//===-- llvm/CodeGen/SelectionDAG.h - InstSelection DAG ---------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file declares the SelectionDAG class, and transitively defines the // SDNode class and subclasses. // //===----------------------------------------------------------------------===// #ifndef LLVM_CODEGEN_SELECTIONDAG_H #define LLVM_CODEGEN_SELECTIONDAG_H #include "llvm/ADT/DenseSet.h" #include "llvm/ADT/SetVector.h" #include "llvm/ADT/StringMap.h" #include "llvm/ADT/ilist.h" #include "llvm/CodeGen/DAGCombine.h" #include "llvm/CodeGen/MachineFunction.h" #include "llvm/CodeGen/SelectionDAGNodes.h" #include "llvm/Support/RecyclingAllocator.h" #include "llvm/Target/TargetMachine.h" #include #include #include #include namespace llvm { class AliasAnalysis; class MachineConstantPoolValue; class MachineFunction; class MDNode; class SDDbgValue; class TargetLowering; class TargetSelectionDAGInfo; class SDVTListNode : public FoldingSetNode { friend struct FoldingSetTrait; /// FastID - A reference to an Interned FoldingSetNodeID for this node. /// The Allocator in SelectionDAG holds the data. /// SDVTList contains all types which are frequently accessed in SelectionDAG. /// The size of this list is not expected big so it won't introduce memory penalty. FoldingSetNodeIDRef FastID; const EVT *VTs; unsigned int NumVTs; /// The hash value for SDVTList is fixed so cache it to avoid hash calculation unsigned HashValue; public: SDVTListNode(const FoldingSetNodeIDRef ID, const EVT *VT, unsigned int Num) : FastID(ID), VTs(VT), NumVTs(Num) { HashValue = ID.ComputeHash(); } SDVTList getSDVTList() { SDVTList result = {VTs, NumVTs}; return result; } }; // Specialize FoldingSetTrait for SDVTListNode // To avoid computing temp FoldingSetNodeID and hash value. template<> struct FoldingSetTrait : DefaultFoldingSetTrait { static void Profile(const SDVTListNode &X, FoldingSetNodeID& ID) { ID = X.FastID; } static bool Equals(const SDVTListNode &X, const FoldingSetNodeID &ID, unsigned IDHash, FoldingSetNodeID &TempID) { if (X.HashValue != IDHash) return false; return ID == X.FastID; } static unsigned ComputeHash(const SDVTListNode &X, FoldingSetNodeID &TempID) { return X.HashValue; } }; template<> struct ilist_traits : public ilist_default_traits { private: mutable ilist_half_node Sentinel; public: SDNode *createSentinel() const { return static_cast(&Sentinel); } static void destroySentinel(SDNode *) {} SDNode *provideInitialHead() const { return createSentinel(); } SDNode *ensureHead(SDNode*) const { return createSentinel(); } static void noteHead(SDNode*, SDNode*) {} static void deleteNode(SDNode *) { llvm_unreachable("ilist_traits shouldn't see a deleteNode call!"); } private: static void createNode(const SDNode &); }; /// SDDbgInfo - Keeps track of dbg_value information through SDISel. We do /// not build SDNodes for these so as not to perturb the generated code; /// instead the info is kept off to the side in this structure. Each SDNode may /// have one or more associated dbg_value entries. This information is kept in /// DbgValMap. /// Byval parameters are handled separately because they don't use alloca's, /// which busts the normal mechanism. There is good reason for handling all /// parameters separately: they may not have code generated for them, they /// should always go at the beginning of the function regardless of other code /// motion, and debug info for them is potentially useful even if the parameter /// is unused. Right now only byval parameters are handled separately. class SDDbgInfo { SmallVector DbgValues; SmallVector ByvalParmDbgValues; typedef DenseMap > DbgValMapType; DbgValMapType DbgValMap; void operator=(const SDDbgInfo&) LLVM_DELETED_FUNCTION; SDDbgInfo(const SDDbgInfo&) LLVM_DELETED_FUNCTION; public: SDDbgInfo() {} void add(SDDbgValue *V, const SDNode *Node, bool isParameter) { if (isParameter) { ByvalParmDbgValues.push_back(V); } else DbgValues.push_back(V); if (Node) DbgValMap[Node].push_back(V); } void clear() { DbgValMap.clear(); DbgValues.clear(); ByvalParmDbgValues.clear(); } bool empty() const { return DbgValues.empty() && ByvalParmDbgValues.empty(); } ArrayRef getSDDbgValues(const SDNode *Node) { DbgValMapType::iterator I = DbgValMap.find(Node); if (I != DbgValMap.end()) return I->second; return ArrayRef(); } typedef SmallVectorImpl::iterator DbgIterator; DbgIterator DbgBegin() { return DbgValues.begin(); } DbgIterator DbgEnd() { return DbgValues.end(); } DbgIterator ByvalParmDbgBegin() { return ByvalParmDbgValues.begin(); } DbgIterator ByvalParmDbgEnd() { return ByvalParmDbgValues.end(); } }; class SelectionDAG; void checkForCycles(const SelectionDAG *DAG, bool force = false); /// SelectionDAG class - This is used to represent a portion of an LLVM function /// in a low-level Data Dependence DAG representation suitable for instruction /// selection. This DAG is constructed as the first step of instruction /// selection in order to allow implementation of machine specific optimizations /// and code simplifications. /// /// The representation used by the SelectionDAG is a target-independent /// representation, which has some similarities to the GCC RTL representation, /// but is significantly more simple, powerful, and is a graph form instead of a /// linear form. /// class SelectionDAG { const TargetMachine &TM; const TargetSelectionDAGInfo *TSI; const TargetLowering *TLI; MachineFunction *MF; LLVMContext *Context; CodeGenOpt::Level OptLevel; /// EntryNode - The starting token. SDNode EntryNode; /// Root - The root of the entire DAG. SDValue Root; /// AllNodes - A linked list of nodes in the current DAG. ilist AllNodes; /// NodeAllocatorType - The AllocatorType for allocating SDNodes. We use /// pool allocation with recycling. typedef RecyclingAllocator::Alignment> NodeAllocatorType; /// NodeAllocator - Pool allocation for nodes. NodeAllocatorType NodeAllocator; /// CSEMap - This structure is used to memoize nodes, automatically performing /// CSE with existing nodes when a duplicate is requested. FoldingSet CSEMap; /// OperandAllocator - Pool allocation for machine-opcode SDNode operands. BumpPtrAllocator OperandAllocator; /// Allocator - Pool allocation for