//===- InlineFunction.cpp - Code to perform function inlining -------------===// // // This file implements inlining of a function into a call site, resolving // parameters and the return value as appropriate. // // FIXME: This pass should transform alloca instructions in the called function // into malloc/free pairs! Or perhaps it should refuse to inline them! // //===----------------------------------------------------------------------===// #include "llvm/Transforms/Utils/Cloning.h" #include "llvm/Constant.h" #include "llvm/DerivedTypes.h" #include "llvm/Module.h" #include "llvm/Instructions.h" #include "llvm/Intrinsics.h" #include "llvm/Support/CallSite.h" #include "llvm/Transforms/Utils/Local.h" bool InlineFunction(CallInst *CI) { return InlineFunction(CallSite(CI)); } bool InlineFunction(InvokeInst *II) { return InlineFunction(CallSite(II)); } // InlineFunction - This function inlines the called function into the basic // block of the caller. This returns false if it is not possible to inline this // call. The program is still in a well defined state if this occurs though. // // Note that this only does one level of inlining. For example, if the // instruction 'call B' is inlined, and 'B' calls 'C', then the call to 'C' now // exists in the instruction stream. Similiarly this will inline a recursive // function by one level. // bool InlineFunction(CallSite CS) { Instruction *TheCall = CS.getInstruction(); assert(TheCall->getParent() && TheCall->getParent()->getParent() && "Instruction not in function!"); const Function *CalledFunc = CS.getCalledFunction(); if (CalledFunc == 0 || // Can't inline external function or indirect CalledFunc->isExternal() || // call, or call to a vararg function! CalledFunc->getFunctionType()->isVarArg()) return false; BasicBlock *OrigBB = TheCall->getParent(); Function *Caller = OrigBB->getParent(); // We want to clone the entire callee function into the whole between the // "starter" and "ender" blocks. How we accomplish this depends on whether // this is an invoke instruction or a call instruction. BasicBlock *InvokeDest = 0; // Exception handling destination std::vector InvokeDestPHIValues; // Values for PHI nodes in InvokeDest BasicBlock *AfterCallBB; if (InvokeInst *II = dyn_cast(TheCall)) { InvokeDest = II->getExceptionalDest(); // Add an unconditional branch to make this look like the CallInst case... BranchInst *NewBr = new BranchInst(II->getNormalDest(), TheCall); // Split the basic block. This guarantees that no PHI nodes will have to be // updated due to new incoming edges, and make the invoke case more // symmetric to the call case. AfterCallBB = OrigBB->splitBasicBlock(NewBr, CalledFunc->getName()+".entry"); // If there are PHI nodes in the exceptional destination block, we need to // keep track of which values came into them from this invoke, then remove // the entry for this block. for (BasicBlock::iterator I = InvokeDest->begin(); PHINode *PN = dyn_cast(I); ++I) { // Save the value to use for this edge... InvokeDestPHIValues.push_back(PN->getIncomingValueForBlock(AfterCallBB)); } // Remove (unlink) the InvokeInst from the function... OrigBB->getInstList().remove(TheCall); } else { // It's a call // If this is a call instruction, we need to split the basic block that the // call lives in. // AfterCallBB = OrigBB->splitBasicBlock(TheCall, CalledFunc->getName()+".entry"); // Remove (unlink) the CallInst from the function... AfterCallBB->getInstList().remove(TheCall); } // If we have a return value generated by this call, convert it into a PHI // node that gets values from each of the old RET instructions in the original // function. // PHINode *PHI = 0; if (!TheCall->use_empty()) { // The PHI node should go at the front of the new basic block to merge all // possible incoming values. // PHI = new PHINode(CalledFunc->getReturnType(), TheCall->getName(), AfterCallBB->begin()); // Anything that used the result of the function call should now use the PHI // node as their operand. // TheCall->replaceAllUsesWith(PHI); } // Get an iterator to the last basic block in the function, which will have // the new function inlined after it. // Function::iterator LastBlock = &Caller->back(); // Calculate the vector of arguments to pass into the function cloner... std::map ValueMap; assert(std::distance(CalledFunc->abegin(), CalledFunc->aend()) == std::distance(CS.arg_begin(), CS.arg_end()) && "No varargs calls can be inlined!"); CallSite::arg_iterator AI = CS.arg_begin(); for (Function::const_aiterator I = CalledFunc->abegin(), E=CalledFunc->aend(); I != E; ++I, ++AI) ValueMap[I] = *AI; // Since we are now done with the Call/Invoke, we can delete it. delete TheCall; // Make a vector to capture the return instructions in the cloned function... std::vector Returns; // Do all of the hard part of cloning the callee into the caller... CloneFunctionInto(Caller, CalledFunc, ValueMap, Returns, ".i"); // Loop over all of the return instructions, turning them into unconditional // branches to the merge point now... for (unsigned i = 0, e = Returns.size(); i != e; ++i) { ReturnInst *RI = Returns[i]; BasicBlock *BB = RI->getParent(); // Add a branch to the merge point where the PHI node lives if it exists. new BranchInst(AfterCallBB, RI); if (PHI) { // The PHI node should include this value! assert(RI->getReturnValue() && "Ret should have value!"); assert(RI->getReturnValue()->getType() == PHI->getType() && "Ret value not consistent in function!"); PHI->addIncoming(RI->getReturnValue(), BB); } // Delete the return instruction now BB->getInstList().erase(RI); } // Check to see if the PHI node only has one argument. This is a common // case resulting from there only being a single return instruction in the // function call. Because this is so common, eliminate the PHI node. // if (PHI && PHI->getNumIncomingValues() == 1) { PHI->replaceAllUsesWith(PHI->getIncomingValue(0)); PHI->getParent()->getInstList().erase(PHI); } // Change the branch that used to go to AfterCallBB to branch to the first // basic block of the inlined function. // TerminatorInst *Br = OrigBB->getTerminator(); assert(Br && Br->getOpcode() == Instruction::Br && "splitBasicBlock broken!"); Br->setOperand(0, ++LastBlock); // If there are any alloca instructions in the block that used to be the entry // block for the callee, move them to the entry block of the caller. First // calculate which instruction they should be inserted before. We insert the // instructions at the end of the current alloca list. // if (isa(LastBlock->begin())) { BasicBlock::iterator InsertPoint = Caller->begin()->begin(); while (isa(InsertPoint)) ++InsertPoint; for (BasicBlock::iterator I = LastBlock->begin(), E = LastBlock->end(); I != E; ) if (AllocaInst *AI = dyn_cast(I)) { ++I; // Move to the next instruction LastBlock->getInstList().remove(AI); Caller->front().getInstList().insert(InsertPoint, AI); } else { ++I; } } // If we just inlined a call due to an invoke instruction, scan the inlined // function checking for function calls that should now be made into invoke // instructions, and for unwind's which should be turned into branches. if (InvokeDest) { for (Function::iterator BB = LastBlock, E = Caller->end(); BB != E; ++BB) { for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ) { // We only need to check for function calls: inlined invoke instructions // require no special handling... if (CallInst *CI = dyn_cast(I)) { // Convert this function call into an invoke instruction... // First, split the basic block... BasicBlock *Split = BB->splitBasicBlock(CI, CI->getName()+".noexc"); // Next, create the new invoke instruction, inserting it at the end // of the old basic block. InvokeInst *II = new InvokeInst(CI->getCalledValue(), Split, InvokeDest, std::vector(CI->op_begin()+1, CI->op_end()), CI->getName(), BB->getTerminator()); // Make sure that anything using the call now uses the invoke! CI->replaceAllUsesWith(II); // Delete the unconditional branch inserted by splitBasicBlock BB->getInstList().pop_back(); Split->getInstList().pop_front(); // Delete the original call // Update any PHI nodes in the exceptional block to indicate that // there is now a new entry in them. unsigned i = 0; for (BasicBlock::iterator I = InvokeDest->begin(); PHINode *PN = dyn_cast(I); ++I, ++i) PN->addIncoming(InvokeDestPHIValues[i], BB); // This basic block is now complete, start scanning the next one. break; } else { ++I; } } if (UnwindInst *UI = dyn_cast(BB->getTerminator())) { // An UnwindInst requires special handling when it gets inlined into an // invoke site. Once this happens, we know that the unwind would cause // a control transfer to the invoke exception destination, so we can // transform it into a direct branch to the exception destination. BranchInst *BI = new BranchInst(InvokeDest, UI); // Delete the unwind instruction! UI->getParent()->getInstList().pop_back(); } } // Now that everything is happy, we have one final detail. The PHI nodes in // the exception destination block still have entries due to the original // invoke instruction. Eliminate these entries (which might even delete the // PHI node) now. for (BasicBlock::iterator I = InvokeDest->begin(); PHINode *PN = dyn_cast(I); ++I) PN->removeIncomingValue(AfterCallBB); } // Now that the function is correct, make it a little bit nicer. In // particular, move the basic blocks inserted from the end of the function // into the space made by splitting the source basic block. // Caller->getBasicBlockList().splice(AfterCallBB, Caller->getBasicBlockList(), LastBlock, Caller->end()); // We should always be able to fold the entry block of the function into the // single predecessor of the block... assert(cast(Br)->isUnconditional() && "splitBasicBlock broken!"); BasicBlock *CalleeEntry = cast(Br)->getSuccessor(0); SimplifyCFG(CalleeEntry); // Okay, continue the CFG cleanup. It's often the case that there is only a // single return instruction in the callee function. If this is the case, // then we have an unconditional branch from the return block to the // 'AfterCallBB'. Check for this case, and eliminate the branch is possible. SimplifyCFG(AfterCallBB); return true; }