(); op != E; ++op) { Value *Op = I->getOperand(op); DenseMap::iterator It = ValueMap.find(Op); if (It != ValueMap.end()) Op = It->second; I->setOperand(op, Op); } } // FoldBlockIntoPredecessor - Folds a basic block into its predecessor if it // only has one predecessor, and that predecessor only has one successor. // Returns the new combined block. BasicBlock *LoopUnroll::FoldBlockIntoPredecessor(BasicBlock *BB) { // Merge basic blocks into their predecessor if there is only one distinct // pred, and if there is only one distinct successor of the predecessor, and // if there are no PHI nodes. // BasicBlock *OnlyPred = BB->getSinglePredecessor(); if (!OnlyPred) return 0; if (OnlyPred->getTerminator()->getNumSuccessors() != 1) return 0; DOUT << "Merging: " << *BB << "into: " << *OnlyPred; // Resolve any PHI nodes at the start of the block. They are all // guaranteed to have exactly one entry if they exist, unless there are // multiple duplicate (but guaranteed to be equal) entries for the // incoming edges. This occurs when there are multiple edges from // OnlyPred to OnlySucc. // while (PHINode *PN = dyn_cast(&BB->front())) { PN->replaceAllUsesWith(PN->getIncomingValue(0)); BB->getInstList().pop_front(); // Delete the phi node... } // Delete the unconditional branch from the predecessor... OnlyPred->getInstList().pop_back(); // Move all definitions in the successor to the predecessor... OnlyPred->getInstList().splice(OnlyPred->end(), BB->getInstList()); // Make all PHI nodes that referred to BB now refer to Pred as their // source... BB->replaceAllUsesWith(OnlyPred); std::string OldName = BB->getName(); // Erase basic block from the function... LI->removeBlock(BB); BB->eraseFromParent(); // Inherit predecessor's name if it exists... if (!OldName.empty() && !OnlyPred->hasName()) OnlyPred->setName(OldName); return OnlyPred; } bool LoopUnroll::runOnLoop(Loop *L, LPPassManager &LPM) { LI = &getAnalysis(); // Unroll the loop. if (!unrollLoop(L, UnrollCount, UnrollThreshold)) return false; // Update the loop information for this loop. // If we completely unrolled the loop, remove it from the parent. if (L->getNumBackEdges() == 0) LPM.deleteLoopFromQueue(L); return true; } /// Unroll the given loop by UnrollCount, or by a heuristically-determined /// value if Count is zero. If Threshold is not NoThreshold, it is a value /// to limit code size expansion. If the loop size would expand beyond the /// threshold value, unrolling is suppressed. The return value is true if /// any transformations are performed. /// bool LoopUnroll::unrollLoop(Loop *L, unsigned Count, unsigned Threshold) { assert(L->isLCSSAForm()); BasicBlock *Header = L->getHeader(); BasicBlock *LatchBlock = L->getLoopLatch(); BranchInst *BI = dyn_cast(LatchBlock->getTerminator()); DOUT << "Loop Unroll: F[" << Header->getParent()->getName() << "] Loop %" << Header->getName() << "\n"; if (!BI || BI->isUnconditional()) { // The loop-rotate pass can be helpful to avoid this in many cases. DOUT << " Can't unroll; loop not terminated by a conditional branch.\n"; return false; } // Determine the trip count and/or trip multiple. A TripCount value of zero // is used to mean an unknown trip count. The TripMultiple value is the // greatest known integer multiple of the trip count. unsigned TripCount = 0; unsigned TripMultiple = 1; if (Value *TripCountValue = L->getTripCount()) { if (ConstantInt *TripCountC = dyn_cast(TripCountValue)) { // Guard against huge trip counts. This also guards against assertions in // APInt from the use of getZExtValue, below. if (TripCountC->getValue().getActiveBits() <= 32) { TripCount = (unsigned)TripCountC->getZExtValue(); } } else if (BinaryOperator *BO = dyn_cast(TripCountValue)) { switch (BO->getOpcode()) { case BinaryOperator::Mul: if (ConstantInt *MultipleC = dyn_cast(BO->getOperand(1))) { if (MultipleC->getValue().getActiveBits() <= 32) { TripMultiple = (unsigned)MultipleC->getZExtValue(); } } break; default: break; } } } if (TripCount != 0) DOUT << " Trip Count = " << TripCount << "\n"; if (TripMultiple != 1) DOUT << " Trip Multiple = " << TripMultiple << "\n"; // Automatically select an unroll count. if (Count == 0) { // Conservative heuristic: if we know the trip count, see if we can // completely unroll (subject to the threshold, checked below); otherwise // don't unroll. if (TripCount != 0) { Count = TripCount; } else { return false; } } // Effectively "DCE" unrolled iterations that are beyond the tripcount // and will never be executed. if (TripCount != 0 && Count > TripCount) Count = TripCount; assert(Count > 0); assert(TripMultiple > 0); assert(TripCount == 0 || TripCount % TripMultiple == 0); // Enforce the threshold. if (Threshold != NoThreshold) { unsigned LoopSize = ApproximateLoopSize(L); DOUT << " Loop Size = " << LoopSize << "\n"; uint64_t Size = (uint64_t)LoopSize*Count; if (TripCount != 1 && Size > Threshold) { DOUT << " TOO LARGE TO UNROLL: " << Size << ">" << Threshold << "\n"; return false; } } // Are we eliminating the loop control altogether? bool CompletelyUnroll = Count == TripCount; // If we know the trip count, we know the multiple... unsigned BreakoutTrip = 0; if (TripCount != 0) { BreakoutTrip = TripCount % Count; TripMultiple = 0; } else { // Figure out what multiple to use. BreakoutTrip = TripMultiple = (unsigned)GreatestCommonDivisor64(Count, TripMultiple); } if (CompletelyUnroll) { DOUT << "COMPLETELY UNROLLING loop %" << Header->getName() << " with trip count " << TripCount << "!\n"; } else { DOUT << "UNROLLING loop %" << Header->getName() << " by " << Count; if (TripMultiple == 0 || BreakoutTrip != TripMultiple) { DOUT << " with a breakout at trip " << BreakoutTrip; } else if (TripMultiple != 1) { DOUT << " with " << TripMultiple << " trips per branch"; } DOUT << "!\n"; } std::vector LoopBlocks = L->getBlocks(); bool ContinueOnTrue = L->contains(BI->getSuccessor(0)); BasicBlock *LoopExit = BI->getSuccessor(ContinueOnTrue); // For the first iteration of the loop, we should use the precloned values for // PHI nodes. Insert associations now. typedef DenseMap ValueMapTy; ValueMapTy LastValueMap; std::vector OrigPHINode; for (BasicBlock::iterator I = Header->begin(); isa(I); ++I) { PHINode *PN = cast(I); OrigPHINode.push_back(PN); if (Instruction *I = dyn_cast(PN->getIncomingValueForBlock(LatchBlock))) if (L->contains(I->getParent())) LastValueMap[I] = I; } std::vector Headers; std::vector Latches; Headers.push_back(Header); Latches.push_back(LatchBlock); for (unsigned It = 1; It != Count; ++It) { char SuffixBuffer[100]; sprintf(SuffixBuffer, ".%d", It); std::vector NewBlocks; for (std::vector::iterator BB = LoopBlocks.begin(), E = LoopBlocks.end(); BB != E; ++BB) { ValueMapTy ValueMap; BasicBlock *New = CloneBasicBlock(*BB, ValueMap, SuffixBuffer); Header->getParent()->getBasicBlockList().push_back(New); // Loop over all of the PHI nodes in the block, changing them to use the // incoming values from the previous block. if (*BB == Header) for (unsigned i = 0, e = OrigPHINode.size(); i != e; ++i) { PHINode *NewPHI = cast(ValueMap[OrigPHINode[i]]); Value *InVal = NewPHI->getIncomingValueForBlock(LatchBlock); if (Instruction *InValI = dyn_cast(InVal)) if (It > 1 && L->contains(InValI->getParent())) InVal = LastValueMap[InValI]; ValueMap[OrigPHINode[i]] = InVal; New->getInstList().erase(NewPHI); } // Update our running map of newest clones LastValueMap[*BB] = New; for (ValueMapTy::iterator VI = ValueMap.begin(), VE = ValueMap.end(); VI != VE; ++VI) LastValueMap[VI->first] = VI->second; L->addBasicBlockToLoop(New, LI->getBase()); // Add phi entries for newly created values to all exit blocks except // the successor of the latch block. The successor of the exit block will // be updated specially after unrolling all the way. if (*BB != LatchBlock) for (Value::use_iterator UI = (*BB)->use_begin(), UE = (*BB)->use_end(); UI != UE;) { Instruction *UseInst = cast(*UI); ++UI; if (isa(UseInst) && !L->contains(UseInst->getParent())) { PHINode *phi = cast(UseInst); Value *Incoming = phi->getIncomingValueForBlock(*BB); phi->addIncoming(Incoming, New); } } // Keep track of