misc. objects that are created once per /// SelectionDAG. BumpPtrAllocator Allocator; /// DbgInfo - Tracks dbg_value information through SDISel. SDDbgInfo *DbgInfo; public: /// DAGUpdateListener - Clients of various APIs that cause global effects on /// the DAG can optionally implement this interface. This allows the clients /// to handle the various sorts of updates that happen. /// /// A DAGUpdateListener automatically registers itself with DAG when it is /// constructed, and removes itself when destroyed in RAII fashion. struct DAGUpdateListener { DAGUpdateListener *const Next; SelectionDAG &DAG; explicit DAGUpdateListener(SelectionDAG &D) : Next(D.UpdateListeners), DAG(D) { DAG.UpdateListeners = this; } virtual ~DAGUpdateListener() { assert(DAG.UpdateListeners == this && "DAGUpdateListeners must be destroyed in LIFO order"); DAG.UpdateListeners = Next; } /// NodeDeleted - The node N that was deleted and, if E is not null, an /// equivalent node E that replaced it. virtual void NodeDeleted(SDNode *N, SDNode *E); /// NodeUpdated - The node N that was updated. virtual void NodeUpdated(SDNode *N); }; /// NewNodesMustHaveLegalTypes - When true, additional steps are taken to /// ensure that getConstant() and similar functions return DAG nodes that /// have legal types. This is important after type legalization since /// any illegally typed nodes generated after this point will not experience /// type legalization. bool NewNodesMustHaveLegalTypes; private: /// DAGUpdateListener is a friend so it can manipulate the listener stack. friend struct DAGUpdateListener; /// UpdateListeners - Linked list of registered DAGUpdateListener instances. /// This stack is maintained by DAGUpdateListener RAII. DAGUpdateListener *UpdateListeners; /// setGraphColorHelper - Implementation of setSubgraphColor. /// Return whether we had to truncate the search. /// bool setSubgraphColorHelper(SDNode *N, const char *Color, DenseSet &visited, int level, bool &printed); void operator=(const SelectionDAG&) LLVM_DELETED_FUNCTION; SelectionDAG(const SelectionDAG&) LLVM_DELETED_FUNCTION; public: explicit SelectionDAG(const TargetMachine &TM, llvm::CodeGenOpt::Level); ~SelectionDAG(); /// init - Prepare this SelectionDAG to process code in the given /// MachineFunction. /// void init(MachineFunction &mf, const TargetLowering *TLI); /// clear - Clear state and free memory necessary to make this /// SelectionDAG ready to process a new block. /// void clear(); MachineFunction &getMachineFunction() const { return *MF; } const TargetMachine &getTarget() const { return TM; } const TargetSubtargetInfo &getSubtarget() const { return MF->getSubtarget(); } const TargetLowering &getTargetLoweringInfo() const { return *TLI; } const TargetSelectionDAGInfo &getSelectionDAGInfo() const { return *TSI; } LLVMContext *getContext() const {return Context; } /// viewGraph - Pop up a GraphViz/gv window with the DAG rendered using 'dot'. /// void viewGraph(const std::string &Title); void viewGraph(); #ifndef NDEBUG std::map NodeGraphAttrs; #endif /// clearGraphAttrs - Clear all previously defined node graph attributes. /// Intended to be used from a debugging tool (eg. gdb). void clearGraphAttrs(); /// setGraphAttrs - Set graph attributes for a node. (eg. "color=red".) /// void setGraphAttrs(const SDNode *N, const char *Attrs); /// getGraphAttrs - Get graph attributes for a node. (eg. "color=red".) /// Used from getNodeAttributes. const std::string getGraphAttrs(const SDNode *N) const; /// setGraphColor - Convenience for setting node color attribute. /// void setGraphColor(const SDNode *N, const char *Color); /// setGraphColor - Convenience for setting subgraph color attribute. /// void setSubgraphColor(SDNode *N, const char *Color); typedef ilist::const_iterator allnodes_const_iterator; allnodes_const_iterator allnodes_begin() const { return AllNodes.begin(); } allnodes_const_iterator allnodes_end() const { return AllNodes.end(); } typedef ilist::iterator allnodes_iterator; allnodes_iterator allnodes_begin() { return AllNodes.begin(); } allnodes_iterator allnodes_end() { return AllNodes.end(); } ilist::size_type allnodes_size() const { return AllNodes.size(); } /// getRoot - Return the root tag of the SelectionDAG. /// const SDValue &getRoot() const { return Root; } /// getEntryNode - Return the token chain corresponding to the entry of the /// function. SDValue getEntryNode() const { return SDValue(const_cast(&EntryNode), 0); } /// setRoot - Set the current root tag of the SelectionDAG. /// const SDValue &setRoot(SDValue N) { assert((!N.getNode() || N.getValueType() == MVT::Other) && "DAG root value is not a chain!"); if (N.getNode()) checkForCycles(N.getNode(), this); Root = N; if (N.getNode()) checkForCycles(this); return Root; } /// Combine - This iterates over the nodes in the SelectionDAG, folding /// certain types of nodes together, or eliminating superfluous nodes. The /// Level argument controls whether Combine is allowed to produce nodes and /// types that are illegal on the target. void Combine(CombineLevel Level, AliasAnalysis &AA, CodeGenOpt::Level OptLevel); /// LegalizeTypes - This transforms the SelectionDAG into a SelectionDAG that /// only uses types natively supported by the target. Returns "true" if it /// made any changes. /// /// Note that this is an involved process that may invalidate pointers into /// the graph. bool LegalizeTypes(); /// Legalize - This transforms the SelectionDAG into a SelectionDAG that is /// compatible with the target instruction selector, as indicated by the /// TargetLowering object. /// /// Note that this is an involved process that may invalidate pointers into /// the graph. void Legalize(); /// \brief Transforms a SelectionDAG node and any operands to it into a node /// that is compatible with the target instruction selector, as indicated by /// the TargetLowering object. /// /// \returns true if \c N is a valid, legal node after calling this. /// /// This essentially runs a single recursive walk of the \c Legalize process /// over the given node (and its operands). This can be used to incrementally /// legalize the DAG. All of the nodes which are directly replaced, /// potentially including N, are added to the output parameter \c /// UpdatedNodes so that the delta to the DAG can be understood by the /// caller. /// /// When this returns false, N has been legalized in a way that make the /// pointer passed in no longer valid. It may have even been deleted from the /// DAG, and so it shouldn't be used further. When this returns true, the /// N passed in is a legal node, and can be immediately processed as such. /// This may still have done some work on the DAG, and will still populate /// UpdatedNodes with any new nodes replacing those originally in the DAG. bool LegalizeOp(SDNode *N, SmallSetVector &UpdatedNodes); /// LegalizeVectors - This transforms the SelectionDAG into a SelectionDAG /// that only uses vector math operations supported by the target. This is /// necessary as a separate step from Legalize because unrolling a vector /// operation can introduce illegal types, which requires running /// LegalizeTypes again. /// /// This returns true if it made any changes; in that case, LegalizeTypes /// is called again before Legalize. /// /// Note that this is an involved process that may invalidate pointers into /// the graph. bool LegalizeVectors(); /// RemoveDeadNodes - This method deletes all unreachable nodes in the /// SelectionDAG. void RemoveDeadNodes(); /// DeleteNode - Remove the specified node from the system. This node must /// have no referrers. void DeleteNode(SDNode *N); /// getVTList - Return an SDVTList that represents the list of values /// specified. SDVTList getVTList(EVT VT); SDVTList getVTList(EVT VT1, EVT VT2); SDVTList getVTList(EVT VT1, EVT VT2, EVT VT3); SDVTList getVTList(EVT VT1, EVT VT2, EVT VT3, EVT VT4); SDVTList getVTList(ArrayRef VTs); //===--------------------------------------------------------------------===// // Node creation methods. // SDValue getConstant(uint64_t Val, EVT VT, bool isTarget = false, bool isOpaque = false); SDValue getConstant(const APInt &Val, EVT VT, bool isTarget = false, bool isOpaque = false); SDValue getConstant(const ConstantInt &Val, EVT VT, bool isTarget = false, bool isOpaque = false); SDValue getIntPtrConstant(uint64_t Val, bool isTarget = false); SDValue getTargetConstant(uint64_t Val, EVT VT, bool isOpaque = false) { return getConstant(Val, VT, true, isOpaque); } SDValue getTargetConstant(const APInt &Val, EVT VT, bool isOpaque = false) { return getConstant(Val, VT, true, isOpaque); } SDValue getTargetConstant(const ConstantInt &Val, EVT VT, bool isOpaque = false) { return getConstant(Val, VT, true, isOpaque); } // The forms below that take a double should only be used for simple // constants that can be exactly represented in VT. No checks are made. SDValue getConstantFP(double Val, EVT VT, bool isTarget = false); SDValue getConstantFP(const APFloat& Val, EVT VT, bool isTarget = false); SDValue getConstantFP(const ConstantFP &CF, EVT VT, bool isTarget = false); SDValue getTargetConstantFP(double Val, EVT VT) { return getConstantFP(Val, VT, true); } SDValue getTargetConstantFP(const APFloat& Val, EVT VT) { return getConstantFP(Val, VT, true); } SDValue getTargetConstantFP(const ConstantFP &Val, EVT VT) { return getConstantFP(Val, VT, true); } SDValue getGlobalAddress(const GlobalValue *GV, SDLoc DL, EVT VT, int64_t offset = 0, bool isTargetGA = false, unsigned char TargetFlags = 0); SDValue getTargetGlobalAddress(const GlobalValue *GV, SDLoc DL, EVT VT, int64_t offset = 0, unsigned char TargetFlags = 0) { return getGlobalAddress(GV, DL, VT, offset, true, TargetFlags); } SDValue getFrameIndex(int FI, EVT VT, bool isTarget = false); SDValue getTargetFrameIndex(int FI, EVT VT) { return getFrameIndex(FI, VT, true); } SDValue getJumpTable(int JTI, EVT VT, bool isTarget = false, unsigned char TargetFlags = 0); SDValue getTargetJumpTable(int JTI, EVT VT, unsigned char TargetFlags = 0) { return getJumpTable(JTI, VT, true, TargetFlags); } SDValue getConstantPool(const Constant *C, EVT VT, unsigned Align = 0, int Offs = 0, bool isT=false, unsigned char TargetFlags = 0); SDValue getTargetConstantPool(const Constant *C, EVT VT, unsigned Align = 0, int Offset = 0, unsigned char TargetFlags = 0) { return getConstantPool(C, VT, Align, Offset, true, TargetFlags); } SDValue getConstantPool(MachineConstantPoolValue *C, EVT VT, unsigned Align = 0, int Offs = 0, bool isT=false, unsigned char TargetFlags = 0); SDValue getTargetConstantPool(MachineConstantPoolValue *C, EVT VT, unsigned Align = 0, int Offset = 0, unsigned char TargetFlags=0) { return getConstantPool(C, VT, Align, Offset, true, TargetFlags); } SDValue getTargetIndex(int Index, EVT VT, int64_t Offset = 0, unsigned char TargetFlags = 0); // When generating a branch to a BB, we don't in general know enough // to provide debug info for the BB at that time, so keep this one around. SDValue getBasicBlock(MachineBasicBlock *MBB); SDValue getBasicBlock(MachineBasicBlock *MBB, SDLoc dl); SDValue getExternalSymbol(const char *Sym, EVT VT); SDValue getExternalSymbol(const char *Sym, SDLoc dl, EVT VT); SDValue getTargetExternalSymbol(const char *Sym, EVT VT, unsigned char TargetFlags = 0); SDValue getValueType(EVT); SDValue getRegister(unsigned Reg, EVT VT); SDValue getRegisterMask(const uint32_t *RegMask); SDValue getEHLabel(SDLoc dl, SDValue Root, MCSymbol *Label); SDValue getBlockAddress(const BlockAddress *BA, EVT VT, int64_t Offset = 0, bool isTarget = false, unsigned char TargetFlags = 0); SDValue getTargetBlockAddress(const BlockAddress *BA, EVT VT, int64_t Offset = 0, unsigned char TargetFlags = 0) { return getBlockAddress(BA, VT, Offset, true, TargetFlags); } SDValue getCopyToReg(SDValue Chain, SDLoc dl, unsigned Reg, SDValue N) { return getNode(ISD::CopyToReg, dl, MVT::Other, Chain, getRegister(Reg, N.getValueType()), N); } // This version of the getCopyToReg method takes an extra operand, which // indicates that there is potentially an incoming glue value (if Glue is not // null) and that there should be a glue result. SDValue getCopyToReg(SDValue Chain, SDLoc dl, unsigned Reg, SDValue N, SDValue Glue) { SDVTList VTs = getVTList(MVT::Other, MVT::Glue); SDValue Ops[] = { Chain, getRegister(Reg, N.getValueType()), N, Glue }; return getNode(ISD::CopyToReg, dl, VTs, ArrayRef(Ops, Glue.getNode() ? 