new headers and latches as we create them, so that // we can insert the proper branches later. if (*BB == Header) Headers.push_back(New); if (*BB == LatchBlock) { Latches.push_back(New); // Also, clear out the new latch's back edge so that it doesn't look // like a new loop, so that it's amenable to being merged with adjacent // blocks later on. TerminatorInst *Term = New->getTerminator(); assert(L->contains(Term->getSuccessor(!ContinueOnTrue))); assert(Term->getSuccessor(ContinueOnTrue) == LoopExit); Term->setSuccessor(!ContinueOnTrue, NULL); } NewBlocks.push_back(New); } // Remap all instructions in the most recent iteration for (unsigned i = 0; i < NewBlocks.size(); ++i) { BasicBlock *NB = NewBlocks[i]; if (BasicBlock *UnwindDest = NB->getUnwindDest()) NB->setUnwindDest(cast(LastValueMap[UnwindDest])); for (BasicBlock::iterator I = NB->begin(), E = NB->end(); I != E; ++I) RemapInstruction(I, LastValueMap); } } // The latch block exits the loop. If there are any PHI nodes in the // successor blocks, update them to use the appropriate values computed as the // last iteration of the loop. if (Count != 1) { SmallPtrSet Users; for (Value::use_iterator UI = LatchBlock->use_begin(), UE = LatchBlock->use_end(); UI != UE; ++UI) if (PHINode *phi = dyn_cast(*UI)) Users.insert(phi); BasicBlock *LastIterationBB = cast(LastValueMap[LatchBlock]); for (SmallPtrSet::iterator SI = Users.begin(), SE = Users.end(); SI != SE; ++SI) { PHINode *PN = *SI; Value *InVal = PN->removeIncomingValue(LatchBlock, false); // If this value was defined in the loop, take the value defined by the // last iteration of the loop. if (Instruction *InValI = dyn_cast(InVal)) { if (L->contains(InValI->getParent())) InVal = LastValueMap[InVal]; } PN->addIncoming(InVal, LastIterationBB); } } // Now, if we're doing complete unrolling, loop over the PHI nodes in the // original block, setting them to their incoming values. if (CompletelyUnroll) { BasicBlock *Preheader = L->getLoopPreheader(); for (unsigned i = 0, e = OrigPHINode.size(); i != e; ++i) { PHINode *PN = OrigPHINode[i]; PN->replaceAllUsesWith(PN->getIncomingValueForBlock(Preheader)); Header->getInstList().erase(PN); } } // Now that all the basic blocks for the unrolled iterations are in place, // set up the branches to connect them. for (unsigned i = 0, e = Latches.size(); i != e; ++i) { // The original branch was replicated in each unrolled iteration. BranchInst *Term = cast(Latches[i]->getTerminator()); // The branch destination. unsigned j = (i + 1) % e; BasicBlock *Dest = Headers[j]; bool NeedConditional = true; // For a complete unroll, make the last iteration end with a branch // to the exit block. if (CompletelyUnroll && j == 0) { Dest = LoopExit; NeedConditional = false; } // If we know the trip count or a multiple of it, we can safely use an // unconditional branch for some iterations. if (j != BreakoutTrip && (TripMultiple == 0 || j % TripMultiple != 0)) { NeedConditional = false; } if (NeedConditional) { // Update the conditional branch's successor for the following // iteration. Term->setSuccessor(!ContinueOnTrue, Dest); } else { Term->setUnconditionalDest(Dest); // Merge adjacent basic blocks, if possible. if (BasicBlock *Fold = FoldBlockIntoPredecessor(Dest)) { std::replace(Latches.begin(), Latches.end(), Dest, Fold); std::replace(Headers.begin(), Headers.end(), Dest, Fold); } } } // At this point, the code is well formed. We now do a quick sweep over the // inserted code, doing constant propagation and dead code elimination as we // go. const std::vector &NewLoopBlocks = L->getBlocks(); for (std::vector::const_iterator BB = NewLoopBlocks.begin(), BBE = NewLoopBlocks.end(); BB != BBE; ++BB) for (BasicBlock::iterator I = (*BB)->begin(), E = (*BB)->end(); I != E; ) { Instruction *Inst = I++; if (isInstructionTriviallyDead(Inst)) (*BB)->getInstList().erase(Inst); else if (Constant *C = ConstantFoldInstruction(Inst)) { Inst->replaceAllUsesWith(C); (*BB)->getInstList().erase(Inst); } } NumCompletelyUnrolled += CompletelyUnroll; ++NumUnrolled; return true; }