4 : 3)); } // Similar to last getCopyToReg() except parameter Reg is a SDValue SDValue getCopyToReg(SDValue Chain, SDLoc dl, SDValue Reg, SDValue N, SDValue Glue) { SDVTList VTs = getVTList(MVT::Other, MVT::Glue); SDValue Ops[] = { Chain, Reg, N, Glue }; return getNode(ISD::CopyToReg, dl, VTs, ArrayRef(Ops, Glue.getNode() ? 4 : 3)); } SDValue getCopyFromReg(SDValue Chain, SDLoc dl, unsigned Reg, EVT VT) { SDVTList VTs = getVTList(VT, MVT::Other); SDValue Ops[] = { Chain, getRegister(Reg, VT) }; return getNode(ISD::CopyFromReg, dl, VTs, Ops); } // This version of the getCopyFromReg method takes an extra operand, which // indicates that there is potentially an incoming glue value (if Glue is not // null) and that there should be a glue result. SDValue getCopyFromReg(SDValue Chain, SDLoc dl, unsigned Reg, EVT VT, SDValue Glue) { SDVTList VTs = getVTList(VT, MVT::Other, MVT::Glue); SDValue Ops[] = { Chain, getRegister(Reg, VT), Glue }; return getNode(ISD::CopyFromReg, dl, VTs, ArrayRef(Ops, Glue.getNode() ? 3 : 2)); } SDValue getCondCode(ISD::CondCode Cond); /// Returns the ConvertRndSat Note: Avoid using this node because it may /// disappear in the future and most targets don't support it. SDValue getConvertRndSat(EVT VT, SDLoc dl, SDValue Val, SDValue DTy, SDValue STy, SDValue Rnd, SDValue Sat, ISD::CvtCode Code); /// getVectorShuffle - Return an ISD::VECTOR_SHUFFLE node. The number of /// elements in VT, which must be a vector type, must match the number of /// mask elements NumElts. A integer mask element equal to -1 is treated as /// undefined. SDValue getVectorShuffle(EVT VT, SDLoc dl, SDValue N1, SDValue N2, const int *MaskElts); SDValue getVectorShuffle(EVT VT, SDLoc dl, SDValue N1, SDValue N2, ArrayRef MaskElts) { assert(VT.getVectorNumElements() == MaskElts.size() && "Must have the same number of vector elements as mask elements!"); return getVectorShuffle(VT, dl, N1, N2, MaskElts.data()); } /// \brief Returns an ISD::VECTOR_SHUFFLE node semantically equivalent to /// the shuffle node in input but with swapped operands. /// /// Example: shuffle A, B, <0,5,2,7> -> shuffle B, A, <4,1,6,3> SDValue getCommutedVectorShuffle(const ShuffleVectorSDNode &SV); /// getAnyExtOrTrunc - Convert Op, which must be of integer type, to the /// integer type VT, by either any-extending or truncating it. SDValue getAnyExtOrTrunc(SDValue Op, SDLoc DL, EVT VT); /// getSExtOrTrunc - Convert Op, which must be of integer type, to the /// integer type VT, by either sign-extending or truncating it. SDValue getSExtOrTrunc(SDValue Op, SDLoc DL, EVT VT); /// getZExtOrTrunc - Convert Op, which must be of integer type, to the /// integer type VT, by either zero-extending or truncating it. SDValue getZExtOrTrunc(SDValue Op, SDLoc DL, EVT VT); /// getZeroExtendInReg - Return the expression required to zero extend the Op /// value assuming it was the smaller SrcTy value. SDValue getZeroExtendInReg(SDValue Op, SDLoc DL, EVT SrcTy); /// getAnyExtendVectorInReg - Return an operation which will any-extend the /// low lanes of the operand into the specified vector type. For example, /// this can convert a v16i8 into a v4i32 by any-extending the low four /// lanes of the operand from i8 to i32. SDValue getAnyExtendVectorInReg(SDValue Op, SDLoc DL, EVT VT); /// getSignExtendVectorInReg - Return an operation which will sign extend the /// low lanes of the operand into the specified vector type. For example, /// this can convert a v16i8 into a v4i32 by sign extending the low four /// lanes of the operand from i8 to i32. SDValue getSignExtendVectorInReg(SDValue Op, SDLoc DL, EVT VT); /// getZeroExtendVectorInReg - Return an operation which will zero extend the /// low lanes of the operand into the specified vector type. For example, /// this can convert a v16i8 into a v4i32 by zero extending the low four /// lanes of the operand from i8 to i32. SDValue getZeroExtendVectorInReg(SDValue Op, SDLoc DL, EVT VT); /// getBoolExtOrTrunc - Convert Op, which must be of integer type, to the /// integer type VT, by using an extension appropriate for the target's /// BooleanContent for type OpVT or truncating it. SDValue getBoolExtOrTrunc(SDValue Op, SDLoc SL, EVT VT, EVT OpVT); /// getNOT - Create a bitwise NOT operation as (XOR Val, -1). SDValue getNOT(SDLoc DL, SDValue Val, EVT VT); /// \brief Create a logical NOT operation as (XOR Val, BooleanOne). SDValue getLogicalNOT(SDLoc DL, SDValue Val, EVT VT); /// getCALLSEQ_START - Return a new CALLSEQ_START node, which always must have /// a glue result (to ensure it's not CSE'd). CALLSEQ_START does not have a /// useful SDLoc. SDValue getCALLSEQ_START(SDValue Chain, SDValue Op, SDLoc DL) { SDVTList VTs = getVTList(MVT::Other, MVT::Glue); SDValue Ops[] = { Chain, Op }; return getNode(ISD::CALLSEQ_START, DL, VTs, Ops); } /// getCALLSEQ_END - Return a new CALLSEQ_END node, which always must have a /// glue result (to ensure it's not CSE'd). CALLSEQ_END does not have /// a useful SDLoc. SDValue getCALLSEQ_END(SDValue Chain, SDValue Op1, SDValue Op2, SDValue InGlue, SDLoc DL) { SDVTList NodeTys = getVTList(MVT::Other, MVT::Glue); SmallVector Ops; Ops.push_back(Chain); Ops.push_back(Op1); Ops.push_back(Op2); if (InGlue.getNode()) Ops.push_back(InGlue); return getNode(ISD::CALLSEQ_END, DL, NodeTys, Ops); } /// getUNDEF - Return an UNDEF node. UNDEF does not have a useful SDLoc. SDValue getUNDEF(EVT VT) { return getNode(ISD::UNDEF, SDLoc(), VT); } /// getGLOBAL_OFFSET_TABLE - Return a GLOBAL_OFFSET_TABLE node. This does /// not have a useful SDLoc. SDValue getGLOBAL_OFFSET_TABLE(EVT VT) { return getNode(ISD::GLOBAL_OFFSET_TABLE, SDLoc(), VT); } /// getNode - Gets or creates the specified node. /// SDValue getNode(unsigned Opcode, SDLoc DL, EVT VT); SDValue getNode(unsigned Opcode, SDLoc DL, EVT VT, SDValue N); SDValue getNode(unsigned Opcode, SDLoc DL, EVT VT, SDValue N1, SDValue N2, bool nuw = false, bool nsw = false, bool exact = false); SDValue getNode(unsigned Opcode, SDLoc DL, EVT VT, SDValue N1, SDValue N2, SDValue N3); SDValue getNode(unsigned Opcode, SDLoc DL, EVT VT, SDValue N1, SDValue N2, SDValue N3, SDValue N4); SDValue getNode(unsigned Opcode, SDLoc DL, EVT VT, SDValue N1, SDValue N2, SDValue N3, SDValue N4, SDValue N5); SDValue getNode(unsigned Opcode, SDLoc DL, EVT VT, ArrayRef Ops); SDValue getNode(unsigned Opcode, SDLoc DL, EVT VT, ArrayRef Ops); SDValue getNode(unsigned Opcode, SDLoc DL, ArrayRef ResultTys, ArrayRef Ops); SDValue getNode(unsigned Opcode, SDLoc DL, SDVTList VTs, ArrayRef Ops); SDValue getNode(unsigned Opcode, SDLoc DL, SDVTList VTs); SDValue getNode(unsigned Opcode, SDLoc DL, SDVTList VTs, SDValue N); SDValue getNode(unsigned Opcode, SDLoc DL, SDVTList VTs, SDValue N1, SDValue N2); SDValue getNode(unsigned Opcode, SDLoc DL, SDVTList VTs, SDValue N1, SDValue N2, SDValue N3); SDValue getNode(unsigned Opcode, SDLoc DL, SDVTList VTs, SDValue N1, SDValue N2, SDValue N3, SDValue N4); SDValue getNode(unsigned Opcode, SDLoc DL, SDVTList VTs, SDValue N1, SDValue N2, SDValue N3, SDValue N4, SDValue N5); /// getStackArgumentTokenFactor - Compute a TokenFactor to force all /// the incoming stack arguments to be loaded from the stack. This is /// used in tail call lowering to protect stack arguments from being /// clobbered. SDValue getStackArgumentTokenFactor(SDValue Chain); SDValue getMemcpy(SDValue Chain, SDLoc dl, SDValue Dst, SDValue Src, SDValue Size, unsigned Align, bool isVol, bool AlwaysInline, MachinePointerInfo DstPtrInfo, MachinePointerInfo SrcPtrInfo); SDValue getMemmove(SDValue Chain, SDLoc dl, SDValue Dst, SDValue Src, SDValue Size, unsigned Align, bool isVol, MachinePointerInfo DstPtrInfo, MachinePointerInfo SrcPtrInfo); SDValue getMemset(SDValue Chain, SDLoc dl, SDValue Dst, SDValue Src, SDValue Size, unsigned Align, bool isVol, MachinePointerInfo DstPtrInfo); /// getSetCC - Helper function to make it easier to build SetCC's if you just /// have an ISD::CondCode instead of an SDValue. /// SDValue getSetCC(SDLoc DL, EVT VT, SDValue LHS, SDValue RHS, ISD::CondCode Cond) { assert(LHS.getValueType().isVector() == RHS.getValueType().isVector() && "Cannot compare scalars to vectors"); assert(LHS.getValueType().isVector() == VT.isVector() && "Cannot compare scalars to vectors"); assert(Cond != ISD::SETCC_INVALID && "Cannot create a setCC of an invalid node."); return getNode(ISD::SETCC, DL, VT, LHS, RHS, getCondCode(Cond)); } // getSelect - Helper function to make it easier to build Select's if you just // have operands and don't want to check for vector. SDValue getSelect(SDLoc DL, EVT VT, SDValue Cond, SDValue LHS, SDValue RHS) { assert(LHS.getValueType() == RHS.getValueType() && "Cannot use select on differing types"); assert(VT.isVector() == LHS.getValueType().isVector() && "Cannot mix vectors and scalars"); return getNode(Cond.getValueType().isVector() ? ISD::VSELECT : ISD::SELECT, DL, VT, Cond, LHS, RHS); } /// getSelectCC - Helper function to make it easier to build SelectCC's if you /// just have an ISD::CondCode instead of an SDValue. /// SDValue getSelectCC(SDLoc DL, SDValue LHS, SDValue RHS, SDValue True, SDValue False, ISD::CondCode Cond) { return getNode(ISD::SELECT_CC, DL, True.getValueType(), LHS, RHS, True, False, getCondCode(Cond)); } /// getVAArg - VAArg produces a result and token chain, and takes a pointer /// and a source value as input. SDValue getVAArg(EVT VT, SDLoc dl, SDValue Chain, SDValue Ptr, SDValue SV, unsigned Align); /// getAtomicCmpSwap - Gets a node for an atomic cmpxchg op. There are two /// valid Opcodes. ISD::ATOMIC_CMO_SWAP produces a the value loaded and a /// chain result. ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS produces the value loaded, /// a success flag (initially i1), and a chain. SDValue getAtomicCmpSwap(unsigned Opcode, SDLoc dl, EVT MemVT, SDVTList VTs, SDValue Chain, SDValue Ptr, SDValue Cmp, SDValue Swp, MachinePointerInfo PtrInfo, unsigned Alignment, AtomicOrdering SuccessOrdering, AtomicOrdering FailureOrdering, SynchronizationScope SynchScope); SDValue getAtomicCmpSwap(unsigned Opcode, SDLoc dl, EVT MemVT, SDVTList VTs, SDValue Chain, SDValue Ptr, SDValue Cmp, SDValue Swp, MachineMemOperand *MMO, AtomicOrdering SuccessOrdering, AtomicOrdering FailureOrdering, SynchronizationScope SynchScope); /// getAtomic - Gets a node for an atomic op, produces result (if relevant) /// and chain and takes 2 operands. SDValue getAtomic(unsigned Opcode, SDLoc dl, EVT MemVT, SDValue Chain, SDValue Ptr, SDValue Val, const Value *PtrVal, unsigned Alignment, AtomicOrdering Ordering, SynchronizationScope SynchScope); SDValue getAtomic(unsigned Opcode, SDLoc dl, EVT MemVT, SDValue Chain, SDValue Ptr, SDValue Val, MachineMemOperand *MMO, AtomicOrdering Ordering, SynchronizationScope SynchScope); /// getAtomic - Gets a node for an atomic op, produces result and chain and /// takes 1 operand. SDValue getAtomic(unsigned Opcode, SDLoc dl, EVT MemVT, EVT VT, SDValue Chain, SDValue Ptr, MachineMemOperand *MMO, AtomicOrdering Ordering, SynchronizationScope SynchScope); /// getAtomic - Gets a node for an atomic op, produces result and chain and /// takes N operands. SDValue getAtomic(unsigned Opcode, SDLoc dl, EVT MemVT, SDVTList VTList, ArrayRef Ops, MachineMemOperand *MMO, AtomicOrdering SuccessOrdering, AtomicOrdering FailureOrdering, SynchronizationScope SynchScope); SDValue getAtomic(unsigned Opcode, SDLoc dl, EVT MemVT, SDVTList VTList, ArrayRef Ops, MachineMemOperand *MMO, AtomicOrdering Ordering, SynchronizationScope SynchScope); /// getMemIntrinsicNode - Creates a MemIntrinsicNode that may produce a /// result and takes a list of operands. Opcode may be INTRINSIC_VOID, /// INTRINSIC_W_CHAIN, or a target-specific opcode with a value not /// less than FIRST_TARGET_MEMORY_OPCODE. SDValue getMemIntrinsicNode(unsigned Opcode, SDLoc dl, SDVTList VTList, ArrayRef Ops, EVT MemVT, MachinePointerInfo PtrInfo, unsigned Align = 0, bool Vol = false, bool ReadMem = true, bool WriteMem = true, unsigned Size = 0); SDValue getMemIntrinsicNode(unsigned Opcode, SDLoc dl, SDVTList VTList, ArrayRef Ops, EVT MemVT, MachineMemOperand *MMO); /// getMergeValues - Create a MERGE_VALUES node from the given operands. SDValue getMergeValues(ArrayRef Ops, SDLoc dl); /// getLoad - Loads are not normal binary operators: their result type is not /// determined by their operands, and they produce a value AND a token chain. /// SDValue getLoad(EVT VT, SDLoc dl, SDValue Chain, SDValue Ptr, MachinePointerInfo PtrInfo, bool isVolatile, bool isNonTemporal, bool isInvariant, unsigned Alignment, const AAMDNodes &AAInfo = AAMDNodes(), const MDNode *Ranges = nullptr); SDValue getLoad(EVT VT, SDLoc dl, SDValue Chain, SDValue Ptr, MachineMemOperand *MMO); SDValue getExtLoad(ISD::LoadExtType ExtType, SDLoc dl, EVT VT, SDValue Chain, SDValue Ptr, MachinePointerInfo PtrInfo, EVT MemVT, bool isVolatile, bool isNonTemporal, bool isInvariant, unsigned Alignment, const AAMDNodes &AAInfo = AAMDNodes()); SDValue getExtLoad(ISD::LoadExtType ExtType, SDLoc dl, EVT VT, SDValue Chain, SDValue Ptr, EVT MemVT, MachineMemOperand *MMO); SDValue getIndexedLoad(SDValue OrigLoad, SDLoc dl, SDValue Base, SDValue Offset, ISD::MemIndexedMode AM); SDValue getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, EVT VT, SDLoc dl, SDValue Chain, SDValue Ptr, SDValue Offset, MachinePointerInfo PtrInfo, EVT MemVT, bool isVolatile, bool isNonTemporal, bool isInvariant, unsigned Alignment, const AAMDNodes &AAInfo = AAMDNodes(), const MDNode *Ranges = nullptr); SDValue getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, EVT VT, SDLoc dl, SDValue Chain, SDValue Ptr, SDValue Offset, EVT MemVT, MachineMemOperand *MMO); /// getStore - Helper function to build ISD::STORE nodes. /// SDValue getStore(SDValue Chain, SDLoc dl, SDValue Val, SDValue Ptr, MachinePointerInfo PtrInfo, bool isVolatile, bool isNonTemporal, unsigned Alignment, const AAMDNodes &AAInfo = AAMDNodes()); SDValue getStore(SDValue Chain, SDLoc dl, SDValue Val, SDValue Ptr, MachineMemOperand *MMO); SDValue getTruncStore(SDValue Chain, SDLoc dl, SDValue Val, SDValue Ptr, MachinePointerInfo PtrInfo, EVT TVT, bool isNonTemporal, bool isVolatile, unsigned Alignment, const AAMDNodes &AAInfo = AAMDNodes()); SDValue getTruncStore(SDValue Chain, SDLoc dl, SDValue Val, SDValue Ptr, EVT TVT, MachineMemOperand *MMO); SDValue getIndexedStore(SDValue OrigStoe, SDLoc dl, SDValue Base, SDValue Offset, ISD::MemIndexedMode AM); /// getSrcValue - Construct a node to track a Value* through the backend. SDValue getSrcValue(const Value *v); /// getMDNode - Return an MDNodeSDNode which holds an MDNode. SDValue getMDNode(const MDNode *MD); /// getAddrSpaceCast - Return an AddrSpaceCastSDNode. SDValue getAddrSpaceCast(SDLoc dl, EVT VT, SDValue Ptr, unsigned SrcAS, unsigned DestAS); /// getShiftAmountOperand - Return the specified value casted to /// the target's desired shift amount type. SDValue getShiftAmountOperand(EVT LHSTy, SDValue Op); /// UpdateNodeOperands - *Mutate* the specified node in-place to have the /// specified operands. If the resultant node already exists in the DAG, /// this does not modify the specified node, instead it returns the node that /// already exists. If the resultant node does not exist in the DAG, the /// input node is returned. As a degenerate case, if you specify the same /// input operands as the node already has, the input node is returned. SDNode *UpdateNodeOperands(SDNode *N, SDValue Op); SDNode *UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2); SDNode *UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, SDValue Op3); SDNode *UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, SDValue Op3, SDValue Op4); SDNode *UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, SDValue Op3, SDValue Op4, SDValue Op5); SDNode *UpdateNodeOperands(SDNode *N, ArrayRef Ops); /// SelectNodeTo - These are used for target selectors to *mutate* the /// specified node to have the specified return type, Target opcode, and /// operands. Note that target opcodes are stored as /// ~TargetOpcode in the node opcode field. The resultant node is returned. SDNode *SelectNodeTo(SDNode *N, unsigned TargetOpc, EVT VT); SDNode *SelectNodeTo(SDNode *N, unsigned TargetOpc, EVT VT, SDValue Op1); SDNode *SelectNodeTo(SDNode *N, unsigned TargetOpc, EVT VT, SDValue Op1, SDValue Op2); SDNode *SelectNodeTo(SDNode *N, unsigned TargetOpc, EVT VT, SDValue Op1, SDValue Op2, SDValue Op3); SDNode *SelectNodeTo(SDNode *N, unsigned TargetOpc, EVT VT, ArrayRef Ops); SDNode *SelectNodeTo(SDNode *N, unsigned TargetOpc, EVT VT1, EVT VT2); SDNode *SelectNodeTo(SDNode *N, unsigned TargetOpc, EVT VT1, EVT VT2, ArrayRef Ops); SDNode *SelectNodeTo(SDNode *N, unsigned TargetOpc, EVT VT1, EVT VT2, EVT VT3, ArrayRef Ops); SDNode *SelectNodeTo(SDNode *N, unsigned MachineOpc, EVT VT1, EVT VT2, EVT VT3, EVT VT4, ArrayRef Ops); SDNode *SelectNodeTo(SDNode *N, unsigned TargetOpc, EVT VT1, EVT VT2, SDValue Op1); SDNode *SelectNodeTo(SDNode *N, unsigned TargetOpc, EVT VT1, EVT VT2, SDValue Op1, SDValue Op2); SDNode *SelectNodeTo(SDNode *N, unsigned TargetOpc, EVT VT1, EVT VT2, SDValue Op1, SDValue Op2, SDValue Op3); SDNode *SelectNodeTo(SDNode *N, unsigned TargetOpc, EVT VT1, EVT VT2, EVT VT3, SDValue Op1, SDValue Op2, SDValue Op3); SDNode *SelectNodeTo(SDNode *N, unsigned TargetOpc, SDVTList VTs, ArrayRef Ops); /// MorphNodeTo - This *mutates* the specified node to have the specified /// return type, opcode, and operands. SDNode *MorphNodeTo(SDNode *N, unsigned Opc, SDVTList VTs, ArrayRef Ops); /// getMachineNode - These are used for target selectors to create a new node /// with specified return type(s), MachineInstr opcode, and operands. /// /// Note that getMachineNode returns the resultant node. If there is already /// a node of the specified opcode and operands, it returns that node instead /// of the current one. MachineSDNode *getMachineNode(unsigned Opcode, SDLoc dl, EVT VT); MachineSDNode *getMachineNode(unsigned Opcode, SDLoc dl, EVT VT, SDValue Op1); MachineSDNode *getMachineNode(unsigned Opcode, SDLoc dl, EVT VT, SDValue Op1, SDValue Op2); MachineSDNode *getMachineNode(unsigned Opcode, SDLoc dl, EVT VT, SDValue Op1, SDValue Op2, SDValue Op3); MachineSDNode *getMachineNode(unsigned Opcode, SDLoc dl, EVT VT, ArrayRef Ops); MachineSDNode *getMachineNode(unsigned Opcode, SDLoc dl, EVT VT1, EVT VT2); MachineSDNode *getMachineNode(unsigned Opcode, SDLoc dl, EVT VT1, EVT VT2, SDValue Op1); MachineSDNode *getMachineNode(unsigned Opcode, SDLoc dl, EVT VT1, EVT VT2, SDValue Op1, SDValue Op2); MachineSDNode *getMachineNode(unsigned Opcode, SDLoc dl, EVT VT1, EVT VT2, SDValue Op1, SDValue Op2, SDValue Op3); MachineSDNode *getMachineNode(unsigned Opcode, SDLoc dl, EVT VT1, EVT VT2, ArrayRef Ops); MachineSDNode *getMachineNode(unsigned Opcode, SDLoc dl, EVT VT1, EVT VT2, EVT VT3, SDValue Op1, SDValue Op2); MachineSDNode *getMachineNode(unsigned Opcode, SDLoc dl, EVT VT1, EVT VT2, EVT VT3, SDValue Op1, SDValue Op2, SDValue Op3); MachineSDNode *getMachineNode(unsigned Opcode, SDLoc dl, EVT VT1, EVT VT2, EVT VT3, ArrayRef Ops); MachineSDNode *getMachineNode(unsigned Opcode, SDLoc dl, EVT VT1, EVT VT2, EVT VT3, EVT VT4, ArrayRef Ops); MachineSDNode *getMachineNode(unsigned Opcode, SDLoc dl, ArrayRef ResultTys, ArrayRef Ops); MachineSDNode *getMachineNode(unsigned Opcode, SDLoc dl, SDVTList VTs, ArrayRef Ops); /// getTargetExtractSubreg - A convenience function for creating /// TargetInstrInfo::EXTRACT_SUBREG nodes. SDValue getTargetExtractSubreg(int SRIdx, SDLoc DL, EVT VT, SDValue Operand); /// getTargetInsertSubreg - A convenience function for creating /// TargetInstrInfo::INSERT_SUBREG nodes. SDValue getTargetInsertSubreg(int SRIdx, SDLoc DL, EVT VT, SDValue Operand, SDValue Subreg); /// getNodeIfExists - Get the specified node if it's already available, or /// else return NULL. SDNode *getNodeIfExists(unsigned Opcode, SDVTList VTs, ArrayRef Ops, bool nuw = false, bool nsw = false, bool exact = false); /// getDbgValue - Creates a SDDbgValue node. /// SDDbgValue *getDbgValue(MDNode *MDPtr, SDNode *N, unsigned R, bool IsIndirect, uint64_t Off, DebugLoc DL, unsigned O); /// Constant. SDDbgValue *getConstantDbgValue(MDNode *MDPtr, const Value *C, uint64_t Off, DebugLoc DL, unsigned O); /// Frame index. SDDbgValue *getFrameIndexDbgValue(MDNode *MDPtr, unsigned FI, uint64_t Off, DebugLoc DL, unsigned O); /// RemoveDeadNode - Remove the specified node from the system. If any of its /// operands then becomes dead, remove them as well. Inform UpdateListener /// for each node deleted. void RemoveDeadNode(SDNode *N); /// RemoveDeadNodes - This method deletes the unreachable nodes in the /// given list, and any nodes that become unreachable as a result. void RemoveDeadNodes(SmallVectorImpl &DeadNodes); /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead. /// This can cause recursive merging of nodes in the DAG. Use the first /// version if 'From' is known to have a single result, use the second /// if you have two nodes with identical results (or if 'To' has a superset /// of the results of 'From'), use the third otherwise. /// /// These methods all take an optional UpdateListener, which (if not null) is /// informed about nodes that are deleted and modified due to recursive /// changes in the dag. /// /// These functions only replace all existing uses. It's possible that as /// these replacements are being performed, CSE may cause the From node /// to be given new uses. These new uses of From are left in place, and /// not automatically transferred to To. /// void ReplaceAllUsesWith(SDValue From, SDValue Op); void ReplaceAllUsesWith(SDNode *From, SDNode *To); void ReplaceAllUsesWith(SDNode *From, const SDValue *To); /// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving /// uses of other values produced by From.Val alone. void ReplaceAllUsesOfValueWith(SDValue From, SDValue To); /// ReplaceAllUsesOfValuesWith - Like ReplaceAllUsesOfValueWith, but /// for multiple values at once. This correctly handles the case where /// there is an overlap between the From values and the To values. void ReplaceAllUsesOfValuesWith(const SDValue *From, const SDValue *To, unsigned Num); /// AssignTopologicalOrder - Topological-sort the AllNodes list and a /// assign a unique node id for each node in the DAG based on their /// topological order. Returns the number of nodes. unsigned AssignTopologicalOrder(); /// RepositionNode - Move node N in the AllNodes list to be immediately /// before the given iterator Position. This may be used to update the /// topological ordering when the list of nodes is modified. void RepositionNode(allnodes_iterator Position, SDNode *N) { AllNodes.insert(Position, AllNodes.remove(N)); } /// isCommutativeBinOp - Returns true if the opcode is a commutative binary /// operation. static bool isCommutativeBinOp(unsigned Opcode) { // FIXME: This should get its info from the td file, so that we can include // target info. switch (Opcode) { case ISD::ADD: case ISD::MUL: case ISD::MULHU: case ISD::MULHS: case ISD::SMUL_LOHI: case ISD::UMUL_LOHI: case ISD::FADD: case ISD::FMUL: case ISD::AND: case ISD::OR: case ISD::XOR: case ISD::SADDO: case ISD::UADDO: case ISD::ADDC: case ISD::ADDE: return true; default: return false; } } /// Returns an APFloat semantics tag appropriate for the given type. If VT is /// a vector type, the element semantics are returned. static const fltSemantics &EVTToAPFloatSemantics(EVT VT) { switch (VT.getScalarType().getSimpleVT().SimpleTy) { default: llvm_unreachable("Unknown FP format"); case MVT::f16: return APFloat::IEEEhalf; case MVT::f32: return APFloat::IEEEsingle; case MVT::f64: return APFloat::IEEEdouble; case MVT::f80: return APFloat::x87DoubleExtended; case MVT::f128: return APFloat::IEEEquad; case MVT::ppcf128: return APFloat::PPCDoubleDouble; } } /// AddDbgValue - Add a dbg_value SDNode. If SD is non-null that means the /// value is produced by SD. void AddDbgValue(SDDbgValue *DB, SDNode *SD, bool isParameter); /// GetDbgValues - Get the debug values which reference the given SDNode. ArrayRef GetDbgValues(const SDNode* SD) { return DbgInfo->getSDDbgValues(SD); } /// TransferDbgValues - Transfer SDDbgValues. void TransferDbgValues(SDValue From, SDValue To); /// hasDebugValues - Return true if there are any SDDbgValue nodes associated /// with this SelectionDAG. bool hasDebugValues() const { return !DbgInfo->empty(); } SDDbgInfo::DbgIterator DbgBegin() { return DbgInfo->DbgBegin(); } SDDbgInfo::DbgIterator DbgEnd() { return DbgInfo->DbgEnd(); } SDDbgInfo::DbgIterator ByvalParmDbgBegin() { return DbgInfo->ByvalParmDbgBegin(); } SDDbgInfo::DbgIterator ByvalParmDbgEnd() { return DbgInfo->ByvalParmDbgEnd(); } void dump() const; /// CreateStackTemporary - Create a stack temporary, suitable for holding the /// specified value type. If minAlign is specified, the slot size will have /// at least that alignment. SDValue CreateStackTemporary(EVT VT, unsigned minAlign = 1); /// CreateStackTemporary - Create a stack temporary suitable for holding /// either of the specified value types. SDValue CreateStackTemporary(EVT VT1, EVT VT2); /// FoldConstantArithmetic - SDValue FoldConstantArithmetic(unsigned Opcode, EVT VT, SDNode *Cst1, SDNode *Cst2); /// FoldSetCC - Constant fold a setcc to true or false. SDValue FoldSetCC(EVT VT, SDValue N1, SDValue N2, ISD::CondCode Cond, SDLoc dl); /// SignBitIsZero - Return true if the sign bit of Op is known to be zero. We /// use this predicate to simplify operations downstream. bool SignBitIsZero(SDValue Op, unsigned Depth = 0) const; /// MaskedValueIsZero - Return true if 'Op & Mask' is known to be zero. We /// use this predicate to simplify operations downstream. Op and Mask are /// known to be the same type. bool MaskedValueIsZero(SDValue Op, const APInt &Mask, unsigned Depth = 0) const; /// Determine which bits of Op are known to be either zero or one and return /// them in the KnownZero/KnownOne bitsets. Targets can implement the /// computeKnownBitsForTargetNode method in the TargetLowering class to allow /// target nodes to be understood. void computeKnownBits(SDValue Op, APInt &KnownZero, APInt &KnownOne, unsigned Depth = 0) const; /// ComputeNumSignBits - Return the number of times the sign bit of the /// register is replicated into the other bits. We know that at least 1 bit /// is always equal to the sign bit (itself), but other cases can give us /// information. For example, immediately after an "SRA X, 2", we know that /// the top 3 bits are all equal to each other, so we return 3. Targets can /// implement the ComputeNumSignBitsForTarget method in the TargetLowering /// class to allow target nodes to be understood. unsigned ComputeNumSignBits(SDValue Op, unsigned Depth = 0) const; /// isBaseWithConstantOffset - Return true if the specified operand is an /// ISD::ADD with a ConstantSDNode on the right-hand side, or if it is an /// ISD::OR with a ConstantSDNode that is guaranteed to have the same /// semantics as an ADD. This handles the equivalence: /// X|Cst == X+Cst iff X&Cst = 0. bool isBaseWithConstantOffset(SDValue Op) const; /// isKnownNeverNan - Test whether the given SDValue is known to never be NaN. bool isKnownNeverNaN(SDValue Op) const; /// isKnownNeverZero - Test whether the given SDValue is known to never be /// positive or negative Zero. bool isKnownNeverZero(SDValue Op) const; /// isEqualTo - Test whether two SDValues are known to compare equal. This /// is true if they are the same value, or if one is negative zero and the /// other positive zero. bool isEqualTo(SDValue A, SDValue B) const; /// UnrollVectorOp - Utility function used by legalize and lowering to /// "unroll" a vector operation by splitting out the scalars and operating /// on each element individually. If the ResNE is 0, fully unroll the vector /// op. If ResNE is less than the width of the vector op, unroll up to ResNE. /// If the ResNE is greater than the width of the vector op, unroll the /// vector op and fill the end of the resulting vector with UNDEFS. SDValue UnrollVectorOp(SDNode *N, unsigned ResNE = 0); /// isConsecutiveLoad - Return true if LD is loading 'Bytes' bytes from a /// location that is 'Dist' units away from the location that the 'Base' load /// is loading from. bool isConsecutiveLoad(LoadSDNode *LD, LoadSDNode *Base, unsigned Bytes, int Dist) const; /// InferPtrAlignment - Infer alignment of a load / store address. Return 0 if /// it cannot be inferred. unsigned InferPtrAlignment(SDValue Ptr) const; /// GetSplitDestVTs - Compute the VTs needed for the low/hi parts of a type /// which is split (or expanded) into two not necessarily identical pieces. std::pair GetSplitDestVTs(const EVT &VT) const; /// SplitVector - Split the vector with EXTRACT_SUBVECTOR using the provides /// VTs and return the low/high part. std::pair SplitVector(const SDValue &N, const SDLoc &DL, const EVT &LoVT, const EVT &HiVT); /// SplitVector - Split the vector with EXTRACT_SUBVECTOR and return the /// low/high part. std::pair SplitVector(const SDValue &N, const SDLoc &DL) { EVT LoVT, HiVT; std::tie(LoVT, HiVT) = GetSplitDestVTs(N.getValueType()); return SplitVector(N, DL, LoVT, HiVT); } /// SplitVectorOperand - Split the node's operand with EXTRACT_SUBVECTOR and /// return the low/high part. std::pair SplitVectorOperand(const SDNode *N, unsigned OpNo) { return SplitVector(N->getOperand(OpNo), SDLoc(N)); } /// ExtractVectorElements - Append the extracted elements from Start to Count /// out of the vector Op in Args. If Count is 0, all of the elements will be /// extracted. void ExtractVectorElements(SDValue Op, SmallVectorImpl &Args, unsigned Start = 0, unsigned Count = 0); unsigned getEVTAlignment(EVT MemoryVT) const; private: void InsertNode(SDNode *N); bool RemoveNodeFromCSEMaps(SDNode *N); void AddModifiedNodeToCSEMaps(SDNode *N); SDNode *FindModifiedNodeSlot(SDNode *N, SDValue Op, void *&InsertPos); SDNode *FindModifiedNodeSlot(SDNode *N, SDValue Op1, SDValue Op2, void *&InsertPos); SDNode *FindModifiedNodeSlot(SDNode *N, ArrayRef Ops, void *&InsertPos); SDNode *UpdadeSDLocOnMergedSDNode(SDNode *N, SDLoc loc); void DeleteNodeNotInCSEMaps(SDNode *N); void DeallocateNode(SDNode *N); void allnodes_clear(); BinarySDNode *GetBinarySDNode(unsigned Opcode, SDLoc DL, SDVTList VTs, SDValue N1, SDValue N2, bool nuw, bool nsw, bool exact); /// VTList - List of non-single value types. FoldingSet VTListMap; /// CondCodeNodes - Maps to auto-CSE operations. std::vector CondCodeNodes; std::vector ValueTypeNodes; std::map ExtendedValueTypeNodes; StringMap ExternalSymbols; std::map,SDNode*> TargetExternalSymbols; }; template <> struct GraphTraits : public GraphTraits { typedef SelectionDAG::allnodes_iterator nodes_iterator; static nodes_iterator nodes_begin(SelectionDAG *G) { return G->allnodes_begin(); } static nodes_iterator nodes_end(SelectionDAG *G) { return G->allnodes_end(); } }; } // end namespace llvm #endif